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Efficient general waveform catching by a cavity at an absorbing exceptional point
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We study a system tuned to an absorbing exceptional point and explore its use to efficiently receive and store an
incoming wave with an envelope different from the absorbing-eigenmode envelope. Specifically, while absorbing
states of lossless resonators have an exponentially increasing envelope, we focus on capturing naturally emitted
waves with an exponentially decreasing envelope. We find that, when tuning a cavity to an nth-order absorbing
exceptional point (EP), n + 1 temporal orders of any incoming waveform can be perfectly captured, leading to
significantly less scattering and increasing the overall absorption efficiency for general waveforms. We present
an approach to tune a cavity to an EP and demonstrate less scattering by an order of magnitude for a decaying
incoming waveform. Our results may be used for efficient passive state transfer and detection of spontaneous
emission.
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Resonators possess absorbing eigenstates with real or com-
plex eigenfrequencies, which can be determined by solving
the boundary-value problem with incoming boundary condi-
tions. When a resonator is excited with such an eigenstate,
it exhibits no scattering [1,2]. However, whereas physical
systems usually have absorbing eigenfrequencies in the upper
complex frequency plane, waves that impinge on a resonator
typically do not have the temporal dependence of such eigen-
states, resulting in considerable scattering. In this Letter, as
opposed to previous works that considered excitations with
absorbing eigenstates [1–3], we aim at significantly reducing
the scattering for a general temporal profile of the incoming
waveform both in lossy and lossless resonators. This is use-
ful for many physical systems, which cannot be engineered
to have absorbing eigenfrequencies that match the typical
incoming waveforms, such as lossless systems or when the
materials required to realize the physical parameters do not
exist. While our approach is expected to apply to many fields
of physics such as acoustics, elastodynamics, matter waves,
and quantum light [4–7], we focus on electromagnetic waves
at microwave and optical frequencies, of relevance for classi-
cal and quantum technologies.

Photon transfer between cavities is a fundamental process
in both classical and quantum networks, and it has been used
in quantum computation and communications at microwave
and optical frequencies [8–13]. Deterministic protocols based
on direct state transfer [14], which achieve large entanglement
rates, have recently been realized in superconducting circuit
systems featuring “pitch and catch” of microwave photons.
In such experiments a resonant cavity coupled to an atom (or
artificial atom) is usually utilized as a quantum node [15–17].
Photon detection is another topic of paramount importance
in quantum information, and for probing processes such as
atomic or molecular spontaneous emission, electron spin reso-
nance, nuclear magnetic resonance, and fluorescence [18–22].

A key requirement for photon detectors is to achieve a large
detection efficiency of incoming photons [23]. A common
implementation of a photon detector relies on a lossless or
lossy resonant cavity [19,20]. Photon detection is usually in-
effective at triggering measurable phenomena at microwave
frequencies since photons have five orders of magnitude lower
energies compared with optical frequencies [24].

The most efficient way to load a lossless resonator is
with an input wave at its complex absorbing eigenfrequency,
which has an increasing exponential waveform [see Fig. 1(b)],
the complex frequency generalization of a coherent perfect
absorber (CPA) [1,2,15,25–29]. However, for state transfer
such a waveform needs to be generated in the pitch process,
which results in emission, which may not be compatible
with quantum networks [30], and photons emitted in nat-
ural processes usually do not have this waveform. Despite
the existing techniques of active pulse shaping of flying
photons [15,16,31–40], it remains important to passively
catch photons that are naturally emitted from cavities or in
spontaneous emission [41–43]. Such emitted photons have
a decaying exponential waveform [see Fig. 1(a)], and when
passively caught by a standard receiving cavity, the efficiency
is rather poor, of typically only 60% [25]. Clearly, the effi-
cient passive capture of naturally emitted photons holds the
potential to allow quantum state transfer to operate at optical
frequencies and exceptional detection of processes such as
spontaneous emission.

It was recently shown that by designing a cavity to operate
at an exceptional point (EP) [44–48] of CPAs, in which CPA
eigenvalues and eigenmodes coalesce [49,50], the absorption
spectrum on the real-ω axis becomes quartic [49,50]. More
recently, the concept of CPA EP was generalized to complex
frequencies where two or more complex absorbing eigenfre-
quencies coalesce (virtual CPA EP) [3,50]. In Ref. [3] the
time-domain properties of CPA EPs were studied both for

2469-9926/2024/109(4)/L041502(7) L041502-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4139-1936
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.L041502&domain=pdf&date_stamp=2024-04-17
https://doi.org/10.1103/PhysRevA.109.L041502


FARHI, DAI, KIM, ALÙ, AND STONE PHYSICAL REVIEW A 109, L041502 (2024)

FIG. 1. (a) Naturally emitted waveform from a cavity decays
(increases) exponentially in time (space, presented above). Such
a waveform is emitted in spontaneous emission by an atom or
molecule. (b) A waveform that increases (decays) exponentially in
time (space) is perfectly captured by a cavity. Right: The complex
excitation frequency (blue circle) and absorbing eigenfrequency (red
cross) match. (c) Passive state transfer with standard cavities. Since
the naturally emitted and perfectly captured waves do not match,
40% of the incident field is scattered. (d) Passive state transfer
with a cavity system tuned to a virtual absorbing exceptional point
where two absorbing eigenfrequencies coalesce. Since the EP cavity
captures another order in time of the incoming waveform, there is
very small scattering.

real and complex ω. It was shown that CPA EPs extend the
class of waveforms, which can be perfectly absorbed, namely
E ∝ (vt − z)mei(kz−ωr t )+�t , where � = 0 and � �= 0 for real-ω
and virtual CPA EP, respectively, m is the EP order, and the
waveforms have a frequency content at a single ω for infinite
time pulses [3]. It was demonstrated that these high-order
waveforms have dramatically improved performance in wave
capturing [3,51]. CPA EP is now understood to be a univer-
sal geometry-independent phenomenon in scattering, albeit
requiring resonator tuning or design to create a degeneracy of
purely incoming eigenfunctions of the wave equation. In the
current Letter we only consider the geometry of a one-port
resonator tuned to an EP, showing how such a resonator can
perform improved wave capture in the time domain. However,
all of the temporal behavior we describe will apply to an
arbitrary multiport system at CPA EP, as long as the system
is excited with the appropriate coherent superposition of in-
coming channels.

Here, we first show that a cavity at a CPA EP perfectly
captures additional orders in time for any waveform enve-
lope, enabling efficient capturing of waveforms with general
envelopes/amplitude modulations. We then present a semian-
alytical approach to tune a catching port that is of the type
used in quantum information processing to a virtual CPA EP.

FIG. 2. A schematic of the setup: A flux-controlled coupler and
two transmission lines (microwave analog of the optical cavities)
loaded by a transmon, tuned to an absorbing virtual exceptional
point. The coupler is composed of two capacitors each of capacitance
2C and a superconducting quantum interference device (SQUID),
which can be modeled by an inductance L = LJ/cos (�/φ0).

We next show that when this system is at an EP, it significantly
improves the efficiency in the catch process of the waveforms
ei(ωr t−kz)+�t , (vt − z)ei(ωr t−kz)+�t and can address additional
applications that have been challenging [25]. Finally, we
demonstrate that by utilizing such a cavity, the pitch and catch
process can be performed without modifying the naturally
emitted wave, i.e., passive state transfer, at high efficiency
[see Fig. 1(d)] and discuss the advantage for single-photon
detection.

We consider a single-port setup composed of two transmis-
sion line sessions loaded by a capacitively coupled transmon
qubit, and a flux-controlled coupler, which is typical in circuit
QED (cQED) experiments (see Fig. 2). For applications at
optical frequencies [21] a photon detector and coating layers
could replace the transmon and transmission lines, respec-
tively, and for a lossy detector the coupler may not be required.
We will now show that a first-order real or complex-ω CPA
EP enables the capture of any waveform up to linear order
in time. Clearly, waveforms with a significant linear order
term will substantially benefit from such an EP. We focus
on naturally emitted waveforms which are of practical im-
portance, can have a significant linear term, and their passive
catching is somewhat counterintuitive. Let us assume that we
do not modulate the coupling in the pitch process and the
emitted photon has the form e−�2t+iωr t . We consider a cavity
at a general complex-ω CPA EP in the catch process with
the same ωr as the emitting cavity but with �. Note that the
imaginary parts of the frequency of the incoming wave and the
absorbing eigenfrequency are different and have an opposite
sign, unlike the situation in Ref. [3]. More generally, for a
system with an absorbing eigenfrequency of ω = ωr + i� we
analyze here the advantage of an EP in capturing incoming
waves of the form g(t )eiωr t for any g(t ). At a CPA EP any
signal of the form e�t (a + bt ) can be perfectly captured (for
any a, b) [3]. We Taylor expand the naturally emitted wave
and the above-mentioned form and obtain that there exist a, b
for which they are equal to linear order,

e−�2t ≈ e�t [1 − (� + �2)t], (1)

which means that the naturally emitted wave will be perfectly
captured to linear order. Similarly, at an exceptional point with
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three coalescing eigenmodes and eigenfrequencies, the natu-
rally emitted wave will be perfectly captured up to quadratic
order, which implies longer times,

e−�2t ≈ e�t
[
1 − (� + �2)t + 1

2 (� + �2)2t2
]
. (2)

Clearly, this can be generalized to higher-order EPs and any
incoming wave envelope. It is important to note that this is
a transient effect that is valid up to a certain time, which in-
creases with the EP order, as opposed to the cases considered
so far of capturing an eigenstate at a CPA or virtual CPA
or CPA EP [1–3], which are more efficient for long times.
Similarly, one could expand around t1 (for any t1), which
implies that for long pulses the output that originates from
an input at a given time will destructively interfere well with
outputs that originate from inputs at adjacent times. Note that
the polynomial a + bt + · · · does not expand the incoming
waveform but it expands the function obtained by dividing
the incoming wave by e�2t . It is also worth mentioning that
the analysis above applies to any system that is tuned to an
absorbing EP. This greatly enhances the capturing efficiency,
as we show below.

We now present an approach to calculate EPs for our setup,
which reduces a highly complex calculation that is usually
approximate to an eigenvalue equation with a very accurate
solution. Note that the previously derived approach in Ref. [3]
for calculating EPs is not applicable to the more complicated
yet realistic system with the coupler, which we deal with here.
We denote the transmission line impedances by Z1, Z2 and
the characteristic impedance by Z0 and write the reflection
coefficients at the Z0 − Z1, Z1 − Z2, and Z2 − Z3 as follows

r1 = Zk (ω) + Z1 − Z0

Zk (ω) + Z1 + Z0
, r2 = Z2 − Z1

Z2 + Z1
, r3 = ZL(ω) − Z2

ZL(ω) + Z2
,

where we include the coupler and load with the impedances
Zk (ω) and ZL(ω) at the Z0 − Z1 and Z2 − Z3 interfaces and
the transmon load could be modeled by a lumped-element
circuit. By imposing boundary conditions, we obtain the total
reflection coefficient

r = r1(ω)(−r2r3e2ikl2 + 1) + e2ikl1 [r2 − r3(ω)e2ikl2 ]

1 − r2r3e2ikl2 + r1(ω)e2ikl1 [r2 − r3(ω)e2ikl2 ]
,

where l1 and l2 are the lengths of the first and second trans-
mission lines, respectively. Note that transmission lines can
be designed with their impedances different while maintaining
the same propagation speeds [52]. For simplicity, we set the
propagation speed to c.

It has been shown that the conditions for a CPA EP are
r = 0 and dr

dω
= 0, which correspond to g = 0 and dg

dω
= 0,

where g represents the numerator of r [3]. Let us first set g = 0
to obtain r2 as follows:

r2 = r3(ω)e2ikl1 e2ikl2 − r1(ω)

e2ikl1 − r3r1(ω)e2ikl2
. (3)

Since r2 is real we express from Im(r2) = 0 a variable, e.g.,
Z1(ω, r3(ω), l1, l2, Zk (ω)), which we substitute in r2 and the
equation formed by equating the two expressions for r2. From
this equation we find Z2(ω, r3(ω), l1, l2, Zk (ω)) and then sub-

FIG. 3. (a) |r| as a function of Re(ω) and Im(ω) close to the
EP in surface and contour (inset) plots. The scaling is quadratic in
two dimensions (2D) as expected since at the EP |r| ∝ (ω − ωn)2

and the derivative with respect to a complex variable is equal to the
derivatives from all directions, which verifies the calculation of the
virtual CPA EP. (b) Coalescence of the eigenfrequencies that satisfy
the equation r = 0 at the EP when varying l1/l2, where the diamond
denotes the EP.

stitute Z1, Z2, and r2 in dg/dω = 0 to get the EP equation:

dg

dω
(ω, ZL (ω), l1, l2, Zk (ω)) = 0. (4)

Note that the procedure and expressions described above are
expected to apply to most catching port implementations.

For concreteness, we assume a linear response, neglect-
ing the nonlinearity from the weakly coupled transmon and
the coupler, which is justified for the case of a single pho-
ton [53,54]. We also assume that the transmon is decoupled
from the transmission lines during the drive [25], which
implies r3 = −1. We model the coupler as a lumped LC
element (whose inductance is external-flux dependent), with
the impedance given by Zk = j ω2LC−1

ωC . While the practical
schemes to implement the coupler are mostly at the mi-
crowave, recent works suggested an analogy between circuit
elements and optical components [55–61]. In addition, there
was recent progress in optical switching, which can rapidly
switch off the coupler [62,63].

We then proceed to derive the analytic EP equation. To that
end, we express C from Im(r2) = 0, fix ωd = 1/

√
LC = 2π ·

5 GHz, and obtain dg
dω

(ω, l1,l2, Z1) = 0, where we performed
the analytical operations described above computationally, see
Supplemental Material I (SM) [64] for details. To solve the
EP equation semianalytically, we set Z0 = 50 � and choose
Z1 = 100 �. We then obtain Re(ωEP) = 2π · 4.727 GHz,
Im(ωEP) = 2π · 0.834 GHz, l1 = 0.0215 m, l2 = 0.0276 m,
C = 0.3037 pF, Z2 = 60.27 �. To verify the EP calculation,
we plotted |r| as a function of Re(ω) and Im(ω) and present
it in Fig. 3(a). It can be seen that there is a clear quadratic
dependency in two dimensions, for such a dependency on the
real-ω axis see Ref. [49]. In Fig. 3(b) we plot the coalescence
of absorbing eigenfrequencies at the EP, which demonstrates
the remarkable accuracy of our EP calculation.

To quantify the capturing efficiencies of the exponentially
increasing and naturally emitted inputs at the virtual CPA
EP, we calculated the scattered fields. This calculation was
performed using a numerical inverse Fourier transform by def-
inition since our lossless system has real refractive indices and
there are no numerical divergences (topics that were addressed
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FIG. 4. The incoming and scattered fields as functions of time for
the inputs (a) eiωt+�t and (b) teiωt+�t . (c) Fractional scattered energy
for both incoming fields as functions of time. Note that for the EP
parameters, the roundtrip is less than an oscillation period, resulting
in rapid equilibration.

in Ref. [3]). In Fig. 4 we present the scattered fields and
fractional scattered energies

∫ t
0 E2

scdt ′/
∫ t

0 E2
incdt ′ for the ex-

ponentially growing inputs eiωt+�t and teiωt+�t . The fractional
scattered energies are 5 × 10−5 and 10−5, respectively, which
outperform the efficiency of 99.4% reported in Ref. [25],
and exceed the fidelities required for good logic gates and
measurements. In Fig. 5 we present the scattered fields and
fractional scattered energies for the naturally emitted wave
eiωt−�t . Importantly, while the previously reported fractional
scattering for such a wave is 39% [25], in our case, it is
less than 7%, even though our Q factor is larger by a factor
of 2.61, which is expected to reduce the performance (e.g.,
due to a large r1). This fractional scattering can be further

FIG. 5. (a) The incoming and scattered fields as functions of
time for the inputs eiωt−�t , which show that the naturally emitted
wave eiωt−�t is well captured by the CPA EP cavity. (b) Fractional
scattered energy as a function of time. Importantly, the efficiency
for this passive quantum state transfer is >93%. Note that there are
only two or three roundtrips of the incoming wave, and therefore
no significant scattering is expected for the input eiωt−�t during the
second half since there is a delay between the input and output and
the linear approximation holds in the first half.

decreased by reducing the value of r1. To confirm this we
calculated another EP with 1.63 times lower Q factor and
obtained 4.5% fractional energy (see SM II [64] for details).
We can thus extrapolate that using our approach for the same
Q factor a first-order CPA EP will perform approximately
an order of magnitude better. In SM III [64] we also plot
the scattered field for the drive teiωt−�t , which has a rela-
tively large scattered field since the system captures only one
temporal order of the input. As noted, this process does not
require modulation of the coupler, which holds the potential
to enable applications at optical frequencies. Similarly, pho-
ton detection of waveforms emitted in many processes such
as spontaneous emission can be significantly improved. In
SM IV [64] we also analyze a setup of a charged coupled
device (CCD) with two coating layers, which is relevant for
optical frequencies. We tune it to complex and real absorb-
ing EPs, where in the latter case the coupler may not be
required.

In summary, we first showed that an absorbing exceptional
point captures additional temporal orders of any incoming
waveform. We presented a general approach to tune the catch-
ing port to an exceptional point, which is valid in the weak-
and strong-coupling regimes and achieves a very high calcula-
tion accuracy. We then demonstrated that our system performs
significantly better compared with the existing approaches
in terms of catching efficiency. Specifically, we showed
that a virtual CPA EP port can efficiently catch naturally
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emitted decaying waves, potentially opening avenues for ap-
plications at both microwave and optical frequencies, such as
distributed quantum computation [10,11], quantum commu-
nication [12,13], or reading-out neutral atom qubits [21,22].
Though in our simulation the electromagnetic wave is treated
classically, we do not expect decoherence to degrade the effi-
ciency for any nonclassical states encoded in the wave packet
for small photon numbers [53,54]. It is important to note that
having a large decay rate � of the receiving port improves
the performance, even if it increases the distance to complex
ω of the incoming wave, and requires more rapid temporal

control (e.g., switch off) of the incoming wave. It is also
worth mentioning that our approach is valid for lossy systems
as well, which could be important in certain applications.
This general method for enhanced passive wave capture will
apply to other fields of physics such as acoustics and matter
waves [4–7].

We acknowledge fruitful discussions with V. Joshi, M.
Devoret, K. Scheuer, A. Poddubny, and R. Cortinas. This
work was partially supported by a grant from the Simons
Foundation.
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