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PT -phase diagram with quantum jump in a non-Hermitian photonic structure
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Quantum jumps induced by gain and loss have different quantum behaviors in non-Hermitian photonics.
However, the jump effect on global quantum PT properties has not been comprehensively understood yet. Here,
with considering quantum jump of loss and gain in a photonic dimer structure, we analytically obtained the PT -
phase diagram under the steady-state condition and defined a Hermitian exchange operator to characterize the
PT -symmetry or -broken phase. When we input Fock states into a PT -broken bi-waveguide splitting system,
most photons will concentrate in the dominant waveguide with some state distributions. Especially in Hong-Ou-
Mandel interferences, if gain is added, whether loss exists or not, g(2) is always larger than zero because loss
cannot compensate gain as their different quantum jump effects. The quantum PT -phase diagram paves the
way to the quantum state engineering, quantum interferences, and logic operations in non-Hermitian photonic
systems.
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Introduction. An open quantum system generally ex-
changes the energy with the external environment, i.e., it
is non-Hermitian. With varying some specific parameters
in a non-Hermitian parity-time (PT ) system, there exist
exceptional points (EPs) from PT symmetry to broken,
where the eigenvalues and corresponding eigenvectors si-
multaneously coalesce [1]. Various theoretical works related
to PT symmetry are proposed [2–4], exhibiting some in-
teresting phenomena, such as optical solitons and Bloch
oscillations in periodical potentials [5,6], edge-gain effect,
and gain-loss-induced skin modes in topological systems
[7,8]. Simultaneously, PT symmetry and broken behaviors
are experimentally realized in atomic and trapped ion systems
[9,10], acoustic medium [11], electronic circuit [12], photonic
lattice [13], and quantum optical systems [14–16].

In addition to the above-mentioned systems, photonic
structures are good candidates to realize PT symmetry or
broken through modulating the refractive index or gain and
loss [17,18]. Owing to the similarity between the Schrödinger
equation and the paraxial optical equation [19], photonic
structures have an inherent advantage for realizing PT
symmetry. Both optical waveguides [20,21] and whispering
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gallery microcavities [22,23] can construct a PT -symmetric
system by two-mode coupling with gain and loss. Besides,
PT symmetry has been observed in metasurface [24] and
periodically modulated refractive index material [25,26].
Because of the nonreciprocal property in PT -broken and
enhanced sensitivity at EPs, PT -symmetric optics can be
applied in optical isolation devices [22], sensing [27], laser
[28,29], and chiral optics [30].

However, previous studies on PT -symmetric photonic
structures are almost limited to classical optics, where loss
and gain in the same mode can cancel each other and thereby
be considered as an average effect, while in a quantum PT
system, the role of loss and gain is different: the gain while
generating photons will bring some noise, but the loss while
annihilating photons cannot lower any noise and can even
cause vacuum noise. These two irreversible processes in-
evitably produce different kinds of quantum jump, leading to
some interesting quantum behaviors. With the consideration
of quantum jump, people studied the saturation effects on
the noise and entanglement [31,32], the positions and char-
acteristic of EPs [33,34], and the switching between PT and
anti-PT systems [35] in non-Hermitian gain-loss coupled
cavities. Quantum correlations of a PT -symmetric system
with quantum jump have also been studied recently [36]. But
all these works did not focus on the different kinds of quantum
jump of gain and loss. Until now, with quantum jump, there is
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FIG. 1. (a) Schematic diagram of photonic dimer structures with coupling coefficient μ and loss rate γ j and gain rate β j for j = 1, 2.
(b) PT -phase diagram with steady-state regime. EPs satisfying (β1 − γ1)/μ − (β2 − γ2)/μ = ±2 are shown as two red parallel diagonal
lines. The regime between two EP lines is PT symmetry, while outside of EP lines is PT broken. The yellow part is the steady-state regime.
Left yellow star: PT symmetry; middle gray star: EP; right red star: PT broken. (c) Real parts of eigenvalues of Liouvillian L(μ) with the
EP at μ = μ0. Here γ1 = 3.1μ0, β1 = 0.1μ0, γ2 = 1.1μ0, and β2 = 0.1μ0.

no panoptic study on the behavior of full gain-loss parameter
space, i.e., the quantum PT -phase diagram. Once this phase
diagram is obtained, people can use photonic structures to
engineer the quantum state and to realize the quantum logic
operation, especially when PT symmetry is broken.

In this Letter, we analytically obtain the quantum phase di-
agram of PT symmetry or broken in photonic dimer cavities
with both gain and loss simultaneously existing [Fig. 1(a)].
For the consideration of reality, the steady-state regime un-
der the weak gain is identified. To characterize the transition
from PT symmetry to broken, we define the exchange oper-
ator with exchanging the quadrature variables between two
modes. Then, we explore the quantum splitting behaviors
with discrete variable of several photons. If inputting Fock
states into a PT -broken bi-waveguide splitting system, most
photons concentrate in the dominant waveguide with some
state distributions. Especially in Hong-Ou-Mandel (HOM)
interferences, if gain is added, whether loss exists or not, g(2) is
always larger than zero because loss cannot compensate gain
as their different quantum jump effects. The phase diagram
with full parameter space is the basis to study the quantum
state fabrication, quantum interferences, and logic operations
in non-Hermitian quantum photonic systems.

Quantum PT -phase diagram with steady-state regime.
Consider photonic dimer cavities with loss and gain simulta-
neously existing [Fig. 1(a)], when we let ω1 = ω2 = ω, whose
Hamiltonian is

Ĥ = h̄ωâ†
1â1 + h̄ωâ†

2â2 + h̄μ(â†
1â2 + â†

2â1), (1)

where â j and â†
j ( j = 1, 2) are the boson annihilation and

creation operator, respectively, and μ is the coupling strength
between two cavities. With the weak gain and weak incident
light, the gain saturation effect can be neglected [37]. Then
the non-Hermitian system is governed by the Lindblad master
equation [38],

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] +

∑
j=1,2

γ j (2â j ρ̂â†
j − ρ̂â†

j â j − â†
j â j ρ̂ )

+
∑
j=1,2

β j (2â†
j ρ̂â j − ρ̂â j â

†
j − â j â

†
j ρ̂ ), (2)

where γ j (β j) is the loss (gain) coefficient of the jth cavity.
The quantum jumps γ j (2â j ρ̂â†

j ) and β j (2â†
j ρ̂â j ) originate

from loss and gain, respectively, whose quantum behaviors
are totally different [39]. While in classical PT systems [21],
these two effects are seen as an average through gain to com-
pensate a loss (such as the scattering and absorption).

To construct the quantum PT -phase diagram, based on
Eq. (2), we derive the evolution of 〈â1〉 and 〈â2〉 with varying
t [40],

i
d

dt

(〈â1〉
〈â2〉

)
= Heff

(〈â1〉
〈â2〉

)
, (3)

where

Heff =
(

ω − iγ1 + iβ1 μ

μ ω − iγ2 + iβ2

)
. (4)

The eigenvalues of Heff are

ω± = ω − i

2
(γ1 − β1 + γ2 − β2)

± 1

2

√
4μ2 − [(γ1 − β1) − (γ2 − β2)]2. (5)

The degeneracy parts of eigenvalues ω±, which satisfy (γ1 −
β1)/μ − (γ2 − β2)/μ = ±2, are called EP lines, shown as
two red lines in the PT -phase diagram [Fig. 1(b)]. The area
between two red lines is PT symmetric, while the areas out-
side these two lines are PT broken. In a classical PT -phase
diagram, one point corresponds to only one set of parame-
ters [41], while in a quantum PT -phase diagram, owing to
quantum jump effects, each point [see yellow, gray, or red
star in Fig. 1(b)] corresponds to infinite sets of parameters.
Furthermore, all sets of these parameters in this point share
the common PT -symmetric properties.

On the other hand, Eq. (2) can be written as d ρ̂

dt = Lρ̂ with
the Liouvillian operator L. Given a set of complete quantum
state basis vectors, L can be expressed as a high dimension
matrix. Figure 1(c) shows the real parts of eigenvalues of
Liouvillian L(μ) with γ1 = 3.1μ0, β1 = 0.1μ0, γ2 = 1.1μ0,
and β2 = 0.1μ0, respectively. One can see that the splitting
point locating at μ = μ0 is identical to the gray star in the
phase diagram [Fig. 1(b)]. More details about L are shown in
Ref. [40].
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FIG. 2. (a) Evolution of 〈η̂〉 with varying γ1. The exchange between 〈X̂1〉 and 〈Ŷ2〉 (inset: 〈X̂2〉 and 〈Ŷ1〉) (b) in PT symmetry with
γ1 = 1.1μ0 [yellow star in Fig. 1(b)] and (c) in PT broken with γ1 = 3.1μ0 [red star in Fig. 1(b)]. The initial state is |0, α = 1 + i〉 and
other parameters are β1 = 0.1μ0, γ2 = 0.1μ0, β2 = 0.1μ0, and μ = μ0.

Furthermore, the evolution of the mean photon number
〈n̂1〉 = 〈â†

1â1〉, 〈n̂2〉 = 〈â†
2â2〉 of two modes, and an exchange

factor 〈η̂〉 = 〈i(â†
2â1 − â†

1â2)〉 can be written as [40]

d

dt
〈n̂1〉 = 2(β1 − γ1)〈n̂1〉 + μ〈η̂〉 + 2β1,

d

dt
〈n̂2〉 = 2(β2 − γ2)〈n̂2〉 − μ〈η̂〉 + 2β2,

d

dt
〈η̂〉 = 2μ〈n̂2〉 − 2μ〈n̂1〉 + (β1 + β2 − γ1 − γ2)〈η̂〉, (6)

whose solutions satisfy the steady-state conditions that
both γ1 + γ2 − β1 − β2 > 0 and (γ1−β1)(γ2−β2) + μ2 > 0,
shown as the yellow area of the phase diagram in Fig. 1(b).
Under steady-state conditions, the final values of the mean
photon number of two modes as well as 〈η̂〉 can be written
as [40] 〈n̂1〉ss = [�1 − β1(�2 + 2β2γ2 − γ 2

2 )]/�3, 〈n̂2〉ss =
[�1 − β2(�2 + 2β1γ1 − γ 2

1 )]/�3, and 〈η̂〉ss = 2μ(β2γ1 −
β1γ2)/�3, with �1 = (β1 + β2)(β1β2 + μ2), �2 = β1γ2 +
β2γ1 − γ1γ2, and �3 = (γ1 + γ2 − β1 − β2)[(γ1 − β1)(γ2 −
β2) + μ2]. One can see that, for one steady-state point, there
are infinite sets of parameters γ1, β1, γ2, and β2 corresponding
to infinite steady-state values. But owing to the decoher-
ence effects of loss and gain, the steady state will finally
become a thermal state without any quantum feature [40].
Our following discussions are limited within the steady-state
regime.

Exchange operator to characterize the PT phase. To char-
acterize the PT symmetry or broken, we rewrite the exchange
operator η̂ as

η̂ = 2(X̂1Ŷ2 − X̂2Ŷ1), (7)

with X̂1,2 = (â1,2 + â†
1,2)/2 and Ŷ1,2 = (â1,2 − â†

1,2)/2i. η̂,
as a Hermitian operator, expresses the exchange between
quadrature variables X̂1,2 and Ŷ2,1. Its expectation value 〈η̂〉
is a real number called the exchange factor. Figure 2(a) gives
the evolution of 〈η̂〉 with varying the loss rate γ1. Here, β1 =
0.1μ0, γ2 = 0.1μ0, β2 = 0.1μ0, and μ = μ0, where μ0 =
1010 Hz, and the initial state is a coherent state |0, α = 1 + i〉.
From Fig. 2(a), 〈η̂〉 experiences the phase transition from PT
symmetry at γ1 = 1.1μ0, via the EP point at γ1 = 2.1μ0, to
PT broken at γ1 = 3.1μ0, corresponding to the yellow, gray,
and red stars in Fig. 1(b), respectively. When PT symme-
try is unbroken, 〈η̂〉 oscillates with t . In contrast, when PT
symmetry is broken, 〈η̂〉 monotonically decreases after a rise
and then comes to the steady state. Through calculating 〈η̂〉

with varying the parameters in the same point, it is found that
their global properties (i.e., symmetric, EP, and broken) are
not changed [40].

For any value of γ1, 〈η̂〉 is approaching the same value with
t → ∞, just for a specific case γ2 = β2.

Correspondingly, we explore the exchanging processing
between quadrature amplitudes 〈X̂1,2〉 and 〈Ŷ2,1〉. For the
PT symmetry, there is an exchange between 〈X̂1,2〉 and
〈Ŷ2,1〉with γ1 = 1.1μ0 [Fig. 2(b)]. In contrast, when PT is
broken, they decay exponential with 〈X̂1〉 < 〈Ŷ2〉 and 〈Ŷ1〉 <

〈X̂2〉 with γ1 = 3.1μ0 [Fig. 2(c)]. If now we input the Fock
state |m, n〉 as an initial state, 〈X̂1,2〉 and 〈Ŷ2,1〉 will be 0 for
all the time [40]. So if only inputting Fock states, one cannot
use the exchange of quadrature amplitudes to distinguish the
PT -symmetry or -broken phase, while, whatever for Fock
states or coherent states, one can clearly distinguish them
through 〈η̂〉 [40]. Therefore, exchange operator η̂ can fully
characterize the properties of PT symmetry or the broken in
quantum photonic system.

Engineering quantum state with PT broken. The above
theory can be applied to non-Hermitian beam splitters [42],
which have some unique properties and applications, such
as quantum coherent perfect absorption [43], antibunching of
bosons [44], and fabrication of multibit quantum gates [45].
Now, let us take a coupled waveguide system as an example
to study the quantum state engineering. Shown as Figs. 3(a)
and 3(b), two gain-loss waveguides with coupled distance L
can be seen as a beam splitter. If L is too short, the interaction
between two modes is not enough. In contrast, if L is too
long, any input quantum state will become a thermal state.
Thus there exists an optimal interval of L to balance the
quantum coherence and PT -symmetry effects. When γ1 =
1.1μ0 ∼ 3.1μ0, β1 = 0.1μ0, γ2 = 0.1μ0, β2 = 0.1μ0, and
μ = μ0, where μ0 = 1 cm−1 [21,46], the optimal value of
L is 0.4–1.5 cm. With the above parameters, here we will
focus on the quantum state distribution of two outputs for both
PT -symmetry and PT -broken cases.

We first consider the situation of single photon input, i.e.,
|ψ〉in = |0, 1〉 and |1, 0〉 [40]. In the case of PT symmetry, the
photons tend to symmetrically distribute in two waveguides,
while in the PT -broken case, whatever inputting one photon
from which waveguide, the photons are likely to output from
the dominant waveguide, which is in agreement with classical
optical experiments where most of the energy is locating in
the dominant mode [21]. Then the situation of multiphoton
input is explored, i.e., |ψ〉in = |0, N〉 and |N, 0〉 [40]. Once
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FIG. 3. Schematics of coupled waveguides with input Fock states (a) |2, 4〉 for (c), (d) and (b) |4, 2〉 for (e), (f). Probability distributions
of output states for (c), (e) PT symmetry at L = 0.6 cm and (d), (f) PT broken at L = 0.4 cm. Other parameters are the same as those in
Figs. 2(b) and 2(c).

again, after EP, most of the photons (or the output states with
large probability) are concentrating on the dominant waveg-
uide due to the joint effect of quantum interference and PT
broken.

Also, because of the photon concentration of PT broken,
the Fock state |P〉 with P > M, N appears when |ψ〉in =
|M, N〉. So, the beam splitter with this kind of PT broken can
be used to prepare the high number Fock state. Now, we take
the input states of |ψ〉in = |2, 4〉 and |4, 2〉 as examples. As
shown in Figs. 3(c) and 3(e), in the case of PT symmetry
[yellow star in Fig. 1(b)], the photon number distribution
at L = 0.6 cm is dispersed due to exchanging between two
waveguides. The mean photon numbers are 〈n̂1〉 = 1.2 and
〈n̂2〉 = 3.3 (input |2, 4〉) and 〈n̂1〉 = 1.1 and 〈n̂2〉 = 2.3 (in-
put |4, 2〉), while in the PT broken [red star in Fig. 1(b)],
at L = 0.4 cm, most photons are gathered in the dominant
waveguide with large probability distributions of high number
Fock state such as |5〉 [Figs. 3(d) and 3(f)], corresponding to
〈n̂1〉 = 0.4 and 〈n̂2〉 = 2.0 (input |2, 4〉) and 〈n̂1〉 = 0.3 and
〈n̂2〉 = 3.7 (input |4, 2〉). If the input state is another Fock
state |M, N〉 with the total number of photons M + N < 10,
the same result is obtained [40]. Finally, owing to the quantum

FIG. 4. Quantum jump effect on HOM interference in non-
Hermitian beam splitter. g(2) as a function of propagation distance L
(a) without gain and (b) with gain. Here, β1 = 0, μ = μ0 and the in-
put state is |1, 1〉. The yellow(solid)/gray(dashed)/red(dotted) curves
correspond to the yellow/gray/red star in Fig. 1(b), representing PT
symmetry/EP/PT broken.

jump effects, for the same point in the PT -phase diagram,
such as the red star in Fig. 1(b), the quantum state distributions
can be optimized through adjusting the loss and gain of two
waveguides [40].

Then, the quantum jump effect on Hong-Ou-Mandel
(HOM) interference [47] is explored. The input is |ψ〉in =
|1, 1〉 and g(2) = 〈â†

1â†
2â2â1〉/〈â†

1â1〉〈â†
2â2〉. For the same point

in the phase diagram, if without gain, whenever for PT -
symmetric or broken, the minimum of g(2) can always reach
zero [Fig. 4(a)] [46]. While the gain is added, whether the loss
exists or not, this value generally cannot be zero and become
larger with increasing the gain [Fig. 4(b)]. Even though the
values of loss and gain in the second waveguide are the same,
they not only cannot cancel each other as what was found in
the classical case, but also lead to more noise. This means
that, owing to different quantum jump effects, gain cannot
compensate loss in quantum PT systems.

Moreover, as for coherent states, gain brings noise to the
output states, while loss does not [40], which further confirms
the difference between loss and gain. In experiment, quantum
noise can be estimated from balanced homodyne measure-
ment [48].

Summary. By considering the quantum jump, we have
analytically obtained the quantum PT -phase diagram with
the steady-state regime in non-Hermitian photonic structures.
We have defined an exchange operator to characterize the
PT -symmetry phase and PT -broken phase. Based on this
phase diagram, in the coupled waveguide structure, we have
engineered the multiphoton quantum state especially on the
PT -broken regime and discussed the HOM effects with gain.
Different quantum jump effects of gain and loss prevent them
from compensating for each other and further give rise to
an imperfect HOM effect. The established theory can be ex-
tended to study many related quantum behaviors, such as gain
saturation effect, quantum entanglement, and continuous vari-
able states, and may have potential applications in quantum
state preparation, quantum interferences, and logic operations
in non-Hermitian photonic systems.
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[30] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H.
Ylmaz, J. Wiersig, S. Rotter, and L. Yang, Chiral modes and
directional lasing at exceptional points, Proc. Natl. Acad. Sci.
USA 113, 6845 (2016).

[31] I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S.
Savasta, F. Nori, and S. K. Özdemir, Scully-lamb quantum laser
model for parity-time-symmetric whispering-gallery microcav-
ities: Gain saturation effects and nonreciprocity, Phys. Rev. A
99, 053806 (2019).

[32] S. Vashahri-Ghamsari, B. He, and M. Xiao, Effects of gain
saturation on the quantum properties of light in a non-Hermitian
gain-loss coupler, Phys. Rev. A 99, 023819 (2019).

[33] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians

L041503-5

https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.99.130502
https://doi.org/10.1103/PhysRevLett.104.233601
https://doi.org/10.1103/PhysRevLett.109.090404
https://doi.org/10.1103/PhysRevLett.100.030402
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.125.033603
https://doi.org/10.1103/PhysRevLett.128.223903
https://doi.org/10.1103/PhysRevLett.117.123601
https://doi.org/10.1103/PhysRevLett.126.083604
https://doi.org/10.1103/PhysRevApplied.12.034040
https://doi.org/10.1103/PhysRevLett.123.193901
https://doi.org/10.1103/PhysRevLett.123.183601
https://doi.org/10.1103/PhysRevLett.123.230401
https://doi.org/10.1103/PhysRevLett.125.240501
https://doi.org/10.1103/PhysRevLett.126.230402
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphoton.2014.133
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/PhysRevLett.113.093901
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1126/science.1206038
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258479
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1103/PhysRevA.99.053806
https://doi.org/10.1103/PhysRevA.99.023819


XINCHEN ZHANG et al. PHYSICAL REVIEW A 109, L041503 (2024)

and liouvillians: The effects of quantum jumps, Phys. Rev. A
100, 062131 (2019).

[34] I. I. Arkhipov, A. Miranowicz, F. Minganti, and F. Nori, Quan-
tum and semiclassical exceptional points of a linear system of
coupled cavities with losses and gain within the scully-lamb
laser theory, Phys. Rev. A 101, 013812 (2020).

[35] I. I. Arkhipov, A. Miranowicz, F. Minganti, and F. Nori, Li-
ouvillian exceptional points of any order in dissipative linear
bosonic systems: Coherence functions and switching between
PT and anti-PT symmetries, Phys. Rev. A 102, 033715
(2020).

[36] F. Roccati, A. Purkayastha, G. M. Palma, and F. Ciccarello,
Quantum correlations in dissipative gain-loss systems across
exceptional points, Eur. Phys. J. Spec. Top. 232, 1783 (2023).

[37] M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser
Physics (Addison-Wesley Publishing Company, Redwood City,
CA, 1974).

[38] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[39] S. Scheel and A. Szameit, PT -symmetric photonic quantum
systems with gain and loss do not exist, Europhys. Lett. 122,
34001 (2018).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.109.L041503 for derivation of the evolu-

tion equation, steady state, properties of Liouvillian, PT phase
characterization, and quantum state engineering.

[41] Q. Zhang, Y. Ma, Q. Liu, X. Zhang, Y. Jia, L. Tong, Q. Gong,
and Y. Gu, Gain-gain and gain-lossless PT -symmetry broken
from PT -phase diagram, J. Opt. 52, 2239 (2023).

[42] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Quantum
optics of lossy beam splitters, Phys. Rev. A 57, 2134 (1998).

[43] T. Roger, S. Restuccia, A. Lyons, D. Giovannini, J. Romero,
J. Jeffers, M. Padgett, and D. Faccio, Coherent absorption of
N00N states, Phys. Rev. Lett. 117, 023601 (2016).

[44] B. Vest, M.-C. Dheur, É. Devaux, A. Baron, E. Rousseau,
J.-P. Hugonin, J.-J. Greffet, G. Messin, and F. Marquier, Anti-
coalescence of bosons on a lossy beam splitter, Science 356,
1373 (2017).

[45] J. E. Davis and D. O. Güney, Effect of loss on linear optical
quantum logic gates, J. Opt. Soc. Am. B 38, C153 (2021).

[46] F. Klauck, L. Teuber, M. Ornigotti et al., Observation of
PT -symmetric quantum interference, Nat. Photon. 13, 883
(2019).

[47] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpi-
cosecond time intervals between two photons by interference,
Phys. Rev. Lett. 59, 2044 (1987).

[48] A. Furusawa, Quantum States of Light (Springer, New York,
2015).

L041503-6

https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.101.013812
https://doi.org/10.1103/PhysRevA.102.033715
https://doi.org/10.1140/epjs/s11734-023-00835-3
https://doi.org/10.1007/BF01608499
https://doi.org/10.1209/0295-5075/122/34001
http://link.aps.org/supplemental/10.1103/PhysRevA.109.L041503
https://doi.org/10.1007/s12596-023-01140-x
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevLett.117.023601
https://doi.org/10.1126/science.aam9353
https://doi.org/10.1364/JOSAB.430603
https://doi.org/10.1038/s41566-019-0517-0
https://doi.org/10.1103/PhysRevLett.59.2044

