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Temperature-enhanced critical quantum metrology
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We show that the performance of critical quantum metrology protocols, counterintuitively, can be enhanced
by finite temperature. We consider a toy-model squeezing Hamiltonian, the Lipkin-Meshkov-Glick model, and
the paradigmatic Ising model. We show that the temperature enhancement of the quantum Fisher information
can be achieved by adiabatic preparation of the state close to the critical point and by preparing it directly
in the proximity of the critical point. We also find a relatively simple, however, nonoptimal measurement
capable of harnessing finite temperature to increase the parameter estimation sensitivity. Therefore, we argue
that temperature can be considered as a resource in critical quantum metrology.
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Introduction. Quantum metrology [1,2] is one of the most
promising directions in quantum technologies [3–6]. It aims at
exploiting quantum phenomena in order to enhance measure-
ment resolution and sensitivity of physical parameters. This
is typically achieved by preparing nonclassical states [7–9],
such as squeezed states [10,11], and subsequently exposing
them to a perturbation related to an unknown parameter.
One prominent example is Ramsey interferometry [12–14],
where the perturbation can be related to magnetic field split-
ting the atomic energy levels or to a laser field exciting the
atoms. By performing an appropriate measurement on the
final (perturbed) state, it is possible to estimate the unknown
parameter from the measurement outcomes [15]. Repeated
measurements result in a histogram, where its average value
is the estimated unknown parameter and its width is related to
the uncertainty of the estimation: the narrower the histogram,
the better determined the unknown parameter. The minimal
width of the histogram is related to the inverse of the quantum
Fisher information through the Cramér-Rao bound [15,16].
Therefore, the quantum Fisher information plays an essential
role in quantum metrology, and increasing its value can be
seen as one of the central aims of the field.

The simplest way to increase the quantum Fisher infor-
mation is to increase the number of elements, e.g., atoms
or photons, constituting the system. Intuitively, this can be
understood as equivalent to performing many measurements
simultaneously. In this case the quantum Fisher information
scales linearly with the number of elements N , which is called
the standard quantum (or shot noise) limit. Another simple
way of increasing the quantum Fisher information is to expose
the initial state to the perturbation for a longer time t . With
this, one can imprint more information about an unknown pa-
rameter on the initial state. Consequently, the quantum Fisher
information (usually) scales quadratically with time [17,18].
A more challenging way of increasing the quantum Fisher
information is to use nonclassical correlations [19], which
can be understood as reducing the inherent quantum noise
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or fluctuations. Using maximally correlated (entangled) states
allows for elevating quantum Fisher information scaling from
linear with the number of constituents to quadratic, which
is dubbed Heisenberg scaling. In the optimal scenario, the
quantum Fisher information becomes I = N2t2, which is the
Heisenberg limit. Although introducing quantum correlations
in the initial state can dramatically increase quantum Fisher
information, it can also significantly complicate the entire
protocol, especially the measurement stage. Due to the corre-
lations, the possible set of measurement outcomes can grow
tremendously [20], thus increasing the time of estimation,
gathering, and analyzing data in particular, which quantum
Fisher information cannot quantify. Moreover, the quantum
Fisher information assumes that an optimal measurement is
performed on the perturbed state, which sometimes may be
unrealistic due to practical limitations.

Although a number of techniques have been developed to
counteract these issues [21–25], in any realistic case finite
temperature and decoherence will deteriorate the quantum
correlations and external noise will perturb the measurement.
As a consequence, it is virtually impossible to attain the
Heisenberg limit for a macroscopic quantum system [26].
Therefore, instead of trying to reach the Heisenberg limit, one
can focus on devising practical and robust metrology proto-
cols that overcome the standard quantum limit and ideally
feature Heisenberg scaling. Note that quantum Fisher infor-
mation can exhibit Heisenberg scaling while still being lower
than the standard quantum limit. One example of such an
approach relies on creating the correlations concurrently with
storing the information about the unknown parameter [27,28].
Excellent candidates for this approach are systems exhibiting
phase transitions. At the critical point of a phase transition,
the eigenstates of the system are extremely sensitive to any
changes of the system parameters [29–33]. If the final state
of such a protocol is the ground state of the system, it will be
immune to dissipation, as the ground state is the lowest energy
state.

In this Letter, we show that critical metrology is not
only robust with respect to finite temperature but can even
benefit from it. To this end, we demonstrate how finite
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temperature can increase the quantum Fisher information for
a squeezing Hamiltonian, vastly studied in the literature in the
context of critical metrology, for the Lipkin-Meshkov-Glick
model, and for the paradigmatic Ising model. Furthermore, we
present a simple measurement scheme for which the classical
Fisher information at finite temperature is larger than the
quantum Fisher information at T = 0. Therefore, we argue
that finite temperature can be considered as a resource in
critical quantum metrology.

Toy model: Squeezing Hamiltonian. In order to under-
stand how temperature can increase the quantum Fisher
information, we will first consider the toy-model squeezing
Hamiltonian (h̄ = 1)

Ĥ = ωâ†â − g

4
(â† + â)2. (1)

The above Hamiltonian can be used to describe a phase tran-
sition in the quantum Rabi model, the Lipkin-Meshkov-Glick
model, and the Dicke model. It has been widely studied in the
context of critical metrology [28,34–39]. By introducing ab-
stract position and momentum operators, the Hamiltonian (1)
can be mapped to a harmonic oscillator with an interaction-
dependent effective frequency ω̃(g) = ω

√
1 − g/gc. For the

critical coupling strength g = gc = ω, the harmonic poten-
tial vanishes and the eigenstates are infinitely squeezed Fock
states of the noninteracting system. In general, the eigenstates
are found to be

|nξ 〉 = Ŝ(ξ )|n〉, (2)

where Ŝ(ξ ) = exp{ 1
2 (ξ ∗â2 − ξ â†2)} is the squeeze operator

and ξ = 1
4 ln{1 − g/gc} is the squeezing parameter. Us-

ing the definition of the quantum Fisher information Iω =
4[〈∂ωψ |∂ωψ〉 − |〈ψ |∂ωψ〉|2], it is straightforward to show
that for the nth eigenstate (we assume ω is unknown)

Iω = 2[∂ωξ ]2(n2 + n + 1), (3)

where ∂ωξ = g
4ω2(1−g/ω) . From the above expression, we see

that the ground state (n = 0) sets the lower bound on the
quantum Fisher information, while excited states increase the
quantum Fisher information. In a realistic scenario, however,
where the system cannot be isolated from the environment,
dissipation will quickly take away energy from the excited
state and any enhancement deriving from n will vanish. One
way of forcing the system to robustly occupy excited states
is to use fermions. In this case, the ground state is an an-
tisymmetric superposition of single-particle eigenstates. In
Ref. [40] it was shown that for N fermions occupying levels of
the Hamiltonian (1), the quantum Fisher information exhibits
Heisenberg scaling with respect to N for the ground state. A
less obvious way that leads to a robust occupation of excited
states (although incoherent) and thus an increase of the quan-
tum Fisher information is using a finite temperature. This is
rather counterintuitive, therefore we will show how it comes
about step by step.

For a finite temperature, the state of the system is in a
mixed state described by a density operator (statistical mix-
ture) ρ̂ = ∑

n pn|n〉〈n|, where n labels the excited states and
pn is given by pn = 1

Z exp(−βEn); Z = ∑
n exp(−βEn) is the

partition function (statistical sum), with En being the energy

of the nth excited state; and β = 1/kBT , where kB is the
Boltzmann constant and T denotes temperature. In order to
calculate the quantum Fisher information for a statistical mix-
ture, we employ [16]

Iω =
∑

n

(∂ω pn)2

pn
+ 2

∑
n,m

(pn − pm)2

pn + pm
|〈n|∂ω|m〉|2, (4)

where n (m) labels the eigenstates of the system. The two
terms in Eq. (4) are usually referred to as the classical and
the quantum contribution to the quantum Fisher information
[34]. Note that in typical approaches to quantum metrology,
where the state is prepared first and subsequently exposed to
the effect of an unknown perturbation, the eigenvalues remain
unaffected and the probabilities do not carry any information
about the perturbation. Hence, the first term in Eq. (4) can be
neglected. Conversely, in quantum thermometry [41–49], the
information about the (unknown) temperature is stored in the
probability distribution only.

The derivative ∂ω with respect to the unknown parameter
acting on the eigenstates of the Hamiltonian (1) yields (ξ is
assumed real)

∂ω|nξ 〉 = ∂ωξ

2
(â2 − â†2)|nξ 〉. (5)

The only nonzero contributions to the quantum Fisher infor-
mation will originate from the overlap of states that differ by
two excitations. Therefore, the quantum Fisher information
can be rewritten as

[∂ωξ ]2
∑
n=0

(pn+2 − pn)2

pn+2 + pn
(n + 1)(n + 2). (6)

By inserting the probabilities with En = (n + 1)ω̃, we obtain

2[∂ωξ ]2 tanh(βω̃)

tanh
(

βω̃

2

) ≈ 4[∂ωξ ]2, (7)

where the approximation is valid for kBT � ω̃. This expres-
sion is always greater than the quantum Fisher information
from Eq. (3) with n = 0 (ground state). The contribution from
the probabilities can be easily calculated to be

∑
n

(∂ω pn)2

pn
= β2

(
2 − g

ω

)2
csch2

(
1
2βω̃

)
16

(
1 − g

ω

)

≈
(
2 − g

ω

)2

4ω2
(
1 − g

ω

)2 , (8)

where the approximation is valid for kBT � ω̃. The above
results assume that the state close to the critical point has
been obtained directly, for example, as a consequence of
thermalization. Alternatively, it is possible to create the state
close to the critical point by adiabatically ramping the control
parameter from g = 0 to a value close to the critical value gc.
In this case, since adiabatic time evolution does not change the
entropy (or the probabilities), ω̃ in Eq. (7) has to be replaced
by ω, and g in Eq. (8) has to be replaced by 0.

Although counterintuitive, this increase of the quantum
Fisher information with temperature can be easily explained
in hindsight: the energy levels and thus the gap between them
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depend on the parameters of the system. For a fixed tempera-
ture, the occupation of the energy levels will strongly depend
on the parameters of the system as well. The larger the ratio
between temperature and gap kBT /ω̃, the more information
about the parameters of the system will be stored in the
occupation of the levels. In particular, close to the critical
point of the phase transition where the energy gap vanishes,
the occupations for a fixed temperature will be extremely
sensitive to the parameters of the system. On the other hand,
the quantum Fisher information is larger for higher-lying ex-
cited states because they are more nonclassical [see Eq. (3)].
Clearly the nth squeezed Fock state is more nonclassical than
the squeezed vacuum state. Therefore, the quantum Fisher
information grows with the temperature. These results and
explanations will serve as a benchmark for more realistic and
finite-size systems in the next sections.

Lipkin-Meshkov-Glick model. The Lipkin-Meshkov-Glick
Hamiltonian is a paradigmatic model describing interacting
spins

Ĥ = ωŜz − g

N
Ŝ2

x (9)

and its thermodynamic limit is the toy-model Hamiltonian
from the previous section [50]. In the Hamiltonian (9) the
Ŝi with i ∈ {x, y, z} are the collective spin operators of N
spins (more generally two-level systems), ω is the energy
gap between the spin levels, and g is the interaction strength.
A general analytic form of the eigenstates for the Lipkin-
Meshkov-Glick Hamiltonian is not known. Therefore, in order
to calculate the quantum Fisher information, we numerically
find the thermal state close to the critical point (on both sides
of the transition) and use the relation between the fidelity

F (ρ̂, σ̂ ) = [tr
√√

ρ̂σ̂
√

ρ̂]
2

and the quantum Fisher informa-
tion [51],

Iω = 8 lim
δω→0

1 − F [ρ̂(ω − δω/2), ρ̂(ω + δω/2)]

(δω)2
. (10)

The results of our numerical simulations for N = 20 spins
are presented in Fig. 1(a). Note that for a finite size, the
critical point of the Lipkin-Meshkov-Glick model gc = ω is
shifted toward larger values. In agreement with our above
toy-model results, the quantum Fisher information increases
with temperature. However, once the temperature is too large,
the quantum Fisher information falls off. We attribute this to
the finite size of the system, which prevents closing the energy
gap completely. In the thermodynamic limit, there is infinitely
many states with quantum Fisher information growing with
the excitation level n. In the case of finite size systems, only
lower-lying excited states can increase the quantum Fisher
information. Exciting the state further leads to the occupation
of less nonclassical states for which the quantum Fisher infor-
mation does not grow with n anymore. This can be intuitively
understood by examining the Bloch sphere picture. For an
infinite Bloch sphere (thermodynamic limit toy model), the
Fock states have larger radii with increasing n. For a finite
Bloch sphere, the Fock states radii increase until the equator
of the Bloch sphere is reached (maximal radius and maximal
entanglement) and subsequently decrease. In particular, the
maximally excited state is just a collective spin-up state which
is not entangled.
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FIG. 1. Top panel: quantum Fisher information as a function of
temperature (β = 1/kBT ) to ground-state energy gap (
ω = E1 −
E0) ratio and interaction strength g/ω for the Lipkin-Meshkov-Glick
model (a) and the Ising model (b). Bottom panel: quantum Fisher
information for β
ω = ∞ (dashed line), β
ω = 180 (solid line),
and the probability contribution to the quantum Fisher information
(dotted line) for the Lipkin-Meshkov-Glick model (c) and the Ising
model (d).

Interestingly, close to the critical point, the increase of the
quantum Fisher information occurs for very small tempera-
tures with respect to the ground-state energy gap β
ω for
which the state is almost pure. Therefore, the origin of this
increase has to be related to the information stored in the
probabilities, which is absent for kBT = 0, as underpinned by
numerical calculations [see Fig. 1(c)].

Ising model. In order to make the result even more convinc-
ing, we show how the finite temperature affects the quantum
Fisher information for the Ising model

Ĥ =
∑

n

(
ωσ̂ n

z − gσ̂ n
x σ̂ n+1

x

)
, (11)

which describes spins in a transverse magnetic field ω inter-
acting with their respective nearest neighbors with strength
g. The critical point of the Ising model is again g = gc = ω.
In order to calculate the quantum Fisher information, we use
Eq. (10). The results of our numerical simulations for a closed
chain (periodic boundary conditions) for N = 6 are presented
in Figs. 1(b) and 1(d). In spite of quantitative differences, the
results resemble those obtained for the Lipkin-Meshkov-Glick
Hamiltonian and confirm that quantum Fisher information can
benefit from a nonzero temperature.

Note that, in principle, one could find the eigenspectrum of
the Ising model using the Jordan-Wigner transformation and
calculate the quantum Fisher information. Due to anharmonic
level structure, however, it is not clear whether the quantum
Fisher information could be calculated analytically for the
thermal state.
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FIG. 2. Numerically calculated quantum and classical Fisher in-
formation as a function of g/ω. For the Lipkin-Meshkov-Glick model
(a) and the Ising model (b), the classical Fisher information (dotted
line) at finite temperature can be larger than the quantum Fisher
information at T = 0 (dashed line). Note that measuring Ŝ2

x is not
the optimal measurement choice because at a given temperature,
the classical Fisher information is smaller than the quantum Fisher
information (solid line).

Optimal measurements. In previous sections we have con-
sidered the quantum Fisher information only, which is the
maximal value of the Fisher information obtained for the
optimal measurement. While the quantum Fisher information
might be sensitive to temperature, it is not clear whether
finite temperature can indeed lead to an increased sensitivity
when a particular (and simple) measurement is considered. In
principle, one could perform quantum state tomography and
use a maximum likelihood estimation, but such an approach
is not practical as it is extremely costly.

We will make an attempt to briefly address the issue of
measurements in the following: for the toy model, the thermal
state is an incoherent mixture of squeezed Fock states. The
ground state is fully characterized by its width. Therefore,
we expect that a simple strategy capable of partially char-
acterizing an incoherent mixture of squeezed Fock states is
measuring the second moment of â† + â, i.e.,

tr[ρ̂(â† + â)2] = e−2ξ coth

(
βω̃

2

)
, (12)

whose variance is


2[(â† + â)2] = 2e−4ξ coth2

(
βω̃

2

)
. (13)

Using the error propagation formula, the Fisher information
Fω for the measurement of (â + â†)2 becomes

Fω = 2[∂ωξ ]2

[
βω̃

(
2ω

g
− 1

)
csch(βω̃) + 1

]2

, (14)

which, although not optimal, is always larger than the quan-
tum Fisher information for T = 0.

For the Lipkin-Meshkov-Glick and the Ising model, mea-
suring the width of the wave function corresponds to
measuring the second moment of Ŝx operator [50] which
might be associated with spin squeezing [11]. In Figs. 2(a)

and 2(b), we compare the numerically obtained classical and
quantum Fisher information for finite β
ω and the quan-
tum Fisher information for β
ω = ∞ (T = 0) as a function
of g/gc for the Lipkin-Meshkov-Glick model and the Ising
model, respectively. In both cases we observe that the classical
Fisher information can be larger than the maximal quantum
Fisher information for T = 0, which confirms that finite tem-
perature can increase the sensitivity of a parameter estimation.
However, for a fixed temperature T , the classical Fisher infor-
mation is smaller than the quantum Fisher information, which
confirms that measuring Ŝ2

x is not the optimal measurement
choice.

Conclusions. In this work we have presented how nonzero
temperature can be employed to increase the quantum Fisher
information in critical quantum metrology and, in principle,
increase the sensitivity of measuring physical parameters in
critical systems. To this end, we have considered a toy-model
squeezing Hamiltonian, the Lipkin-Meshkov-Glick model,
and the Ising model. For all these models we have shown
that the quantum Fisher information increases with tem-
perature. The main reason behind this enhancement is the
higher quantum Fisher information of some excited states
and the information about physical parameters stored in
the occupation probabilities of the energy levels, which is
nonexistent in conventional metrological methods such as
Ramsey interferometry. We would like to note that although
the temperature can increase the Fisher information in crit-
ical quantum metrology, the Heisenberg limit is still the
valid restriction. The enhancement is possible because critical
metrology is not the optimal approach to metrology under
idealized conditions [36,52].

Additionally, we have presented a relatively simple mea-
surement capable of increasing the classical Fisher informa-
tion for a finite temperature with respect to the quantum Fisher
information at T = 0. Yet, our proposed measurement does
not saturate the Cramér-Rao bound. We postpone a detailed
study of optimal measurements in critical metrology at finite
temperature to a future investigation.

Finally, let us emphasize that we are aware of the, for
now, purely conceptual nature of our idea: we assume the
unknown parameter remains itself unchanged with tempera-
ture, and we neglect any other finite-temperature effects that
might be present in the system, contributing to systematic
or statistical errors in the measurements. Yet, we have seen
that even a small finite temperature modifies the quantum
Fisher information favorably, which leads us to believe that
our discovery can be of actual relevance in real-world setups.
Note that our findings are also in agreement with a very
recent study [53].
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