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Floquet time crystals as quantum sensors of ac fields
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The long-range spatial and temporal ordering displayed by discrete time crystals, can become advantageous
properties when used for sensing extremely weak signals. Here, we investigate their performance as quantum
sensors of weak ac fields and demonstrate, using the quantum Fisher information measure, that they can
overcome the shot-noise limit while allowing long interrogation times. In such systems, collective interactions
stabilize their dynamics against noise, making them robust enough to protocol imperfections.
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Introduction. Time crystals are nonequilibrium phases of
matter that break time-translation invariance and present
long-range time ordering. Originally proposed by Wilczek
in isolated systems [1], it was soon realized that if en-
ergy is the only conserved quantity, time symmetry cannot
be spontaneously broken in such cases [2]. Immediately
after, several contributions demonstrated that time crystals
may exist in out-of-equilibrium physics. Seminal theoreti-
cal investigations [3,4] put forward that periodically driven
(Floquet) many-body interacting quantum systems can host
time crystallinity, and its existence was soon after experi-
mentally confirmed [5,6]. Since then, the field has become
very active (see Refs. [7–10] and references therein for recent
developments).

A Floquet time crystal (FTC) corresponds to a many-body
interacting system driven by a periodic (Floquet) Hamilto-
nian of period T , i.e., H (t ) = H (t + T ), that spontaneously
breaks the discrete time-translation symmetry of the Hamil-
tonian. The FTC behavior can be probed by measuring
an order parameter O(t ) (e.g., global spin magnetization)
that displays subharmonic response, i.e., O(t ) = O(t + nT )
(n ∈ Z; n > 1). Crucially, such behavior is stable against
Hamiltonian perturbations, defining a real quantum phase of
matter.

Besides the relevance of FTCs in understanding the fun-
damental aspects of nonequilibrium quantum matter, time
crystals may also offer advantages in applications. Investiga-
tions in this direction are, however, at an early stage [11–15].
In this Letter we make a step forward in this direction by
exploring their potential as quantum sensors.

Interacting many-body quantum systems may act as pre-
cise sensors of different physical quantities, from electric and
magnetic fields, to frequency and temperature among oth-
ers [16]. Moreover, the quantum correlations present in the
system may result in a quantum-enhanced sensitivity. Such
enhancement is reflected in the so-called quantum Fisher

information that bounds the minimal uncertainty with which
an unknown parameter can be estimated, assuming one can
optimize over all possible measurements. Furthermore, one
can exploit the criticality of phase transitions, which enhances
the correlation length of the system and its susceptibility
to external fields [17,18], or alternatively use highly quan-
tum entangled systems [e.g., Greenberger-Horne-Zeilinger
(GHZ)-like states]. In such cases, the standard quantum limit
(SQL) bounded by classical statistical correlations can be
overcome, leading to the ultimate Heisenberg limit precision
[19]. However, in nonequilibrium dynamics, entanglement
heats up the system as well, leading inevitably to noise and
instabilities that will deteriorating the sensor performance.
Thus, sensors exploiting the entanglement resources present
in many-body interacting systems, while having an exponen-
tially slow heating, become robust to decoherence effects and
are very promising for metrology.

Here, we use a spin system in a FTC phase as a quan-
tum sensor of an ac field, and analyze its performance as a
function of the properties of the FTC. Our approach takes a
different route from the usual ones, which are mostly based
on dynamical decoupling schemes [20–22], integrability [23],
or prethermal stabilization of highly entangled states [24].
Before proceeding further let us briefly summarize our most
relevant findings. The long-range spatial and time ordered
dynamics present in the FTC, together with the presence of
spin-spin correlations, allows for an optimal sensing perfor-
mance for long times. Already for a moderate size of the
sensor, its performance in time overcomes the standard quan-
tum limit, even when estimating infinitesimal small ac fields.
The breaking of the time-translational invariance is crucial for
boosting the performance of the sensor. A generic Floquet sys-
tem, with either ergodic or nonergodic dynamics, do not show
similar advantages. Furthermore, FTCs can also be robust in
the presence of dissipation [25] ensuring their capability as
sensors.
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The model. Our quantum sensor is composed of N spins
described by the time-dependent Hamiltonian

Ĥs =
∑

i

⎡
⎣Jiσ̂

z
i σ̂ z

i+1 +
∑
α=x,z

bα
i σ̂

α
i − φ

2

∞∑
n=−∞

δ(t − nT )σ̂ x
i

⎤
⎦,

(1)

where σ̂ α
i are Pauli operators at site i and component α. The

system is subject to periodic kicks at intervals T , inducing a
global φ rotation. Between the kicks, the system evolves under
disordered interactions and fields, with disorder strengths,
Ji ∈ [1/2, 1/2 + J], bz

i ∈ [1/2, 1/2 + bz], bx
i ∈ [0, bx], chosen

from a uniform distribution in the range of J, bz, bx. In the
strong disordered regime and without kicking, the system
evolves to a many-body localized (MBL) state, while the
periodic kicking at φ � π stabilizes a FTC phase [26] [see
Supplemental Material (SM) [27] for details]. The system
displays a period doubling in the magnetization dynamics as
observed in several experiments [5,6,28–31].

The schematic of our protocol is shown in Figs. 1(a)–1(c);
the sensor in the FTC phase is put in contact with an external
ac field of amplitude h, and frequency ωh along the z direction,
coupling to the sensor through V̂ = h sin(ωht + θ )

∑
i σ̂

z
i /2.

The sensor coupled to the external field evolves under the
Hamiltonian Ĥs + V̂ . We focus our discussions on estimating,
with maximal accuracy, the amplitude field h, nevertheless,
the analysis can be directly extended for the estimation of
the associated frequency ωh. In all our simulations we use
initial separable states (see details in SM [27]), where we
also discuss different initial states. We average our results
over ndis = 103–104 disorder realizations, depending on the
system size.

Optimal sensing can be reached once the period of the
kicks in Eq. (1) is chosen to be T ∼ π/ωh. In this case,
the spins’ dynamics is collectively phase locked with the ac
field, allowing a long and coherent interrogation time. This
is a unique trait of FTCs (not present in other nonergodic
phases), and it is essential for the performance of the quan-
tum sensor discussed here. Moreover, the presence of MBL
dynamics due to the disorder leads to a growth of quantum
correlations in the sensor boosting its performance. This is
summarized schematically in Fig. 1(d), where the uncertainty
in estimating h decreases with the duration of the sensing
protocol. For the FTC sensor, such a decrease enhances its
performance above the usual SQL, [	h(t )]SQL ∝ t−1, dis-
played by either time-independent many-body Hamiltonians,
or time-dependent ones after the transient regime. Further-
more, such an advantage lasts up to ∼max[tth, h−1], where tth
is the thermalization time, which for the FTC sensor increases
exponentially with its size N .

Sensing and quantum Fisher information. In the frequentist
approach to sensing, typically, estimation protocols involve
a repetition of the following steps: (i) the initialization of
the sensor in an “advantageous/entangled” state; (ii) a time
interval in which the sensor interacts with the signal of interest
(in our case h), so that the unknown parameter is encoded
in the state of the sensor; and (iii) a measurement on the
quantum sensor. By collecting the statistics of the repeated
protocol, one infers the value of the parameter with maximal

FIG. 1. Sketch of the FTC quantum sensor: (a) External ac field
of amplitude h and frequency ωh. (b), (c) The sensor is composed
by N spins in a FTC, acting as a probe of the external ac field.
(d) Variance for the optimal estimation of the amplitude 	h(t ) as
a function of time for a generic ergodic or noninteracting phases
(ERG/NI) and for a FTC phase. Due to its exponentially slow heat-
ing and many-body correlations, 	h(t ) in the FTC decreases faster
than the SQL, (	h)SQL ∼ 1/

√
(2t/π )2N (see Supplemental Material

[27]) until thermalization times tth are reached.

accuracy. Assuming that some prior knowledge of the parame-
ter is known, the least uncertainty on the estimated parameter
is settled by the quantum Cramér-Rao bound (details in SM
[27]) 	h(t ) � 1/

√
MFh(t ) where Fh(t ) is the quantum Fisher

information (QFI) of the probe and M is the number of mea-
surements [32,33]. Notice that for an N many-body probe, the
role of repeated measurements M can be played by N if the
QFI is additive or can be superlinear in N if correlations are
present. For pure states the QFI has the form

Fh(t )/4 = 〈ψ ′(t, h)|ψ ′(t, h)〉 − |〈ψ (t, h)|ψ ′(t, h)〉|2, (2)

with |ψ ′(t, h)〉 = ∂h|ψ (t, h)〉, the partial derivative with re-
spect to the estimated parameter.

Case with φ = π , bx
i = 0, h → 0. We consider perfect flips

(φ = π ) during the kicks, no transverse magnetic fields, and
the linear-response regime. In this case, one can obtain analyt-
ical results for the performance of the quantum sensor. Despite
its simplicity, we can grasp several important properties of
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FIG. 2. (a) QFI dynamics as a function of the FTC sensor size N
at resonance ωh = π/T . After an initial transient, the growth first
saturates and then overcomes (due to the many-body correlations
increase) the SQL [Fh(t ) ∼ t2]. (b) The corresponding magnetization
dynamics. The parameters here are set to J = bz = 0.25, bx = 0.025,
θ = 0, φ = 2.8, T = 1, ωh = π/T , and h → 0.

the quality of the sensing protocol. The QFI reduces to (see
SM [27])

Fh→0(t ) = [ϕ(t )]2 var

(∑
i

σ̂ z
i

)
. (3)

Correlations among the spins, encoded in the variance of
the total spin, may provide an enhanced sensing for the
system (with a possible superlinear scaling with N). The time-
dependent prefactor ϕ(t ) ≡ ∫ t

0 sin(ωht ′ + θ )(−1)[t ′/T ]dt ′ is
the phase accumulated during the dynamics. This term is the
same as for noninteracting sensing protocols, such as Carr-
Purcell pulse trains [34] or periodic dynamical decoupling
sequences [20]. The maximum accumulated phase (when the
spin dynamics is in phase with the ac field) leads to a quadratic
growth with time (∼t2). This happens when the spins are in
resonance with the field, T = π/ωh, which for stroboscopic
times t = pT reduces to ϕ(pT ) → (2pT/π ) cos θ with p an
integer number. Slight deviations O(ε) from the resonant case
lead to off-resonance correction at timescales on the order of
toff/T = θ/ε, for which the growth of the accumulated phase
slows down. In order to see a scaling with an exponent β > 1
[see Fig. 1(d)], we have to consider the generic case discussed
in the following.

General case. We now turn to the more realistic scenario,
considering both imperfections in the kicks (φ = π ) as well
as the presence of a transverse field, bx

i = 0, that leads to

FIG. 3. Linear response for N = 4, and the same parameters as
in Fig. 2, chosen to set the sensor in the FTC phase. (a) Dependence
of the QFI dynamics with varying the ac frequency. (b) Frequency
dependence of the QFI, at fixed times with a resonant peak emerging
at long times. Inset: The position of the peak approaches the FTC
frequency with increasing time.

decoherence in the dynamics. The interactions among the
spins now strongly impact the dynamics of the system. In
the resonant case (T ∼ π/ωh), and in the linear-response
regime, the dynamical behavior of the QFI is displayed in
Fig. 2(a) for different sensor sizes N . In all cases, after an
initial transient growth, the QFI first reaches a plateau, sat-
urating the SQL growth in time (∼t2). At later times, the
QFI overcomes the SQL due to correlation growth until the
system thermalizes, at times exponentially divergent with N .
In this intermediate regime, the maximum QFI has a higher
than quadratic growth in time Fh(t )/N ∼ t2β(t ) with β(t ) > 1.
Similarly, the correlations along the ac field direction, quan-
tified by the spin variance, shows an initial transient growth
followed by a stable plateau, and a subsequent growth to-
wards system thermalization (see SM [27]). The different
regimes reflect the FCT dynamics, as shown in Fig. 2(b) for
the total magnetization. After an initial transient time, O(T ),
it reaches a plateau whose lifetime corresponds to that of
the QFI plateau. For longer times, dephasing due to MBL
leads the magnetization to slowly decay towards its thermal
value. The thermalization time (exponentially large in N)
agrees with the time window for which the QFI overcomes the
SQL scaling [i.e., the time when the QFI reaches its peak in
Fig. 2(a)].

Indeed, Fig. 2 summarizes the potential of the FCT as a
quantum sensor, beating the SQL for time intervals that scale
exponentially with the size of the sensor.
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FIG. 4. (a) Schematic phase diagram of the sensor as a func-
tion of the global φ ∈ [0, π ] rotation (induced from the periodic
kicks), going from a Floquet MBL phase (FMBL), to an ergodic
phase (ERG) and a Floquet time crystal (FTC). (b) The performance
of the sensor in FMBL phase, displayed by the QFI, for param-
eters φ = 0.3 (red cross in the schematic picture), J = bz = 0.25,
bx = 0.025, θ = 0, T = 1, and N = 4. The (noisy) response is upper
bounded by the SQL. For decreasing frequencies ωh → 0 (i.e., dc
limit) the QFI displays the t2 growth (peaks in the inset panel) due to
the localization dynamics. The performance in the ergodic phase is
similar to the FMBL case [27].

The optimal performance crucially depends on the tuning
of the sensor frequency with the ac field, as shown in Figs. 3(a)
and 3(b). Their mismatch sets a new characteristic time that
scales with a power of the detuning. The response of the
sensor to the ac field has nevertheless a well-structured form,
as shown in Fig. 3(b). The collective interactions among the
spins stabilize the sensor against noise.

As discussed previously, the performance of the FTC
sensor can be enhanced by its initial preparation. For low-
entangled initial states, similarly to the above case, there is
var(

∑
i σ̂

z
i ) factor that can lead to superextensive (with N)

behavior. High-entangled GHZ-like initial states, known to be
fragile to decoherence, show instead a different behavior with
a continuous but very slow decay of the QFI dynamics—see
SM [27]. In this case, despite the deterioration in performance,
it is still attractive to exploit the sensor in a beneficial way due
to such slow relaxation dynamics.

It is important to understand to which extent the proper-
ties of the sensor depend on the existence of the TC. This
crucial point is reported in Fig. 4 where, by changing the
global φ rotation, we can access to an MBL phase without
time crystalline order, that we denote by FMBL, and to an
ergordic phase (ERG), as schematically depicted in Fig. 4(a).
The QFI in the FMBL phase is displayed in Fig. 4(b). Due to
the absence of the phase-locked resonant features with the ac
field, decisive for the performance of the sensor, the QFI in the
FMBL can never beat nor reach the SQL. In the ergodic phase,
the thermalization time is of the order of a few kicks, roughly
independent on the system size. Also in this case, the QFI has

FIG. 5. Performance of the FTC sensor for finite field amplitudes
h. The parameters are chosen to set the sensor in the FTC phase (same
as in Fig. 2 but for varying h field). (a) Magnetization dynamics, with
dominant ac effects appearing at timescales of the order of tac ∼ h−1.
(b) The QFI dynamics crosses over to a quadratic growth in time
for t � tac. The vertical dotted line is a guide to the eye, setting the
timescale tac.

no structured response to the probe field and its growth in time
is always upper bounded by the SQL, as shown in SM [27].

Finally, we consider finite field amplitudes h, beyond lin-
ear response. The ac field becomes dominant for sufficiently
long times and the sensor state is strongly influenced by the
external field (therefore we expect a high sensibility for its
estimation). Such effects appear at timescales of the order
of tac ∼ h−1. In the resonant case, the ac field tends to sta-
bilize the period-doubling magnetization of the system, as
shown in Fig. 5(a). In this regime the QFI (t � tac) shows
a crossover to a purely quadratic growth in time [Fig. 5(b)],
thus recovering the SQL. This behavior is apparently generic,
i.e., independent on the sensor characteristics [27]. There-
fore, one may interpret such a timescale tac as the strong
ac field regime, where the detailed many-body properties of
the sensor become unimportant for the measurement estima-
tion. As in a linear response, off-resonant effects appear at
times that scale with a power of the detuning, suppressing the
period-doubling dynamics. The QFI slows down its growth
recovering its quadratic growth. Also in this case, the QFI
keeps its structured dependence with the probe, with a peak
at resonance [27].

Conclusions. In this Letter we discuss FTCs as quantum
sensors for ac fields. Their optimal performance—reached
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once the sensor is set on period-doubling resonance to the
field—is shown to offer several advantages, overcoming the
shot-noise limit, allowing long-time sensing measurement
times exponentially large with the number of spins, and being
inherently robust to noise or imperfections in the protocol.
Moreover, the sensor offers a promising dual role as a probe
for unveiling the underlying ordering of the system in general
cases. It would be interesting to explore other forms of time
crystal sensors in closed (see, e.g., Refs. [35–40]) or in open
systems with either discrete [41] or continuous [42,43] time-
translation symmetry breaking.
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