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The first passage time (FPT) is the time taken for a stochastic process to reach a desired threshold. In
this Letter we address the FPT of the stochastic measurement current in the case of continuously measured
quantum systems. We find that our approach, based on a charge-resolved master equation related to full-counting
statistics of charge detection, enables efficient and analytical computation of the FPT. We develop a versatile
framework applicable to quantum jump unraveling and quantum diffusion scenarios, demonstrating that the
FPT can be obtained by introducing absorbing boundary conditions. Our framework is demonstrated with
two relevant examples: First, we examine the tightness of recently proposed kinetic uncertainty relations for
quantum jumps, which place bounds on the signal-to-noise ratio of the FPT. Second, we investigate the usage
of qubits as threshold detectors for Rabi pulses, showing how our method can optimize detection probability
while minimizing false positives. This Letter offers insights into the applications of the FPT for continuous
measurements including the signal-to-noise ratio bounds and false positive minimization strategies, advancing
quantum information processing applications.
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The first passage time (FPT), also known as the first exit,
hitting, or stopping time, is a useful concept, describing the
time it takes for a stochastic process to first reach a certain
threshold [1,2]. For example, if one is counting the stochastic
number of particles N (t ) flowing into and out of a system,
the FPT distribution addresses the question, “What is the
probability that it takes a time t until N (t ) first hits a specified
threshold Nth?” This can be used in thermodynamic tasks in-
volving Maxwell demons aimed at extracting work or cooling
down a system, by stopping the dynamics whenever a certain
threshold is reached [3]. In the case of continuous signals,
the FPTs form the basis of threshold detectors [4,5], such
as transition-edge sensors [6], which yield a single bit of
information (“yes/no”) depending on whether or not a sig-
nal crosses a threshold. The pervasiveness of these questions
means FPTs find fertile application in a diversity of settings,
in both classical and quantum systems [7–19].

Within a quantum setting, FPTs can be formulated in terms
of continuous measurements and the resulting measurement
outcomes. Usually, these outcomes come in two flavors. For
quantum jumps [20,21], they have the form of a discrete set of
jump times and jump channels, while for quantum diffusion
they are represented by a continuous noisy signal [22,23].
In either case, the basic idea is the same: The continuous
monitoring of the quantum system yields a classical stochastic
process X (t ), based on which we want to create a stopping
criteria that stops the dynamics when some function of X (t )
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crosses a certain threshold value. A particular case of this
problem is that of waiting time distributions (WTDs), which
have been explored in classical stochastic processes [24],
quantum optics [20,25], electronic transport [26–28], thermo-
dynamics [3,12,17,29], and condensed matter [30]. The WTD
describes the statistics of the time between two events while
FPTs describe the time until an arbitrary number of events
accumulate to reach a certain threshold. WTDs are therefore a
particular case of FPTs. There has been a significant body of
work in WTDs for continuously measured quantum systems
[20,23,25–27,31–36], which is by now well understood and
relatively easy to compute. There has also been some earlier
work focused on computing the FPT in homodyne and het-
erodyne measurements for two-level emitters [37] and solid
state qubits [38]. However, a general description for FPT is
still lacking. As a consequence, the only way of computing
them is through expensive statistical (Monte Carlo) sampling
over various quantum trajectories. This is not only extremely
costly from a computational point of view, but also lacks any
analytical insights. A more systematic methodology that is
able to deterministically compute FPTs would therefore be
quite valuable.

In this Letter we address this deficiency and derive a
method for deterministically computing the FPT distribution
for stopping criteria based on the net accumulated current
N (t ) through a continuously measured system. We first show
how the unconditional evolution can be decomposed in terms
of a charge-resolved dynamics. This is a concept already ex-
plored in specific contexts, such as quantum optics [21,39]
and mesoscopic transport [40,41]. Here, we show more
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generally that it can be formulated as the Fourier transform of
the generalized (tilted) master equation used in full-counting
statistics (FCS) [23,42–48], which we use to establish a
charge-resolved equation for both the quantum jump and the
quantum diffusion unravelings. Armed with this dynamics,
we then show how the FPT problem can be implemented by
imposing absorbing boundary conditions. We apply our re-
sults to characterize the tightness of recently developed kinetic
uncertainty relations (KURs) for FPTs [12,17]. We also study
the diffusive measurement of a qubit’s population and show
how this can be used as a threshold detector for the application
of Rabi pulses.

First passage times. Consider a generic stochastic pro-
cess X (t ) (either continuous or discrete space) governed by a
probability distribution P(x, t ), and starting at X (0) = x0. We
make no assumption about the kind of dynamical equation that
P(x, t ) obeys. All we assume is that there exists a rule taking
P(x, t ) → P(x, t + dt ). Given a certain region R = [a, b] (as-
suming x0 ∈ R), the FPT is the random time τ at which X (t )
first leaves R. The most effective way of computing this is
by imposing absorbing boundary conditions. That is, at each
time step of the evolution we impose that P(x, t ) = 0 for all
x /∈ R. This causes P(x, t ) to evolve differently, giving rise
to a new distribution PR(x, t ), which is no longer normal-
ized. The normalization constant is the survival probability
GR(t ) = ∫ b

a dxPR(x, t ) that X (t ) is still in R at time t . The
probability density that the threshold is first crossed at time t
is the FPT distribution [1,2]:

fR(t ) = −dGR(t )

dt
. (1)

If GR(∞) = 0 the boundary is always eventually reached, and
consequently

∫ ∞
0 fR(t ) = 1. But this need not always be the

case.
FPT from continuous quantum measurements. We replace

the random variable X (t ) with an integrated current, N (t ),
corresponding to the output of some continuous measurement
detector. For example, N (t ) could be the total number of
detected photons from a leaky optical cavity [20,25], the net-
particle current from a thermal machine [3,49], the continuous
diffusive readout of a resonator coupled to a superconduct-
ing circuit [18,50–54], or a continuous charge measurement
from a quantum point contact [55]. We assume that the sys-
tem evolves unconditionally according to a Lindblad master
equation (with h̄ = 1)

dρ

dt
= Lρ = −i[H, ρ] +

∑
k

LkρL†
k − 1

2
{L†

k Lk, ρ}, (2)

where H is the Hamiltonian and Lk represent different jump
channels. We separately treat the quantum jump and quantum
diffusion unravelings. In each case, we also detail how the
physical currents are constructed from the output data.

Jump unraveling. In this case the measurement outcomes at
each interval dt are random variables dNk (t ) = 0 or 1, taking
the value 1 whenever there is a jump in channel k, which
occurs with probability dt tr{L†

k Lkρc(t )}. The conditional den-
sity matrix ρc(t ), given the measurement outcomes, evolves

according to the Itô stochastic master equation [22,23]

dρc(t ) =
{∑

k

dNk (t )G[Lk] − dtH[iHeff ]

}
ρc(t ), (3)

where G[A]ρ = AρA†/〈A†A〉c − ρ and H[A]ρ = Aρ +
ρA† − 〈A + A†〉cρ, with 〈•〉c = tr{•ρc(t )} and the effective
Hamiltonian Heff = H − i

2

∑
k L†

k Lk . The stochastic charge up
to time t can be defined generally as N (t ) = ∑

k νk
∫

dNk (t ),
where νk are problem-specific coefficients describing the
physical current in question. For example, in a system with
one injection channel L+ and one extraction channel L−,
the excitation current would have ν+ = +1 and ν− = −1,
leading to a net charge N (t ) = ∫

[dN+(t ) − dN−(t )].
The main object in FCS is the distribution P(N, t ) giving

the probability that the stochastic charge N (t ) has a value N
at time t . Here, we utilize the concept of a charge-resolved
density matrix ρN (t ), defined such that P(N, t ) = tr{ρN (t )}
and

∑
N ρN (t ) = ρ(t ) (the unconditional state). The charge-

resolved density matrix was first introduced for monitoring
quantum jumps in quantum optics [39] and later extended
to quantum transport in mesoscopics [40,41]. In terms of the
conditional dynamics it reads ρN (t ) = E [ρc(t )δN (t ),N ], where
N (t ) is the stochastic charge and E [•] refers to the ensemble
average over all trajectories [56]. Hence ρN (t ) can be inter-
preted on the ensemble-averaged dynamics, conditioned on
the assumption that at time t the total accumulated charge is N .
Using the tilted Liouvillian from FCS [23,42–44], we show in
the Supplemental Material [57] that ρN (t ) evolves according
to the charge-resolved equation

∂ρN

∂t
= L0ρN +

∑
k

LkρN−νk L†
k , (4)

where L0ρ = −i(Heffρ − ρH†
eff ) is the no-jump evolution.

The initial condition is ρN (0) = δN,0ρ(0). Equation (4) is
system of coupled master equations for each density matrix
ρN . The first term describes how each ρN changes due to a
no-jump trajectory, while the other terms describe how ρN

connect with ρN−νk through the jump channel Lk .
Equation (4) can now be adapted to yield the FPT statistics

for N (t ) to leave a certain predefined boundary R = [a, b]
(with a < 0 and b > 0). We do this by imposing absorbing
boundary conditions, ρN<a(t ) = ρN>b(t ) = 0. This causes the
system to follow a modified evolution ρRN (t ) from which
we obtain PR(N, t ) = tr{ρRN (t )} [58]. The survival probability
is then GR(t ) = ∑b

N=a PR(N, t ) = ∑b
N=a tr{ρRN (t )}. Differen-

tiating with respect to time using Eqs. (1) and (4), we obtain
the FPT

fR(t ) =
b∑

N=a

∑
k

tr
{
L†

k Lk
(
ρRN − ρRN−νk

)}
. (5)

To arrive at this result we also used the fact that L0ρ = Lρ −∑
k LkρL†

k , as well as the fact that tr{L(•)} = 0. Equation (5),
together with (4), form our first main result. They connect
the FPT directly to the solution of the charge-resolved master
equation and the probabilities of charge flowing out of R. In
the case of two jump operators L± with νk = ±1, Eq. (5)
simplifies to fR(t ) = tr{L†

+L+ρRb (t )} + tr{L†
−L−ρRa (t )}. This

shows that all that matters are the states at the boundaries of
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the region R. The two terms can be interpreted as conditional
escape rates for N (t ) to leave R, given it has not yet done
so up to time t . The above results provide a deterministic
and efficient method to obtain fR(t ). Not only does it avoid
sampling over quantum trajectories, but Eq. (4) is also just
a linear system of equations for the variables ρRN . In fact, in
terms of a vector �ρ R = (ρRa , ρRa+1, . . . , ρ

R
b ), Eq. (4) reduces

simply to ∂t �ρ R = V�ρ R, for a superoperatorV [57].
Diffusion unraveling. The diffusive unraveling of Eq. (2) is

written as the Itô stochastic differential equation [22,23]

dρc(t ) = dtLρc(t ) +
∑

k

H[Lke−iφk ]ρcdWk (t ), (6)

with independent Wiener increments dWk (t ). The current and
charge in this case are given by

I (t ) =
∑

k

νk

(
〈xk〉c + dWk

dt

)
, N (t ) =

∫ t

0
dt ′I (t ′), (7)

where xk = Lke−iφk + L†
k eiφk (with φk being arbitrary angles).

The charge N (t ) is now a continuous stochastic process.
Notwithstanding, we can similarly define a charge-resolved
density matrix ρN . The equation for ρN is derived in the
Supplemental Material [57] using the tilted Liouvillian of
quantum diffusion recently derived in Ref. [23]. The result is

∂ρN (t )

∂t
= LρN (t ) −

∑
k

νkK[Lke−iφk ]

× ∂ρN (t )

∂N
+ Kdiff

2

∂2ρN (t )

∂N2
, (8)

where K[A]ρ = Aρ + ρA† and Kdiff = ∑
k ν2

k is a constant.
Once again, we obtain the FPT by imposing absorbing bound-
ary conditions ρN<a(t ) = ρN>b(t ) ≡ 0. Equation (8), which is
a type of quantum Fokker-Planck equation [59], is our second
main result.

Kinetic uncertainty relation (KUR). From fR(t ) we can
compute the average FPT E [τ ] and its variance Var[τ ]. Of
particular interest is the signal-to-noise ratio (SNR) SNRτ =
E [τ ]2

Var[τ ] . For instance, in the context of autonomous clocks,
this quantity is related to the timekeeping precision [60] and
was recently studied experimentally [18] in superconducting
circuits, showcasing the nontrivial role of quantum coherence.
In Ref. [12] it was proven that for classical (or incoherent)
systems the SNR is bounded by SNRτ � E [τ ]K , where K =∑

k tr{L†
k Lkρss} is the dynamical activity (number of jumps

per unit time) and ρss is the steady state of (2). This bound,
however, can be violated for coherent dynamics. Motivated
by that, Ref. [17] derived the bound SNRτ � E [τ ](K + Q),
where Q is a quantum correction [57].

A relevant open question concerns the tightness of these
bounds. This can be difficult to address because computing
the SNR requires sampling over many quantum trajectories.
Equation (4), however, makes this task straightforward. Here,
we illustrate this idea by considering a resonantly driven qubit
with a rotating frame Hamiltonian H = �σx, where σα are
Pauli matrices and � is the strength of the Rabi drive. We
further assume that this is immersed in a thermal environment
described by the Lindblad master equation (2) with jump op-
erators L− = √

γ (n̄ + 1)σ− and L+ = √
γ n̄σ+, where γ is the

FIG. 1. KURs for a driven qubit. (a) FPT distribution for N (t )
crossing R = (−∞, 5], with � = γ = 1, n̄ = 0.2, and initial state
ρss. The histogram corresponds to the quantum trajectory simula-
tions, depicted below as a function of time. (b), (c) SNR (black solid),
classical (KUR) [12] (red dashed-dotted) and quantum KUR [17]
(blue dashed) as a function of �/γ , for n̄ = 0.1 and 1, respectively.
In (b) we can see a violation of the classical bound.

decay rate and n̄ is the Bose-Einstein occupancy. We focus on
the excitation current, by defining ν∓ = ±1. For the purpose
of illustration, we also setR = (−∞, 4]. An example of fR(t ),
computed using Eq. (4), is shown in Fig. 1(a) in dashed lines.
We also compare our results with quantum trajectories, where
the FPT is obtained by histogramming the times at which the
charge reaches the threshold N (t ) = 5 in each trajectory.

We next use this model to study the KURs in Refs. [12,17].
Formulas for K and Q are given in the Supplemental Material
[57]. Results comparing the SNR with the two bounds are
shown in Figs. 1(b) and 1(c) for n̄ = 0.1 and 1. We see that the
classical bound [12] is somewhat tight, and tends to follow the
overall behavior of the SNR. However, it can be violated, as
in Fig. 1(b). Such quantum violations have been the subject
of extensive research [61–67] as they are connected to dy-
namical aspects of coherence. Conversely, the quantum bound
of Ref. [17] is never violated, as it must. However, it is also
rather loose and diverges as Q ∝ �2. This result is relevant
for the following reason. The classical bound depends only
on the dynamical activity K of the observed quantum jumps
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associated to the operators Lk . But in quantum coherent prob-
lems there is also activity associated to the unitary dynamics
(the Rabi oscillations in our case), although this is hidden
to the observer. This additional activity is precisely what Q
captures.

Single-qubit threshold detector. As our second application,
we use our framework to model a single qubit functioning as
a threshold detector for Rabi pulses. This is motivated by the
recent experiment in Ref. [5]. Suppose one wishes to know
whether a Rabi pulse �(t ) (of unknown shape and duration)
was applied to a qubit during some time window τ . The goal
is to come up with a “yes/no” protocol, based on a continuous
measurement record of the qubit, that yields “yes” (click)
if the pulse was applied and “no” (no click) if it was not.
To do that, we continuously monitor the qubit’s population,
within the diffusive unraveling, resulting in a stochastic net
charge N (τ ) [Eq. (7)]. We then choose the interval R = [a, b]
and associate N (τ ) /∈ R with a click (the pulse was applied),
and N (τ ) ∈ R with no click (the pulse was not applied). In
this way, the threshold detector is cast as a first passage time
problem. The goal is to choose τ and R in order to maximize
the successful detection probability psucc and, at the same
time, minimize the probability of false positives pfalse (when
the detector clicks “yes” even though no pulse was applied).

We model this using Eq. (6) with H (t ) = �(t )σx and a
single jump operator L = √

γ σz. We choose ν = √
γ to make

N (τ ) in Eq. (7) dimensionless. The shape and structure of
�(t ) depend on the pulse in question. We assume the system
starts in |↓〉, so if �(t ) ≡ 0, it will remain there throughout.
Any Rabi pulse will therefore tend to partially excite the
qubit, which in turn will change the stochastic properties of
the signal N (τ ). For a given �(t ), the detection probability
is obtained by solving Eq. (8), with initial state |ψ0〉 = |↓〉,
and following the same steps delineated before to compute the
survival probability GR(τ |�(t ), |↓〉). The successful detection
probability is then psucc = 1 − GR(τ |�(t ), |↓〉). Conversely,
the false positive probability is pfalse = 1 − GR(τ |�(t ) ≡
0, |↓〉).

The probability psucc depends on the specifics of �(t ). For
concreteness and simplicity, we will focus here on a δ-like
pulse �(t ) = �0δ(t ). The complete analytical solution can be
found in the Supplemental Material [57]. The resulting suc-
cess probability reduces to psucc = p− + q(p+ − p−) where
q = 〈σ+σ−〉0 = sin2(�0) is the initial state occupation and
p±, which depend only on a, b, γ τ , are the detection prob-
abilities for initial states |↑〉 and |↓〉, respectively. The false
positive probability is pfalse = p−. The goal is to minimize
pfalse and maximize psucc. Figure 2 shows regions in the (a, b)
plane representing different bounds on pfalse/succ, for fixed
γ τ = 1 and q = 1. From this image one can infer that optimal
operation occurs for small b and large |a|, e.g., b ∼ 1 and
a ∼ −5. Similar conclusions can be drawn by looking at the
mean and variance of the FPT. The mean for the two processes
are plotted on the inset of Fig. 2 as a function of a, with
b = 1 and q = 1. For large |a|, Efalse(τ ) � γ τ = 1, so false
positives are unlikely to occur for this value of γ τ . The inset
of Fig. 2 also shows how the maximum standard deviation of
the FPT, maximized over all q, does not grow significantly
with a. So not only are false positives unlikely on average,
but their fluctuations are also small. These results, combined,

FIG. 2. Operation of a continuously monitored qubit as a thresh-
old detector. The plot shows regions in the (a, b) plane with bounds
on the false positive detection probability pfalse and the successful
detection probability psucc, with fixed γ τ = 1 and q = 1 (analytical
expressions are shown in the Supplemental Material [57]. The inset
shows the average FPT, in units of γ , for the false positive and the
successful detection cases, respectively, with b = 1 and q = 1. It also
shows the maximum possible standard deviation of the FPT, obtained
by maximizing over all q.

corroborate this parameter regime as useful for the operation
as a detector. Of course, this analysis pertains only to a toy
model and, in reality, several other factors would have to be
taken into consideration. Notwithstanding, they serve to illus-
trate how, through the analytical insights from our framework,
one can systematically search for optimal operating regimes.

Discussion and conclusions. Our methodology is com-
patible with any type of master equation in the form (2),
including time-dependent Hamiltonians. It therefore encom-
pass a broad range of physical problems, from quantum optics
to condensed matter. In addition, because Eqs. (4) and (8) are
resolved in N , it is straightforward to extend our method to
incorporate N-dependent feedback, that is, to study models
where H or {Lk} are modified depending on the current value
of N (t ) in a quantum trajectory [59]. Despite not being the
focus of this Letter, we emphasize this connection because
feedback and FPTs are actually conceptually very similar:
Both require monitoring of a stochastic quantity and per-
forming (or not) actions depending on its value. In the case
of the FPT, the action is to continue or cease the dynam-
ics. In the case of feedback, it is to modify the Liouvillian.
Feedback and FPT also share the same practical difficulty
of requiring computationally expensive quantum trajectories.
Deterministic strategies, such as the one put forth in this
Letter, are therefore crucial. A famous example of a successful
deterministic theory is that of current feedback put forth in
Refs. [68,69], which had a significant impact, despite working
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only for a restricted class of models. We believe a similar point
can be made for our results.

A particularly interesting application of our results is to
so-called gambling problems, such as that studied in Ref. [3].
This involves an agent which uses information about the sys-
tem’s state to devise stopping strategies aimed at maximizing
a certain goal, which can be relevant in the context of ther-
modynamics. For instance, depending on the model N (t ) can
be related to the heat exchanged with the bath, or the work
performed by an external drive. An agent with access to either
of these quantities could then devise a strategy such as “stop
the process whenever a certain amount of work has been

extracted.” This has interesting thermodynamic implications,
as it puts in the foreground the role of information in thermo-
dynamic processes. It may also have practical consequences.
For example, one can use these ideas to devise optimal cooling
protocols, or for quantum state engineering.
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[9] K. Ptaszyński, Phys. Rev. E 97, 012127 (2018).

[10] K. Saito and A. Dhar, Europhys. Lett. 114, 50004 (2016).
[11] I. Neri, E. Roldán, and F. Jülicher, Phys. Rev. X 7, 011019

(2017).
[12] J. P. Garrahan, Phys. Rev. E 95, 032134 (2017).
[13] T. R. Gingrich and J. M. Horowitz, Phys. Rev. Lett. 119, 170601

(2017).
[14] G. Manzano, R. Fazio, and E. Roldán, Phys. Rev. Lett. 122,

220602 (2019).
[15] G. Falasco and M. Esposito, Phys. Rev. Lett. 125, 120604

(2020).
[16] A. Pal, S. Reuveni, and S. Rahav, Phys. Rev. Res. 3, L032034

(2021).
[17] T. Van Vu and K. Saito, Phys. Rev. Lett. 128, 140602 (2022).
[18] X. He, P. Pakkiam, A. A. Gangat, M. J. Kewming, G. J. Milburn,

and A. Fedorov, Phys. Rev. Appl. 20, 034038 (2023).
[19] S. Singh, P. Menczel, D. S. Golubev, I. M. Khaymovich, J. T.

Peltonen, C. Flindt, K. Saito, E. Roldán, and J. P. Pekola,
Phys. Rev. Lett. 122, 230602 (2019).

[20] H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, Phys. Rev.
A 39, 1200 (1989).

[21] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
[22] H. M. Wiseman and G. J. Milburn, Quantum Measurement and

Control (Cambridge University Press, Cambridge, UK, 2009).
[23] G. T. Landi, M. J. Kewming, M. T. Mitchison, and P. P. Potts,

PRX Quantum 5, 020201 (2024).
[24] R. L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach, London, 1963), Vol. 1.
[25] R. Vyas and S. Singh, Phys. Rev. A 38, 2423 (1988).

[26] T. Brandes, Ann. Phys. 17, 477 (2008).
[27] K. H. Thomas and C. Flindt, Phys. Rev. B 87, 121405(R)

(2013).
[28] G. Haack, M. Albert, and C. Flindt, Phys. Rev. B 90, 205429

(2014).
[29] D. J. Skinner and J. Dunkel, Phys. Rev. Lett. 127, 198101

(2021).
[30] F. Schulz, D. Chevallier, and M. Albert, Phys. Rev. B 107,

245406 (2023).
[31] T. Brandes and C. Emary, Phys. Rev. E 93, 042103 (2016).
[32] D. S. Kosov, arXiv:1605.02170.
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