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Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus
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We explain why and numerically confirm that there are no barren plateaus in the energy optimization of
isometric tensor network states (TNS) for extensive Hamiltonians with finite-range interactions, which are, for
example, typical in condensed matter physics. Specifically, we consider matrix product states (MPS) with open
boundary conditions, tree tensor network states (TTNS), and the multiscale entanglement renormalization ansatz
(MERA). MERA are isometric by construction, and for the MPS and TTNS, the tensor network gauge freedom
allows us to choose all tensors as partial isometries. The variance of the energy gradient, evaluated by taking
the Haar average over the TNS tensors, has a leading system-size independent term and decreases according
to a power law in the bond dimension. For a hierarchical TNS (TTNS and MERA) with branching ratio b, the
variance of the gradient with respect to a tensor in layer τ scales as (bη)τ , where η is the second largest eigenvalue
of a Haar-average doubled layer-transition channel and decreases algebraically with increasing bond dimension.
The absence of barren plateaus substantiates that isometric TNS are a promising route for an efficient quantum-
computation-based investigation of strongly correlated quantum matter. The observed scaling properties of the
gradient amplitudes bear implications for efficient TNS initialization procedures.
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Introduction. Rapid advances in quantum technology have
opened new routes for the solution of hard quantum-matter
ground-state problems [1]. An important approach are vari-
ational quantum algorithms (VQA) [2], in which classical
optimization is performed on parametrized quantum circuits.
Numerous studies successfully applied VQA to few-body
systems, but applications of generic unstructured or overly
expressive VQA to many-body systems face multiple chal-
lenges: the limited number of qubits and gate fidelities,
convergence to local minima [3–6], and so-called barren
plateaus, where gradient amplitudes and cost-function varia-
tions decay exponentially in the size of the simulated system
[7–10]. VQA with barren plateaus are not trainable as the
inability to precisely estimate exponentially small gradients
with quantum measurements will result in random walks on
the flat landscape. The barren plateau problem can be resolved
if an initial guess close to the optimum and specific optimiza-
tion strategies are available [11–21], but such resolutions are
not universal [22].

Unstructured circuits like the hardware efficient ansatz and
brickwall circuits must be deep to cover relevant parts of the
Hilbert space [23–25]. The high expressiveness of such cir-
cuits [26–28] can be seen as the source for the barren plateaus
[29]. The latter can be motivated by typicality properties
[30,31] of such states [32–34]. So, it is generally preferable
to work with more structured and less entangled classes of
states that are adapted to the particular optimization problem
in order to balance expressiveness and trainability.

In this Letter, we demonstrate that VQA barren plateaus
can be avoided for quantum many-body ground-state prob-
lems by employing matrix product states (MPS) with open
boundary conditions [35,37–42], tree tensor network states

(TTNS) [43–47], or the multiscale entanglement renormaliza-
tion ansatz (MERA) [48–50]. We refer to these tensor network
states (TNS) as being isometric because all tensors in the
network are either isometries by definition (MERA) or one
can use the TNS gauge freedom [36,51] to make all tensors
isometric (MPS and TTNS). The entanglement structures of
these TNS are well adapted to those in many-body ground
states, and classical simulations established TNS algorithms
as valuable tools for the investigation of strongly correlated
quantum matter. However, the classical TNS computation
costs grow quickly with increasing TNS bond dimension
χ which controls the achievable approximation accuracy.
Especially for two-dimensional (2D) and three-dimensional
(3D) systems, the rapid growth of classical tensor contraction
costs in χ [52] limits investigations of important phenomena
such as high-temperature superconductivity and topological
order.

Fortunately, variations of isometric TNS can be imple-
mented on quantum computers [52–56], which may allow us
to substantially reduce computation costs in comparison to
classical simulations [52,57]. Recently, barren plateaus have
been studied using graph techniques for MPS [58,59] and
ZX calculus for TNS with bond dimension χ = 2 [60,61]
in the energy optimization for (tensor products of) single-
site Hamiltonians. Of course, such ground-state problems are
actually solved by (products of) the single-site ground states
and, hence, are of no practical relevance [62].

Here, we address the actual (QMA-complete [63–67])
ground-state problem for extensive translation-invariant
Hamiltonians

Ĥ = ∑
i ĥi with Tr ĥi = 0 (1)
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FIG. 1. Isometric quantum circuits. (a) A generic brickwall quantum circuit for L qudits consisting of layers of nearest-neighbor two-qudit
gates. (b) MPS quantum circuit with single-site Hilbert space dimension d and bond dimension χ . Using the TNS gauge freedom to bring
the MPS into left-canonical form [35,36], the expectation value 〈�|ĥi|�〉 for an operator acting on site i only depends on the tensors for sites
τ � i. (c), (d) Binary 1D TTNS and MERA quantum circuits with branching ratio b = 2 and bond dimension χ . Only the nonshaded tensors
can influence the expectation values of the local operator ĥi and constitute its causal cone.

encountered in quantum many-body physics, where the finite-
range interaction term ĥi acts nontrivially in the vicinity of
site i. We explain why the corresponding VQA, minimizing
the energy expectation value 〈�|Ĥ |�〉 with respect to an iso-
metric TNS |�〉, does not encounter barren plateaus. Detailed
proofs of the analytical results are given in Ref. [68] and they
are confirmed here numerically.

The key ideas are the following. Due to the isometric
properties of the tensors, the TNS expectation value for a local
interaction term ĥi only depends on tensors in the causal cone
of ĥi. The expectation values can be evaluated by propagating
causal-cone density operators ρ̂ in the preparation direction
(decreasing τ in Fig. 1) with transition maps M and/or in-
teraction terms ĥ in the renormalization direction (increasing
τ ) with M†. To evaluate the variance of the energy gradient
for TNS tensors sampled according to the Haar measure, dou-
bled transition quantum channels E (2) := AvgM ⊗ M are
applied multiple times to ρ̂ ⊗ ρ̂ and their adjoints E (2)† to
ĥ ⊗ ĥ. While the image of ρ̂ ⊗ ρ̂ will quickly converge to a
unique steady state, we find that the leading contribution from
ĥ ⊗ ĥ has a decay factor (bη)τ , where η is the second largest
eigenvalue of E (2) and b the branching ratio of the TNS (b = 1
for MPS and b > 1 for TTNS and MERA).

This leads to three key observations. For isometric TNS
and extensive Hamiltonians with finite-range interactions (i)
the gradient variance is independent of the system size rather
than exponentially small, (ii) the gradient variance for a tensor
in layer τ of hierarchical TNS decays exponentially in the
layer index τ , and (iii) the gradient variances decrease ac-
cording to power laws in the TNS bond dimension χ . Instead
of Euclidean gradients in parametrized quantum circuits, we
employ Riemannian gradients which greatly simplifies the
proofs [68].

Riemannian TNS Gradients. All tensors in the considered
isometric TNS are either unitaries Û or partial isometries
V̂ : CN1 → CN1 ⊗ CN2 with V̂ †V̂ = 1N1 : MERA are isomet-
ric by definition [48]; the MPS and TTNS can always be
brought into isometric form by using the TNS gauge freedom
[35,36,51]. The isometries V̂ can be implemented as partially

projected unitaries in the form

V̂ = Û (1N1 ⊗ |0N2〉) with Û ∈ U(N1N2) (2)

and an arbitrary reference state |0N2〉 ∈ CN2 . The TNS energy
expectation values can be written in the form

E (Û ) = 〈�(Û )|Ĥ |�(Û )〉 = Tr(X̂Ũ †Ŷ Ũ ), (3)

where we explicitly denote the dependence on one of the
TNS unitaries Û ∈ U(N ) and Ũ := Û ⊗ 1M . The Hermitian
operators X̂ and Ŷ depend on the other TNS tensors and Ŷ also
comprises the Hamiltonian. The Riemannian energy gradient
is then given by [52,68–71]

ĝ(Û ) = ∂Û 〈�|Ĥ |�〉 = TrM (Ŷ Ũ X̂ − Ũ X̂Ũ †Ŷ Ũ ). (4)

Averaged according to the Haar measure, ĝ vanishes,

AvgÛ ĝ := ∫
dU ĝ(Û ) = 1

2

∫
dU [ĝ(Û ) + ĝ(−Û )] = 0.

To assess the question of barren plateaus, the Haar variance
of the Riemannian gradient (4) can be quantified by

VarÛ ĝ := AvgÛ
1
N Tr(ĝ†ĝ). (5)

We can expand ĝ in an orthonormal basis of N2 Hermi-
tian and unitary operators {σ̂n} with σ̂ 2

n = 1N such that ĝ =
iÛ

∑N2

n=1 αnσ̂n/N . On a quantum computer, the rotation-angle
derivatives can be determined as energy differences [52,71]

αn = E (Ûeiπσ̂n/4) − E (Ûe−iπσ̂n/4). (6)

Equation (5) then agrees with the variance
∫

dU 1
N2

∑
n α2

n
of rotation-angle derivatives, motivating the employed factor
1/N .

We focus on extensive Hamiltonians (1) with finite-range
interactions ĥi. Let τ identify one unitary tensor Ûτ in the TNS
and Sτ the set of physical sites i with Ûτ in the causal cone (cf.
Fig. 1). The gradient (4) then takes the form

ĝ(Ûτ ) =
∑
i∈Sτ

ĝ(i)
τ with ĝ(i)

τ := ∂Ûτ
〈�|ĥi|�〉. (7)

L050402-2



ISOMETRIC TENSOR NETWORK OPTIMIZATION FOR … PHYSICAL REVIEW A 109, L050402 (2024)

Averaging over all unitaries of the TNS, the Haar variance of
ĝ(Ûτ ) reads

Var ĝ(Ûτ ) =
∑

i1,i2∈Sτ

Avg
1

N
Tr

(
ĝ(i1 )†

τ ĝ(i2 )
τ

)
, (8)

where Avg denotes the Haar average over all remaining TNS
tensors besides Ûτ .

Matrix Product States. Consider MPS of bond dimension χ

for a system of L sites and single-site Hilbert-space dimension
d ,

|�〉 =
d∑

s1,... ,sL=1

〈0|V̂ s1
1 V̂ s2

2 · · · V̂ sL
L |0〉 |s1, s2, . . . , sL〉. (9)

Using its gauge freedom, the MPS can be brought to left-
canonical (a.k.a. left-orthonormal) form [35,36], where the
tensors V̂τ with 〈a, sτ |V̂τ |b〉 := 〈a|V̂ sτ

τ |b〉, sτ = 1, . . . , d , and
a, b = 1, . . . , χ are isometries in the sense that V̂ †

τ V̂τ = 1χ .
We use Eq. (2) to express them in terms of unitaries with
V̂τ =: Ûτ (1χ ⊗ |0d〉) in the bulk of the system such that Ûτ ∈
U(χ d ) [68].

For simplicity, let us first address Hamiltonians (1) with
single-site terms ĥi = 1⊗(i−1)

d ⊗ ĥ ⊗ 1⊗(L−i)
d . Due to the left-

orthonormality, the local expectation value 〈�|ĥi|�〉 is
independent of all tensors Ûτ with τ < i such that Sτ =
{1, . . . , τ }. As we chose Tr ĥ = 0 without loss of generality,
all off-diagonal contributions with i1 �= i2 in Eq. (8) vanish. It
remains to evaluate the diagonal contributions with i1 = i2 =
i � τ : The expectation value has the form (3). In particular,

〈�|ĥi|�〉=Tr
(
X̂ (i)

τ Û †
τ Ŷ (i)

τ Ûτ

)
with (10a)

X̂ (i)
τ =Mτ+1◦ · · · ◦ ML(|0〉〈0|) ⊗ |0d〉〈0d |, and (10b)

Ŷ (i)
τ =M†

τ−1 ◦ · · · ◦ M†
i+1(L̂(i) ) ⊗ 1d , (10c)

where L̂(i) = V̂ †
i [1χ ⊗ ĥ]V̂i, and we have defined the site-

transition map (quantum channel)

Mt (R̂) :=
d∑

s=1

V̂ s
t R̂V̂ s†

t . (11)

According to Eq. (4), the contribution Avg Tr (ĝ(i)†
τ ĝ(i)

τ ) to
the gradient variance (8) is quadratic in both X̂ (i)

τ and Ŷ (i)
τ .

The essential step is hence to evaluate the Haar averages
Avg X̂ (i)

τ ⊗ X̂ (i)
τ and Avg Ŷ (i)

τ ⊗ Ŷ (i)
τ , i.e.,

AvgM⊗2
τ+1 ◦ · · · ◦ M⊗2

L (|0, 0〉〈0, 0|), and (12)

AvgM†⊗2
τ−1 ◦ · · · ◦ M†⊗2

i+1 (L̂(i) ⊗ L̂(i) ). (13)

Taking the Haar average of M⊗2
t over the corresponding uni-

tary Ût with t ∈ {τ + 1, . . . , L} and t ∈ {i + 1, . . . , τ − 1},
respectively, yields the doubled site-transition channel

E (2)
mps := AvgÛt

M⊗2
t = |r̂1〉〉〈〈1χ2 | + ηmps |r̂2〉〉〈〈�̂2|. (14)

Here, we have already written its diagonalized form, using
a super-bra-ket notation for operators based on the Hilbert-
Schmidt inner product 〈〈Â|B̂〉〉 := Tr(Â†B̂). The left and right
eigenvectors are biorthogonal, 〈〈�̂i|r̂ j〉〉 = δi, j . The diagonal-
ization shows that E (2)

mps only has the two nonzero eigenvalues

1 and ηmps = 1−1/χ2

d−1/(χ2d ) with the corresponding unique steady

FIG. 2. MPS gradient variance. For spin-1/2 chains (1) of length
L = 101 with single-site terms ĥi = ∑

a σ̂ a
i /

√
6 (upper panel) and

nearest-neighbor interactions ĥi = ∑
a σ̂ a

i σ̂ a
i+1/

√
12 (lower panel),

we plot the gradient variance (8) for the tensor at site τ . Numerical
averages over 64 000 MPS with tensors sampled according to the
Haar measure agree with the analytical results (16) and (17).

state r̂1 and the first excitation r̂2. The repeated application
of E (2)

mps in Eq. (12) quickly converges to r̂1. Similarly, its
application in Eq. (13) would converge to the corresponding
left eigenoperator �̂1 = 1χ2 , but one finds that this does not
contribute to the gradient variance. It is the subleading term
∝ ητ−i

mps�̂2 that ultimately yields

Avg Tr
(
ĝ(i)†

τ ĝ(i)
τ

)
χ d

= 2 Tr(ĥ2)

d (χ2d + 1)
ητ−i

mps + O
(
ηL−i

mps

)
. (15)

Finally, the gradient variance (8) for the extensive Hamil-
tonian is obtained by summing the contributions (15) for all
i � τ , resulting in the system-size independent value

Var

(
∂Ûτ

∑
i

〈�|ĥi|�〉
)

= 2 Tr(ĥ2)
χ2d2 − 1

d (d − 1)(χ2d + 1)2

+ O
(
ητ

mps

) + O
(
ηL−τ

mps

)
, (16)

where the subleading terms are due to boundary effects.
The optimization problem with single-site terms ĥi

is trivially solved by product states [62]. In contrast,
ground-state problems with finite-range interactions ĥi are
quantum-Merlin-Arthur complete [63–67]. Fortunately, the
analysis does not change qualitatively for such Hamiltonians.
The second largest eigenvalue ηmps of the doubled
transition channel (14) remains the most important quantity.
Specifically, for nearest-neighbor interactions with
ĥi = 1⊗(i−1)

d ⊗ ĥ ⊗ 1⊗(L−i−1)
d acting nontrivially on sites

i and i + 1, and assuming large χ , we find

Var

(
∂Ûτ

∑
i

〈�|ĥi|�〉
)

∼ 4

χ2d4

[
Tr(ĥ2) + 2 Tr

(
Tr2

1 ĥ
)]

+ O
(
η j

mps

) + O
(
ηL− j

mps

)
. (17)

A detailed derivation is given in the companion paper [68].
Figure 2 confirms the analytical prediction in numerical tests
for spin-1/2 chains. Thus, MPS optimizations have no barren
plateaus for extensive Hamiltonians.

Hierarchical TNS. MERA [48–50] are hierarchical TNS.
Starting on N sites, in each renormalization step τ − 1 → τ ,
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FIG. 3. Gradient variance in heterogeneous 1D MERA. In the hierarchical isometric TNS, the leading term in the Haar variance of the
energy gradient (20) is system-size independent and decreases exponentially in the layer index τ . Left: Numerical confirmation for binary 1D
MERA with bond dimension χ = 2. The inset shows the variance at τ = 1 as a function of the number of layers T � log2 L. Right: Agreement
of the decay factors, determined for various bond dimensions χ , and the theoretical prediction bηbi. The inset asserts the power-law decay of
gradient variances in layer τ = 1 with respect to χ .

we apply local unitary disentanglers Û †
τ,k of layer τ before

the number of degrees of freedom is reduced by applying
projections V̂ †

τ,k , each mapping a group of b sites into one
renormalized site. The dimension χ for the Hilbert space of
each renormalized site is the bond dimension and b is the
branching ratio. The process stops at the top layer τ = T by
projecting each of the remaining N /bT sites onto a reference
state |0χ 〉. The renormalization procedure, seen in reverse,
prepares the MERA |�〉 starting in layer τ = T with the
reference states |0χ 〉 and then proceeding down until reaching
the physical layer τ = 0. TTNS [43–47] are a subclass of
MERA without disentanglers (Ûτ,k = 1).

As all tensors are isometric, the evaluation of local expec-
tation values can be drastically simplified because 〈�|ĥi|�〉
only depends on the tensors in the causal cone of ĥi. See Fig. 1.
In fact, the expectation value can again be written in a form
very similar to Eq. (10), but now we have transition maps Mτ,i

that map the causal-cone density operator ρ̂τ,i, representing
the state on the nc renormalized sites in the causal cone after
preparation steps T → T − 1 → · · · → τ , into

ρ̂τ−1,i = Mτ,i(ρ̂τ,i ) = Mτ,i ◦ · · · ◦ MT,i((|0χ 〉〈0χ |)⊗nc ).

Specifically, for the binary one-dimensional (1D) MERA in
Fig. 1(d) and a three-site interaction term ĥi, we start at
the top layer with the (nc = 3)-site reference state ρ̂T,i =
(|0χ 〉〈0χ |)⊗3 and then progress down layer by layer, applying
either a left-moving or a right-moving transition map Mt,i:
One applies three isometries V̂t,k ⊗ V̂t,k+1 ⊗ V̂t,k+2 that double
the number of (renormalized) sites to six, then applies two
disentanglers 1χ ⊗ Ût,k ⊗ Ût,k+1 ⊗ 1χ , and, finally, traces out
one site on the left and two on the right (left-moving) or vice
versa (right-moving).

The diagonal contributions to the gradient variance for Ûτ,k

with i1 = i2 = i in Eq. (8) are linear functions of Avg X̂ (i)
τ,k ⊗

X̂ (i)
τ,k and Avg Ŷ (i)

τ,k ⊗ Ŷ (i)
τ,k , where the additional label k identi-

fies the specific tensor in layer τ . Taking the Haar average
of M⊗2

t,i , we obtain a left-moving or right-moving doubled

layer-transition channel E (2)
bi,L and E (2)

bi,R. Summing over all
sites i ∈ Sτ,k that have Ûτ,k in their causal cone, corresponds
to summing over all possible sequences of the two chan-
nels. This is equivalent to applying the map 2E (2)

bi for layers

t = 1, . . . , τ − 1, where

E (2)
bi := 1

2

(
E (2)

bi,L + E (2)
bi,R

)
(18)

is the average transition channel. Finally, averaging the
gradient variance Var ĝ(Ûτ,k ) with respect to k in layer τ

corresponds to applying E (2)
bi for all layers t = τ + 1, . . . , T .

The channel E (2)
bi is diagonalizable and gapped,

E (2)
bi = |r̂1〉〉〈〈�̂1| +

4∑
n=2

λn|r̂n〉〉〈〈�̂n| with (19)

�̂1 = 1χ6 , ηbi := λ2 = χ2(1 + χ )4

2(1 + χ2)4
, λ3 = χ2(1 + χ )2

2(1 + χ2)3
,

biorthogonal left and right eigenvectors 〈〈�̂n|r̂n′ 〉〉 = δn,n′ , and
1
2 > λ2 > λ3 > λ4. Similar to the analysis for MPS, the
leading term in Avg X̂ (i)

τ,k ⊗ X̂ (i)
τ,k stems from the E (2)

bi steady

state r̂1, while the leading contributing term in Avg Ŷ (i)
τ,k ⊗ X̂ (i)

τ,k

stems from the first excitation �̂2. It follows that the diago-
nal contributions to the gradient variance Var ∂Ûτ,k

〈�|Ĥ |�〉
[Eq. (8)], averaged for all k in layer τ , scale as

Var ĝ(Ûτ ) = �((2ηbi)
τ ) + O((2λ3)τ ) + O

(
2τ ηT

bi

)
, (20)

where the Landau symbol �( f ) indicates that there exist
upper and lower bounds scaling like f . The off-diagonal terms
with |i1 − i2| > 3 vanish due to Tr ĥi = 0 and the remaining
off-diagonal terms have the same scaling as the diagonal
terms. See Ref. [68] for details.

The analysis for the binary 1D MERA can be extended to
all MERA and TTNS. The central object in the evaluation
of their Haar-averaged gradient variances are doubled layer-
transition channels E (2). The gradient variance for tensors in
layer τ will then scale as (bη)τ , where η is the second largest
E (2) eigenvalue. This eigenvalue decreases algebraically with
increasing bond dimension χ . Specifically, we find

η = χ

1 + χ2
for binary 1D TTNS, (21a)

η = 1

3χ2
+ O(χ−4) for ternary 1D MERA, (21b)
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η = χ2

1 + χ2 + χ4
for ternary 1D TTNS, and (21c)

η = 1

9χ8
+ O(χ−10) for nonary 2D MERA [72]. (21d)

So, for each layer τ , the gradient variance is an algebraic
function of the bond dimension χ and, up to subleading cor-
rections, independent of the total system size. Therefore, the
optimization of hierarchical TNS is not hampered by barren
plateaus.

For the 1D hierarchical TNS and Hamiltonians with two-
site and three-site interactions ĥi, these analytical results
are tested and confirmed numerically as shown in Fig. 3.
We choose the physical single-site dimension d equal to
χ . The isotropic interaction terms ĥi are constructed using
generalized χ × χ Gell-Mann matrices {�̂1, �̂2, · · · , �̂χ2−1}
[73,74], defining m-site interactions as

ĥi = 1√
2m(χ2 − 1)

χ2−1∑
a=1

�̂a
i ⊗ · · · ⊗ �̂a

i+m−1, (22)

which are traceless, have vanishing partial traces, and are
normalized according to Tr(ĥ2

i ) = 1. Each data point in Fig. 3
corresponds to 1000 TNS with all tensors sampled according
the Haar measure. The numerical results confirm the scaling
(bη)τ with corrections at small τ and small T − τ . The ex-
tracted decay factors bη display the expected χ dependence
in accordance with Eqs. (19) and (21). See the Supplemental
Material [75] for further simulation results.

Homogeneous and Trotterized MERA and TTNS. So far we
only considered heterogeneous TNS, where all tensors can
vary freely. To save computational resources, one can work
with homogeneous TNS where, in the case of MERA and
TTNS, all equivalent disentanglers and isometries of a given
layer τ are identical. In the case of the binary MERA, we
can, for example, set Ûτ,k ≡ Ûτ and V̂τ,k ≡ V̂τ for all disen-
tanglers and isometries in layer τ . The theoretical analysis of
gradient variances for homogeneous TNS is more involved as
it requires higher-moment Haar-measure integrals. Numerical
results shown in Fig. 4 establish that they have considerably
larger gradient variances than the corresponding heteroge-
neous states. This is consistent with findings in Refs. [76,77]
for other classes of states.

Isometric TNS can be implemented on quantum comput-
ers, but it is advisable to impose a substructure for the TNS
tensors to reduce costs and achieve a quantum advantage.
Specifically, in Trotterized MERA [52,57,78–80], each tensor
is constructed as a brickwall circuit with n (Trotter) steps. A
generic full MERA can be recovered by increasing n. Figure 4
compares gradient variances for homogeneous Trotterized
MERA and full MERA as well as those for Trotterized and
full TTNS. The data for three-site interactions (22) show that
Trotterized TNS feature larger gradient variances than full
TNS, and the first converge to the second as the number n
of Trotter steps increases.

Discussion. The presented results substantiate that the con-
sidered isometric TNS generally feature no barren plateaus
in the energy optimization for extensive models with finite-
range interactions. This opens a route to efficiently solve

FIG. 4. Gradient variances for homogeneous Trotterized TNS.
For the model (22), the plot shows the gradient variances at layer
τ for homogeneous binary 1D Trotterized TTNS (blue dashed lines),
full TTNS (blue full line), Trotterized MERA (gray dashed lines),
and full MERA (black full line), where n denotes the number of
Trotter steps per tensor [52,57]. The gray full line shows data for
the heterogeneous full MERA.

ground-state problems for strongly correlated condensed mat-
ter systems with VQA on small quantum computers, e.g.,
using Trotterized MERA [52,57,79]. For this approach, the
benchmark data in Refs. [52,57] imply polynomial quantum
advantages which will strongly increase with increasing num-
ber of spatial dimensions. In this way, limitations due to
high classical tensor contractions costs could be overcome.
First experiments demonstrated critical correlations in preop-
timized Trotterized 1D MERA [80].

The observed scaling of the gradient variance has impli-
cations for efficient initialization schemes in quantum and
classical algorithms: For MPS, the power-law decay in χ

suggests to start with an optimization at small χ and to then
gradually increase it. For TTNS and MERA, the exponential
decay in the layer index τ , suggests that iteratively increasing
the number of layers during optimization can substantially
improve the performance. TTNS have considerably larger
gradient variances than MERA. For MERA optimizations, it
can hence be beneficial to initially choose all disentanglers
as identities and only start their optimization after the corre-
sponding TTNS has converged.

For VQA with broader classes of quantum circuits,
our results suggests that isometric TNS might be a good
starting point. One can start with a well-optimized TNS
and, subsequently, gradually introduce further quantum
gates, which can extend the expressiveness beyond what
is achievable in classical simulations without compromising
trainability [15,81].

Our results can be generalized to systems with arbitrary
finite-range and, more generally, k-local interactions. The
proof technique employed in this work, which is centered
around the analysis of the doubled (layer or site) transition
quantum channels, could also be applied to study statistical
properties and typicality for random TNS [82–84], as well
as the dynamics of quantum information and entanglement in
structured random quantum circuits [85–89].
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