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We investigate pattern formation in two-dimensional Bose-Einstein condensates (BECs) caused by periodic
driving of the interatomic interaction. We show that this modulation generically leads to a stable square grid
density pattern, due to nonlinear effects beyond the initial Faraday instability. We take the amplitudes of two
waves parametrizing the two-dimensional density pattern as order parameters in pattern formation. For these
amplitudes, we derive a set of coupled time-evolution equations from the Gross-Pitaevskii equation with a time-
periodic interaction. We identify the fixed points of the time evolution and show by stability analysis that the
inhomogeneous density exhibits a square grid pattern, which can be understood as a manifestation of a stable
fixed point. Our stability analysis establishes the pattern in BECs as a nonequilibrium steady state.
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Introduction. In recent years, there has been intense in-
terest in many-body dynamics far from equilibrium. Among
these dynamics, pattern formation is particularly intriguing, as
uniform states spontaneously become inhomogeneous when
external parameters change. As a spontaneous breaking of
symmetry in dynamics, pattern formation appears in nature at
diverse scales, not only in physics [1,2] but also in chemical
reactions [3] and biology [4]. However, important questions
remain unanswered due to the need for highly controlled
experiments. Thus, ultracold atomic systems are well suited
to study pattern formation, due to their advanced experimental
techniques.

In Bose-Einstein condensates (BECs), spontaneous pattern
formation arises from temporal modulations of system pa-
rameters, such as the magnitudes of trapping potentials and
interactions [5]. This parametric instability is also known as
the Faraday instability, as an analogy to a similar phenomenon
in classical fluids [6–10]. Indeed, observations in BECs in-
clude one-dimensional patterns [11–13] and surface patterns
of a two-dimensional system [14]. Furthermore, in two-
dimensional systems, the symmetry of selected patterns can
be engineered through multiple simultaneous modulations of
the atomic interactions [15]. Theoretically, parametric insta-
bilities derived from linear analysis in driven one-dimensional
quantum gases have been actively studied, and many studies
have calculated the wave number of excitations generated by
the instability [16–47].

However, previous studies have neglected the effects of
nonlinearities and their role in stabilizing certain geometries
of patterns far beyond the linear regime. This is particularly
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relevant in two dimensions, where structures are character-
ized by both lattice symmetry and wave number. In our
recent companion work [48], we observed two-dimensional
stable patterns, clearly exhibiting a square grid, with a single-
frequency modulation of the interaction without fine-tuning.
In particular, this emergence of square grids contrasts with
previous theoretical claims of an oblique grid realization in
Ref. [5], underlining the importance of a theoretical investiga-
tion of the underlying mechanisms.

In this Letter, we introduce an analytical method that
describes not only the growth but also the stabilization of cer-
tain patterns due to nonlinearities in driven single-component
BECs. We derive time-evolution equations for the amplitudes
of density waves spanning two-dimensional patterns in BECs.
We show that driven condensates exhibit a square grid as a
stable pattern. In our model, we consider density modulations
in two directions k and p in the plane with amplitudes Rk and
Rp, respectively. When the angle between the two directions
is near π/2, both amplitudes grow to finite values and we
find that the system exhibits a stable grid pattern. Conversely,
for small angles, only one of the amplitudes grows to a finite
value while the other is suppressed, and the BEC exhibits a
stripe pattern. This result is clearly seen in Fig. 1, where the
global stability of the patterns differs significantly depending
on the angle between the two directions. In the experiment,
many modes at different angles initially grow due to the
instability, and our analysis shows that two of these modes
at an angle close to π/2 will reinforce each other and grow
into a grid pattern, while other modes at small angles are
suppressed.

BEC with a time-periodically-modulated interaction. We
consider a two-dimensional BEC with an interaction strength
g(t ) = ḡ[1 − A sin(ωt )] with drive amplitude |A| < 1 around
its mean value ḡ. The dynamics of a BEC with wave
function �(t, x) is described by the Gross-Pitaevskii (GP)
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FIG. 1. Global stability of the patterns formed by two standing
waves in a planar BEC in directions k and p. Schematic figures at
the fixed points represent corresponding stationary solutions, i.e.,
the grid-pattern, stripe-pattern, and uniform solutions. The angle
θ between the two excited modes is (a) θ = ∠(k, p) = π/6 and
(b) θ = ∠(k, p) = π/2. In the latter case, the square grid pattern
emerges as a stable fixed point. The parameters are ω/μ = 2 and
A = 0.6 with low dissipation � = 0.1α, where ω, μ, and α are the
driving frequency, the chemical potential, and the drive amplitude,
respectively.

equation [49]

i
∂

∂t
�(t, x) =

(
−∇2

2m
+ g(t )|�(t, x)|2

)
�(t, x), (1)

where we set h̄ = 1. We assume an infinitely extended BEC
without trapping potential term.

Equation (1) has a uniform solution �uni(t ) =
�0 exp[−iμt − i(μ/ω)A cos(ωt )] with the chemical potential
μ = ḡ|�0|2, but this solution becomes unstable due to the
Faraday instability induced by the oscillating interaction
[5]. This instability can be understood to be caused by a
selective amplification of excited modes with wave vector
k satisfying the resonance condition nω/2 = Ek for n ∈ N.
Here Ek = √

εk(εk + 2μ) and εk = k2/2m represent the
Bogoliubov quasiparticle and single-particle dispersions,
respectively. The resonance condition nω/2 = Ek comes
from the fact that the energy quantum nω, injected into the
system by the oscillation, excites two Bogoliubov modes
characterized by wave vectors k and −k. Within a linear
stability analysis, one can indeed derive Mathieu’s differential
equation from Eq. (1), which shows the amplification
of modes with wave numbers around the resonance
condition [50].

Amplitude equation. Beyond this linear instability analysis,
large occupations and nonzero background interactions can
lead to competition between the exponential growth and non-
linear suppression of growth. Additionally, in two dimensions,
nonparallel density waves are coupled due to this nonlinearity,
leading to stable grid patterns. We determine the magnitude
of the amplitude and the angle of the realized grid, assuming
that the drive amplitude A is small. In this case, the amplitude
of the density pattern grows slowly and its time evolution is
systematically obtained as slow-timescale dynamics. Using
the multiple-scale method [1,2], we derive the time-evolution
equation for the pattern amplitude from Eq. (1).

We expand the wave function as [51]

�(t, x) = �uni(t )[1 + φk (t ) cos(k · x) + φp(t ) cos(p · x)].
(2)

At small drive amplitude A, the excitation φk,p is naturally
expressed in the Bogoliubov basis

φk,p(t ) =
(

1 − εk,p + 2μ

Ek,p

)
Rk,p(t )eiωt/2

+
(

1 + εk,p + 2μ

Ek,p

)
R∗

k,p(t )e−iωt/2, (3)

where the complex amplitudes Rk,p(t ) obey a complex
Ginzburg-Landau-type equation (for the detailed derivation,
see the Supplemental Material [52])

i
d

dt
Rk (t ) = �Rk (t ) − iαR∗

k (t ) + λ[|Rk (t )|2Rk (t )

+ c1(θ )|Rp(t )|2Rk (t ) + c2(θ )Rp(t )2R∗
k (t )], (4)

with detuning � = ω/2 − Ek, drive amplitude for the Bogoli-
ubov mode α = μAεk/2Ek, and nonlinearity λ = μ(5εk +
3μ)/Ek. The same equation holds for Rp(t ) after exchange
of the k and p labels. In order to focus on the angle of the
realized pattern, we assume that the absolute values of the
wave vectors k and p are equal, as determined by the reso-
nance condition � = 0 for n = 1, and set εk = εp = ε and
Ek = Ep = E . The coupling coefficients c1(θ ) and c2(θ ) be-
tween modes in different directions are then given as functions
of the angle θ ∈ [0, π/2] between k and p,

c1(θ ) = μ

5ε + 3μ

[
4
ε2 − μ2

με
+

(
2ε + μ

ε

2ε + μ

ε+/2 + μ

− (2ε − μ)(ε + 2μ) + (2ε2 + μ2)ε+/2ε

E2 − E2+/4

+ (ε+ → ε−)

)]
, (5a)

c2(θ ) = μ

5ε + 3μ

[
−2

ε2 + 3με + μ2

με

+ 2ε + μ

ε

(
2ε + μ

ε+/2 + μ
+ (ε+ → ε−)

)]
, (5b)

where we introduced E± = √
ε±(ε± + 2μ) with ε+ = εk+p =

4ε cos2 θ
2 and ε− = εk−p = 4ε sin2 θ

2 [53].
Equation (4) is referred to as the amplitude equation. While

also other pattern-forming phenomena in classical liquids are
understood from amplitude equations, these equations cannot
be applied to BECs because incompressibility is typically
assumed for classical fluids, e.g., for the case of Faraday
patterns in water [7,8]. Instead, BECs are compressible and
exhibit density and phase fluctuations, which are reflected in
the complex-valued nature of the amplitudes. Accordingly,
our amplitude equation has a nonlinear term proportional
to c2(θ ), which is absent in other amplitude equations for
standing-wave patterns. This distinction highlights the differ-
ences in the pattern stabilization mechanism between BECs
and classical incompressible fluids.
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Fixed points and their stability analysis. The time-
dependent solutions of the amplitude equation trace out
trajectories in the four-dimensional space of the two complex
amplitudes. In the following, we analyze their fixed points and
stability. We focus only on the populated modes satisfying
the resonance condition at zero detuning � = 0 and intro-
duce dissipation � > 0 phenomenologically to capture, for
instance, the suppression from interaction with other modes
besides the k and p modes:

i
d

dt
Rk (t ) = −i�Rk (t ) − iαR∗

k (t ) + λ[|Rk (t )|2Rk (t )

+ c1(θ )|Rp(t )|2Rk (t ) + c2(θ )Rp(t )2R∗
k (t )]. (6)

The dissipation term effectively captures dynamics beyond the
two modes of interest, leading to irreversible evolution of the
reduced system, even though the underlying GP equation is
reversible [54]. Setting dRk (t )/dt = 0 in Eq. (6) and similarly
for Rp(t ), we find four possible fixed-point values of Rk and
Rp,

Rk = Rp = 0 (fixed point U ), (7a)

Rk = R̄eiη̄, Rp = 0 (fixed point Sk ), (7b)

Rk = 0, Rp = R̄eiη̄ (fixed point Sp), (7c)

Rk = Rp = R̄eiη̄/
√

1 + c1(θ ) + c2(θ ) (fixed point G),

(7d)

with R̄2 = √
α2 − �2/λ and exp(iη̄) = (

√
α − � +

i
√

α + �)/
√

2α. The fixed points correspond to the following
density patterns: U , a uniform pattern; Sk and Sp, stripe
patterns for each direction; and G, a grid pattern (see Fig. 1).

We first investigate the stability of the uniform fixed point
U . For small Rk (t ) and Rp(t ) around U , only the linear
terms of Eq. (6) remain, and the k and p directions be-
come independent. By dividing the linearized equation into its
real and imaginary parts, we directly find the eigenvalues of
the Jacobian (scaling dimensions) as � = −� − α,−� + α.
Since the amplitudes scale as e�t around the fixed point
(unstable for Re � > 0, stable for Re � < 0, and center for
Re � = 0), the fixed point U is unstable for α > �. This
corresponds to the Faraday instability, in which the uniform
solution becomes unstable when the drive is stronger than the
dissipation.

We next study the stability of the grid fixed point G. The
four eigenvalues of the amplitude equation linearized around
G are found to be

�±
1 = −� ± i

√
4α2 − 5�2, (8a)

�±
2 = −� ±

√
4(α2 − �2)D(θ ) + �2(1 + c1 + c2)2

1 + c1 + c2
, (8b)

with D(θ ) ≡ −1 + c1(θ )2 + 2c2(θ ) − c2(θ )2. While the real
part of the first eigenvalue �±

1 is negative for α > �, the
second eigenvalue �2 has a negative real part only when

D(θ ) < 0. (9)

The inequality (9) thus provides the condition for the grid pat-
tern to be stable, regardless of the magnitude of the dissipation
�. Note that the stability analysis around the fixed points Sk

FIG. 2. Stability criterion for the grid pattern: D(θ ) as a function
of θ = ∠(k, p) ∈ [0, π/2] with fixed A = 0.6 for different values of
ω/μ. The grid pattern for angles θ ≈ π/2 is stable where D(θ ) < 0
(gray-shaded region).

and Sp leads to the inverse inequality D(θ ) > 0, indicating that
stripes are stable when grids are unstable and vice versa. As
seen in Fig. 2, the grid pattern is stable around an angle of
θ = π/2, which is consistent with the experimental results
[48]. Note that the coefficient c2(θ ) is negative around θ =
π/2 and therefore enhances the stability of the square pattern.

In the absence of dissipation, the eigenvalues always ap-
pear in positive and negative pairs, such as Eq. (8) with � = 0,
because the amplitude equation without dissipation fulfills
the time-reversal symmetry inherited from the GP equation.
The behavior of the solution in the four-dimensional space
near the fixed points can be understood separately for each
two-dimensional subspace corresponding to each pair of posi-
tive and negative eigenvalues. Without dissipation, the pair of
eigenvalues with a real part makes the fixed point in the corre-
sponding two-dimensional subspace a saddle point, while the
pure imaginary pair makes the fixed point a center. A small
dissipation � < α keeps the saddle fixed point as a saddle
while turning the center into a stable focus (in-spiral).

Let us investigate the global behavior of the solutions of the
amplitude equation beyond the local behavior around the fixed
points. When we introduce the real and imaginary parts of the
phase-rotated amplitudes as ρk,p = Re(Rk,pe−iη̄ ) and νk,p =
Im(Rk,pe−iη̄ ), all four fixed points lie in the two-dimensional
subspace spanned by ρk and ρp with νk = νp = 0. The four-
dimensional flow trajectories still depart from an unstable
fixed point (saddle) and approach an attractive one (in-spiral).
This global behavior can be visualized by utilizing the square
eigenvalue �2, which is positive (repulsive) for real � at the
saddle, while it is negative (attractive) for imaginary � at
the in-spiral. We can efficiently obtain the square eigenvalues
via the second-order differential equation derived from the
amplitude equation (6), which is given by

d2

dt2
ρk (t )

∣∣∣∣
νk=νp=0

= λ2[R̄2 + ρk (t )2 + (c1 − c2)ρp(t )2]

× [R̄2 − ρk (t )2 − (c1 + c2)ρp(t )2]ρk (t )

+ 2λ2c2[R̄2 − ρp(t )2 − (c1 + c2)ρk (t )2]ρp(t )2ρk (t )
(10)

and likewise for ρp(t ) after exchanging the ρk (t ) and ρp(t )
variables. The force field described by the right-hand side of
Eq. (10) captures the global behavior of the solution of the
original amplitude equation. This global behavior is shown
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in Fig. 1 and it changes drastically depending on the angle
between k and p [55].

Three-mode amplitude equation. At a specific angle satisfy-
ing 2E = E+, two Bogoliubov modes with wave vectors k and
p can resonantly scatter into a Bogoliubov mode with wave
vector k + p without violating energy conservation, which
enhances the contribution of this collision process. Therefore,
the amplitude of the wave vector k + p, which grows propor-
tionally to both the amplitudes Rk and Rp, cannot be neglected,
and its omission in the two-mode ansatz (2) causes a diver-
gence of the coefficient c1(θ ) in Eq. (5a) at this specific angle.
This same divergence is seen in Fig. 2, e.g., at θ ≈ 0.34π

for ω/μ = 2. We now present the complete theory without
divergence and show that no other (e.g., triangular) patterns
appear near this singular angle. By additionally including the
k + p mode described by the complex amplitude R+(t ) in the
ansatz (2), we derive the coupled amplitude equations for the
three modes Rk,p(t ) and R+(t ) as (for details of the derivation
and the coefficients see [52])

i
d

dt
Rk (t ) = −i�Rk (t ) − iαR∗

k (t ) − β(θ )R+(t )R∗
p(t )

+ λ[|Rk (t )|2Rk (t ) + c̃1(θ )|Rp(t )|2Rk (t )

+ c2(θ )Rp(t )2R∗
k (t )], (11a)

i
d

dt
R+(t ) = −i�+R+(t ) + �+(θ )R+(t ) − β+(θ )Rk (t )Rp(t )

+ λ+(θ )|R+(t )|2R+(t ), (11b)

where � and �+ are dissipation coefficients. We find that
the coefficient c̃1(θ ) has no divergence at the singular angle
satisfying 2E = E+ and all coefficients in Eq. (11) are regular
in θ ∈ [0, π/2]. We note that the k and p modes now interact
with the k + p mode via quadratic terms in the amplitude
equation (three-mode scattering).

Using Eq. (11), we can numerically simulate the time evo-
lution for various initial conditions at a fixed angle between
k and p. The top left part of Fig. 3 shows the simulation
results of the time evolution of the amplitudes from an initial
state close to a uniform pattern at θ = π/2, demonstrating
that the system arrives at a grid pattern with all amplitudes
finite. Repeating these simulations for different angles θ , we
arrive at the phase diagrams for the three-mode and two-mode
models shown in Fig. 3. In both phase diagrams, the grid
pattern is stable in a region around θ = π/2, and the phase di-
agrams are in good agreement. Notably, the three-mode model
(11) has no singularity in its coefficients and its phase dia-
gram is reliable over the entire range of angles θ ∈ [0, π/2].
Furthermore, using Eq. (11), we investigate the stability to
changes in the grid angle θ and numerically confirm that
the square grid with θ = π/2 is the most stable among the
stable grids as indicated by the arrows in the phase diagram
of Fig. 3 (see the Supplemental Material [52] for a detailed
discussion).

Discussion and outlook. Before concluding, we briefly
discuss the scattering between the three modes satisfying
k1 ± k2 ± k3 = 0, which usually leads to a triangular pattern
[2]. In the Faraday pattern formation, the leading three-mode
scattering occurs at the frequency ω/2 ± ω/2 ± ω/2 because
the excited modes have energy ω/2 from the first resonance

FIG. 3. Phase diagram of the stable patterns in the three-
mode model (11) and the two-mode model (6) with parameters
(A, ω/μ, �/α, �+/α) = (0.6, 2, 0.5, 1). While angles in the green
region have stable stripe solutions, angles in the blue region have
stable lattice solutions, as shown schematically in the top right cor-
ner. The phase diagram for Eq. (6) is obtained analytically from
the inequality (9) and corresponds to Fig. 2. In both cases, the
grid pattern is stable around θ = π/2, whereas the stripe pattern
appears at small angles. Thus, both models predict the same grid-
pattern phase, although the two-mode model is incomplete around
the singular angle θ ≈ 0.34π (gray-shaded region). Arrows in the
phase diagram for Eq. (11) indicate the stability to changes in the
grid angle θ , with θ = π/2 being the most stable as discussed in
the Supplemental Material [52]. The top left inset shows the nu-
merical simulation of Eq. (11) at θ = π/2 with initial condition
(Rk, Rp, R+) = (0.002i, 0.001i, 0.0001), where initial stripes after
approximately 10 cycles develop into a grid pattern after approxi-
mately 16 cycles.

condition n = 1. Because ω/2 ± ω/2 ± ω/2 	= 0, the three-
mode scattering is a fast-rotating contribution in the rotating-
wave basis and can be neglected. Instead, if the third mode
satisfies the second resonance condition n = 2 with frequency
ω instead of ω/2, three-mode scattering can become relevant
since it has a slow-rotating contribution with ω/2 + ω/2 −
ω = 0. In fact, the amplitude equation (11) includes this
three-mode scattering. However, we found that the stability
of the patterns does not change significantly between Eqs. (4)
and (11).

In this Letter, we have derived the amplitude equations
(6) and (11) for pattern formation in two-dimensional BECs
beyond the Faraday instability. The amplitude equation can be
considered as a complex Ginzburg-Landau-type equation for
pattern formation with the amplitudes in the two directions
as order parameters, and it provides a simple description of
the system dynamics. Our method to derive the amplitude
equation is equivalent to the renormalization-group theory
for asymptotic analysis [56–58]. Accordingly, the amplitude
equation describes the order parameter dynamics as an effec-
tive model for the only two or three relevant modes remaining
at long times, while in a renormalization-group sense it in-
corporates the multitude of irrelevant modes of the full GP
simulation in the dissipation coefficient.

Using the obtained amplitude equation, we have analyzed
the stability between the uniform, stripe-pattern, and grid-
pattern solutions. For α > �, where the drive amplitude is
stronger than the dissipation, the uniform solution becomes
unstable, resulting in an inhomogeneous density pattern. Fig-
ures 2 and 3 show that the grid pattern becomes stable
around the angle π/2 between the two excitation directions.
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The global stability of the amplitude is shown in Fig. 1. In
particular, in the three-mode model, taking into account the
resonant scattering that occurs around the singular angles,
we have shown that the grid is stable at π/2 and not at the
singular angle previously suggested. Our results provide the
theoretical framework for the experimental data presented in
our companion paper [48]. Furthermore, the amplitude equa-
tion has been experimentally validated under various initial
conditions and has been confirmed to give a good description.
Our stability analysis has established patterns in superfluids
as nonequilibrium steady states. Moreover, these patterns fit
the definition of supersolidity as a self-stabilized superfluid
state with spontaneous translational symmetry breaking, sug-
gesting the emergence of a new type of supersolidity as a
nonequilibrium steady state; we leave the search for this novel
quantum phase to future work.

Another interesting direction for future research is the
further study of amplitude equations in BECs. By their
complex-valued nature, they are of a new type not seen in

other instances of pattern formation, and it will be crucial to
understand their properties in applications to two-dimensional
dipolar or spinor BECs [59–61]. Furthermore, BECs have
been established as field simulators, e.g., in gravity analogs,
and the amplitude equation could provide significant insight
into instabilities and their stabilization mechanisms beyond
the realm of pattern formation.
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