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We propose a spectral-averaging procedure that enables the computation of bandwidth-integrated local density
of states (LDOS) from a single scattering calculation, and exploit it to investigate the minimum extinction achiev-
able from dipolar sources over nonzero bandwidths in structured media. Structure-agnostic extinction bounds
are derived, providing analytical insights into scaling laws and fundamental design tradeoffs with implications
to bandwidth and material selection. We find that perfect LDOS suppression over a nonzero bandwidth �ω

is impossible. Inspired by limits which predict nontrivial
√

�ω scaling in systems with material dissipation,
we show that the pseudogap edge states of quasi-one-dimensional bullseye gratings can—by simultaneously
minimizing material absorption and radiation—yield arbitrarily close to perfect LDOS suppression in the limit
of vanishing bandwidth.

DOI: 10.1103/PhysRevA.109.L041501

Introduction. The electromagnetic local density of states
(LDOS) plays a central role in many optical phenomena,
including spontaneous [1] and stimulated emission [2], ra-
diating antennas, surface-enhanced Raman scattering [3,4],
photovoltaics [5], radiative heat transfer [6], and frequency
conversion [7]. Canonically, changing the electromagnetic en-
vironment of a quantum emitter alters its rate of spontaneous
emission [8]. Furthermore, suppressing radiative processes
can reduce losses in semiconductor lasers [9] and increase
parametric nonlinearities [7].

In this Letter, we exploit quadratic optimization techniques
to explore the minimum bandwidth-integrated LDOS possible
in structured media. Calculations are vastly simplified by the
fact that LDOS, proportional to the power extracted from a
subwavelength emitter, is a causal linear-response function,
allowing one to relate the bandwidth-integrated response to
the evaluation of the integrand at a single, complex frequency
(plus a non-negative electrostatic contribution); this in turn
makes techniques for computing single-frequency bounds
[10–13] applicable to finite-bandwidth objectives. Prior ap-
plications of such contour-deformation techniques employed
a Lorentzian spectral window that leads to ultraviolet diver-
gences in the vacuum response [11,13,14] and is therefore
only appropriate for studying scattered power; it is unsuit-
able for quantifying Purcell enhancement and particularly
LDOS suppression, which relies on sensitive cancellations
between contributions from the radiating source and scatterer.
To remedy this issue, we introduce an averaging function
that behaves similar to a Lorentzian for small bandwidths,
exhibiting a single pole in the upper half plane while decaying
sufficiently fast so as to avoid such ultraviolet divergences.

*These authors contributed equally to this work.

Our bounds show that no structures can completely sup-
press LDOS for nonzero bandwidths. Intuitively, photonic
crystals (PhCs), which support complete photonic band gaps
and thus inhibit wave propagation at frequencies within the
gap [15], are a natural guess for the optimal suppression
of average LDOS. For lossless materials, PhCs and Bragg
gratings are optimal geometries for any bandwidth but can
only achieve perfect suppression in the limit of vanishing
bandwidth (a single frequency), as they are unable to suppress
radiation at frequencies outside the band gap. Surprisingly,
we find that near-perfect suppression at a single frequency
is also feasible in the presence of material loss. For a PhC
in two dimensions (2D), a minimal index contrast and hence
minimum feature size is needed to open a gap [16–18], which
limits the degree to which absorption can be mitigated, lead-
ing to LDOS saturation. Quasi-1D structures, on the other
hand, such as bullseye gratings supporting pseudogap “slow
light” resonances with low-field concentrations in the dielec-
tric medium, approach zero extinction power in the limit of
vanishing material thicknesses by enabling the gap to close
more slowly than absorption.

Formulation. Working in dimensionless units of ε0 = μ0 =
1, and considering only nonmagnetic materials, the partial
LDOS at frequency ω and position r′ along the direction ê is
directly proportional to the time-averaged power ρ(ω) emitted
by a harmonic dipole source J(r; ω)e−iωt = δ(r − r′)e−iωt ê
[19,20],

ρ(ω) ≡ −1

2
Re

∫
J∗(r; ω) · E(r; ω)dr, (1)

where the electric field generated by the current J satisfies
Maxwell’s equations, ∇ × ∇ × E(r) − ω2[1 + χ (r)]E(r) =
iωJ(r). We can decompose the total field into the field emitted
by the source in vacuum and that emitted by the induced

2469-9926/2024/109(4)/L041501(6) L041501-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9039-0203
https://orcid.org/0000-0001-9287-9515
https://orcid.org/0000-0002-4278-8196
https://orcid.org/0000-0003-3575-5166
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.L041501&domain=pdf&date_stamp=2024-04-11
https://doi.org/10.1103/PhysRevA.109.L041501


BENJAMIN STREKHA et al. PHYSICAL REVIEW A 109, L041501 (2024)

polarization P within the scatterer,

E(r) = Evac(r) + Esca(r)

= i

ω

∫
G0(r, r′) · J(r′)dr′ +

∫
G0(r, r′) · P(r′)dr′,

(2)

where G0(r, r′) is the vacuum dyadic Green’s function, sat-
isfying ∇ × ∇ × G0 − ω2G0 = ω2I. This in turn leads to a
decomposition of ρ into vacuum and scatterer contributions

ρ(ω) = ρvac(ω) + ρsca(ω), (3)

where ρvac and ρsca are defined by substituting Evac and Esca

into Eq. (1), respectively. In particular,

ρsca(ω) = −1

2
Im ω

∫
Evac(r′) · P(r′)dr′ ≡ Im s(ω), (4)

where we use the irrelevancy of the global phase of the source
to set J∗(r; ω) = J(r; ω), and reciprocity G0 = GT

0 .

Since real sources emit light over a nonzero bandwidth, a
key figure of merit is the bandwidth average of ρ(ω). Prior
works focused on LDOS enhancement have investigated an
averaging of the form

∫ ∞
−∞ ρ(ω)L(ω)dω, where

L(ω) ≡ �ω/π

(ω − ω0)2 + �ω2
(5)

is a Lorentzian window function centered at ω0 with band-
width �ω [11,13,14]. L(ω) not only captures the spectral
line shape of many practical sources [14,21] but also offers a
great computational advantage: Complex contour integration
simplifies the frequency integral to a single evaluation ρ(ω̃) at
the complex pole ω̃ of L(ω) in the upper half plane, plus an
electrostatic contribution. However, there is one conceptual
challenge: In the ultraviolet limit ω → ∞, ρvac(ω) grows too
quickly (∝|ω| in 2D and ∝ω2 in 3D) causing the Lorentzian
spectral average to diverge [14]. When investigating LDOS
maximization, ρvac and ρsca have the same sign, and this
vacuum divergence can be ignored as a constant background
(precluding, however, determination of the Purcell factor and
related LDOS enhancement figures of merit [8,19]). Minimiz-
ing extinction, however, requires engineering ρsca to cancel
ρvac, making this procedure prohibitive.

To remedy this issue, we define an alternate bandwidth
average over the positive frequencies as follows,

〈Q〉 ≡ lim
ε→0+

∫ ∞

ε

Q(ω)W (ω)dω (6)

= lim
ε→0+

∫ ∞

ε

Q(ω)

[
L(ω) − L(−ω)

ωN

]
dω, (7)

with the normalization factor N ≡ ω0

ω2
0+�ω2 chosen so that∫ ∞

0 W (ω)dω = 1, with W (ω) non-negative and finite for
ω ∈ (0,∞). Figure 1 shows this window function which in
most practical settings with �ω � ω0 resembles a Lorentzian
distribution peaked around ω0; for large bandwidths �ω �
ω0 the spectrum becomes increasingly asymmetric about ω0

and gives greater weight to quasistatic contributions. Since
W (ω) ∼ ω−4 as ω → ∞, 〈ρvac〉 is a convergent quantity that
can be evaluated directly.

Δω

FIG. 1. Spectral window function W (ω) used in calculating av-
erage LDOS around a “center” frequency ω0, Eq. (6), for various
values of the bandwidth parameter �ω = {1, 1

5 , 1
10 , 1

20 , 1
50 }ω0 (top to

bottom). For ease of visualization, W (ω) is normalized by W (ω0).

Since the Fourier components of real fields at negative
frequencies are conjugates of the counterparts at positive
frequencies [22], ρsca(ω) = ρsca(−ω) and Eq. (7) can be un-
folded into a principal value integral over all positive and
negative frequencies:

〈ρsca〉 = Im P.V.
∫ ∞

−∞

L(ω)

ωN s(ω)dω. (8)

This can be evaluated using contour integration, yielding

〈ρsca〉 = Im

[
s(ω̃)

ω̃N

]
+ 2ω0�ω

|ω̃|4N α, (9)

where the first term is from the residue at ω̃ ≡ ω0 + i�ω, the
pole of L(ω) in the upper half plane; the second term is a
non-negative electrostatic contribution due to the singularity
at ω = 0: here, α = 1

2 Re p0 · E0, where p0 is a unit amplitude
electrostatic dipole and E0 the scattered field it generates,
previously seen in Refs. [11,13] but with a different prefactor
due to our use of W (ω) instead of L(ω).

The average of allowed modifications in the emission
rate around the “center” frequency ω0 (e.g., the spontaneous
emission of an atom of corresponding transition energy) is
constrained in all cases by this simple “weighted-sum rule.”
In the limit of zero bandwidth, only the first term in Eq. (9) is
in general nonzero, which represents single-frequency LDOS:
〈ρ〉 = ρvac(ω0) + ρsca(ω0). As the bandwidth goes to infinity,
Im[ s(ω̃)

ω̃N ] decays rapidly and the second term can be shown
(under proper normalization of the window function) to yield
an all-frequency sum rule

∫ ∞
0 ρsca(ω)dω = πα/2 [11].

Since we are seeking lower bounds on 〈ρ〉, the non-
negative electrostatic term α can be relaxed to zero; for
transverse magnetic (TM) sources, it is exactly zero [23,24].
We then adapt the method laid out in Ref. [13] for computing
upper bounds on LDOS maximization to instead obtain lower
bounds on the remaining term Im[ s(ω̃)

ω̃N ]: Given a prespeci-
fied design region V and an isotropic material susceptibility
χ (ω̃), the bounds enforce conservation of power (optical the-
orem [19,25]) constraints and apply to any structure that fits
within V .

Note that the averaging procedure requires χ (ω̃) to be
evaluated at a complex frequency, with causality and loss
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FIG. 2. (a) and (b) Lower bounds on bandwidth-integrated LDOS. All curves and markers refer to TM line sources located at the center of
L × L design domains with (a) χ = 4 for L/λ0 = {1, 1.59, 10} (blue, orange, green) and (b) χ = 4 + 0.1i for L/λ0 = {5, 10, 80} (blue, orange,
green) where λ0 = 2πc/ω0. Solid lines are lower bounds for finite L × L design domains, while dotted lines pertain to infinite systems, L/λ0 →
∞, computed via Eq. (11). All results are normalized by the corresponding bandwidth-integrated LDOS in vacuum. Markers correspond to
structures discovered via topology optimization, where circles (◦) are over rotationally symmetric structures, stars (�) are for truncated 2Dd
square-lattice photonic crystals of period λ0, and crosses (×) allow for arbitrary structuring. Insets of (a) and (b): Representative inverse
designs corresponding to �ω/ω0 = 10−7 for a 10λ0 × 10λ0 design region. (c) and (e) Representative spectra for L/λ0 � 1 [orange for 10λ0 ×
10λ0 crystal, blue for 80λ0 × 80λ0 bullseye grating (not shown)]; optimizing over cylindrical geometries, the lossless and dispersionless case
converges to a bullseye geometry of radial periodicity a = λ0

4
1+√

1+χ√
1+χ

and ring thickness h = λ0
4
√

1+χ
(a radial quarter-wave stack) supporting a

pseudogap centered around ω0 [see (c)]; the lossy case converges to a radial chirped grating of initial spacing a = λ0/2 and tapered thickness,
causing the net absorbed power to come arbitrarily close to zero at ω0 as L → ∞, in the vicinity of which the system exhibits square-root
dispersion [see (e)]. (d) and (f) The bandwidth-averaged LDOS of optimized bullseye structures within a design region of diameter L. The
lossless (lossy) case demonstrates exponential (inverse square root) approach as a function of L to a positive saturation value due to a nonzero
bandwidth �ω/ω0 = 10−7.

requiring that Im[χ (ω̃)] > 0 be positive [26]. While a com-
plex susceptibility at real frequencies indicates material
loss/gain [19], at complex frequencies dispersion and loss
both contribute to Im[χ ], with Im[χ (ω̃)] → Im[χ (ω0)] as
�ω → 0. Thus, Im[χ (ω̃)] = 0 may be interpreted as a trans-
parent and nondispersive medium.

Results. While below we focus on 2D TM sources, similar
observations hold for either 2D transverse electric (TE) or 3D
dipole sources, albeit with the electrostatic α term in those set-
tings becoming relevant (and increasingly important at larger
bandwidths). As detailed in Ref. [13] and the Supplemental
Material (SM) [27], bounds on Im[ s(ω̃)

ω̃N ] can be computed
numerically for an arbitrary domain, here chosen as a square
volume V = L × L. For an infinite design space (L → ∞), all
operators and fields can be expanded in a spectral basis con-
forming to the symmetry of the domain—vector cylindrical
waves [23,24]—yielding the following semianalytic expres-
sion for the bound,

〈ρsca〉L→∞ � − 1

8πN

∫ ∞

0
dk k

[
Im

(
eiθ

χ∗ + e−iθ ω̃2

k2 − ω̃2

)]−1

(10)

×Re

[∣∣∣∣ ω̃

k2 − ω̃2

∣∣∣∣
2

− e−iθ ω̃2

(k2 − ω̃2)2

]
, (11)

where maximization over the parameter θ can be computed
numerically (see SM [27]). To lowest order in the bandwidth,
for Im[χ ] � 0, this integral can be further simplified to yield
the following asymptotic expression:

〈ρ〉L→∞
〈ρvac〉 �

√
2Im[χ ]

|χ |2
�ω

ω0
+ O(�ω). (12)

Thus, the bounds suggest near-perfect suppression is possible
as �ω → 0 even for Im[χ ] > 0 (consistent with zero material
and radiative losses). Below, we present a physical mechanism
that confirms this finding.

Figure 2 shows lower bounds on 〈ρ〉 obtained for finite
L × L design regions along with achievable objective val-
ues discovered via inverse design. As the design footprint
increases, inverse designs approach the limit given by the
semianalytical result of Eq. (11), corresponding to L → ∞.
For L/λ0 = 10, where λ0 = 2πc/ω0 is the wavelength of the
center frequency, the structures discovered via inverse design
are within a factor of 2 of the infinite-space bounds for small
Im[χ (ω̃)], but loosen by a couple of orders of magnitude
for smaller (L/λ0 � 4) device footprints (partly due to the
associated bound relaxations). As seen, emission suppression
for a TM source can be achieved through wave interference
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generated by either Bragg grating arrangements of dielec-
tric material or 2D PhCs, resulting in either pseudogaps or
complete band gaps centered around ω0, respectively. For
lossless materials, a 2D PhC of band-gap size ωg centered
at ω0 has ρphc(ω) = 0 for |ω − ω0| � ωg/2, yielding an aver-
age 〈ρ〉 = ∫ ∞

0 ρphc(ω)W (ω)dω ∝ �ω as �ω → 0, consistent
with the scaling of the bounds seen in Fig. 2(a).

In systems with material loss, Im[χ (ω0)] > 0, one might
expect LDOS to saturate to a small but positive value ρ(ω0) >

0 due to absorption by the structure. However, as confirmed
in Fig. 2, the bounds of Eq. (12) suggest that complete
emission cancellation is possible, with perfect suppression
approached under vanishing bandwidth, �ω → 0, albeit at a
reduced

√
�ω rate compared to the lossless case. Topology

optimization discovers radial tapers (chirped gratings) with an
initial spacing a = λ0/2 but increasing thickness, producing
an LDOS spectrum ρtaper(ω) ≈ √|ω − ω0| [Fig. 2(b) inset]
that meets at a nonzero plateau around ω0 due to absorp-
tion in the medium. Such structures initially yield 〈ρ〉 =∫ ∞

0 ρtaper(ω)W (ω)dω ∝ √
�ω but absorption ultimately leads

to nonzero saturation as �ω → 0.
Since losses in the limit of vanishing bandwidth are ul-

timately dominated by absorption (as opposed to radiation),
reducing the amount of material is crucial to LDOS mini-
mization. However, material reduction is in conflict with the
demands of nonzero bandwidth operation: In 2D PhCs, a min-
imum index contrast is required for the formation of a band
gap [16,17], which implies a minimum fill fraction for any
given index contrast (from perturbation theory). This is not an
issue for effective 1D structures capable of supporting band
gaps for any nonzero index contrast [16], which intuitively
explains the performance advantage of bullseye gratings over
2D PhCs in Fig. 2. To further understand the engineering and
performance of such quasi-1D designs, we exploit transfer
matrices to study a 1D cavity design schema consisting of
a central vacuum layer of thickness d (containing the source
at the center) sandwiched by two identical half-infinite PhC
claddings of susceptibility χ , unit cell size a, and material
layer thickness h. The electric field within such a cavity, |z| �
d/2, has the form E (z; ω) = E0eiω|z| + E0reiωd e−iω|z|, where
r is the reflection coefficient of the cladding, and the power
output of the dipole is given by

ρ(ω)

ρvac(ω)
= 1 − |r|2

|1 − reiωd |2 . (13)

Perfect emission suppression can thus occur if 1 − |r|2 → 0
and the denominator does not also approach zero.

One plausible strategy to achieve this condition is to de-
sign the PhC claddings such that ω0 is at the band-gap
center ωm, and to take h → 0. For lossless χ , first-order
perturbation theory gives the size of the band gap ωg

as ωg/ωm ≈ Re[χ ] h
a ∝ h for h/a � 1 [16]. An oscillat-

ing dipolar source with frequency within the band gap
will excite localized evanescent states with an exponen-
tial field decay constant γ ∝ √

ωg/κ where κ is the band
curvature at the band edge. This state does not radi-
ate and without material loss, the LDOS is strictly zero.
With loss, the absorbed power Pabs = ∫

Im[χ (z)]|E (z)|2dz ∝
Im[χ ] h

a

∫
e−2γ zdz ∝ h/γ (strictly speaking, material loss also

increases γ , so this proportionality is an upper bound).
Since ωg ∝ h, it may appear that Pabs ∝ h/γ ∝ √

h as h → 0;
however, the curvature at the band edge κ ∝ 1/h also depends
on h so ultimately Pabs approaches a constant as h → 0. In
other words, exponential decay on its own is insufficient since
the decay length diverges as the band gap closes, which limits
the minimum absorption possible. Correspondingly, as h →
0, the reflectivity at the midgap approaches

r(ωm) ≈ iχ

Im[χ ] + √
(χ + i Im[χ ]) Re[χ ]

, (14)

with |r| < 1 given Im[χ ] > 0, i.e., no perfect suppression.
A strategy that does produce near-perfect suppression is to

engineer the cladding so ω0 is not at the midgap but at the
upper band-gap edge; this can be achieved by setting the unit
cell size a = λ0/2 and taking h → 0. In this case

r(ω0) ≈ −1 + ω0h√
3

− iω0h, h → 0, (15)

independent of the material susceptibility, and we have 1 −
|r|2 → 0; to avoid division by zero in Eq. (13), one may
choose d �= (n + 1

2 )λ0 where n is a non-negative integer, in
which case ρ(ω0)/ρvac(ω0) ≈ π√

3
sec2( ω0d

2 ) h
λ0

as h → 0. In-
tuitively, in the limit of h → 0, ω0 approaches the band edge
from above and the electric field profile approaches a standing
wave (a slow light mode [28]) with field nodes inside material
layers. Thus, by making the thicknesses of the PhC mirrors
arbitrarily thin, one can ensure arbitrarily small field overlap
with the lossy medium and thus vanishing absorption. This is
reminiscent of techniques for linear optical control of light
in coherent tunable absorbers [29–31], with the difference
that the standing wave is not the result of interfering multiple
incident waves but is a mode of the PhC itself.

The bandwidth-integrated LDOS for the 1D structure can
also be computed and is given by 〈ρ〉

〈ρvac〉 = Re 1+reiω̃d

1−reiω̃d
1

ω̃N . For

�ω � ω0 and d �≈ (n + 1
2 )λ0, we find that the optimal slow

light cavity design has thickness h = λ0
3

√
�ω
ω0β

, which yields

〈ρ〉
〈ρvac〉 = π

cos2
(

ω0d
2

) Re

⎡
⎣

√
1

3
+ iβχ∗

2π2|χ |2

⎤
⎦ 3

√
�ω

ω0β
, (16)

where β = 2π2Im[χ]
3 [−1 +

√
9 + 8( Re[χ]

Im[χ] )2], proving the exis-

tence of structures exhibiting 3
√

�ω scaling, with

〈ρ〉
〈ρvac〉 =

3

√
π

2
√

3|Re[χ]|
�ω
ω0

cos2
(

ω0d
2

)
(

1 +
√

2

3

Im[χ ]

|Re[χ ]| + O(Im[χ ]2)

)
,

(17)

in agreement with inverse designs (before saturation due to
finite device footprint) in Fig. 2. It remains an open question
whether the bounds are loose or there exist structures with
infinitely long tapering that may indeed achieve the faster√

�ω scaling of Eq. (11).
The proposed strategy for absorption cancellation is only

useful in situations where extinction is dominated by absorp-
tion. In particular, achieving near-perfect suppression also
relies on an infinite device size where radiative losses can be
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d

ω0

h

ωm

... ...

......

FIG. 3. LDOS spectrum, Eq. (13), of a 1D PhC cavity with
period a = λ0/2, material layers of thickness h = a/50, and a central
air gap of thickness d = {a/3, a − h} (solid blue, dashed orange,
respectively) with loss Im[χ (ω)] = 0.1. The dotted green curve
shows a square-root fit around ω0. The inset is a representative
intensity profile |E (z; ω0)|2 at the band edge, exhibiting minima in
the material layers (vertical black bars), as well as |E (z; ωm )|2 at the
pseudomidgap, exhibiting minima adjacent to the material layers for
d = a/3.

eliminated: As seen in Fig. 2, ρ(ω0) → 0 only as L → ∞. In
the lossless case, ρ(ω0) ∝ exp(−L/ξ ) for some length scale ξ

consistent with exponential localization [32–34]. In the lossy
case, inverse design converges on adiabatic tapers consisting
of rings of vanishing thickness in the vicinity of the emitter,
leading to ρ(ω0) ∝ 1/

√
L, with tapering appearing to reduce

reflections from the finite interface.
Finally, note that d �≈ (n + 1

2 )λ0 can be understood as an
off-resonance condition for the cavity formed by these slow
light mirrors: If d is chosen to be on resonance, then instead of
suppression the system produces enhancement. Specifically,
setting d = a − h ≈ λ0

2 forms a complete PhC and leads to

ρ(ω0)/ρvac(ω0) ≈
√

3
π

( h
λ0

)−1 as h → 0, enhancing LDOS near
ω0 (Fig. 3, dashed orange curve). For a fixed material layer
thickness h, such structures initially yield 1/

√
�ω divergence

in 〈ρ〉 but absorption ultimately leads to finite saturation as

�ω → 0. Optimizing the material thickness at each �ω pro-
duces an analogous diverging integrated LDOS enhancement
〈ρ〉

〈ρvac〉 ∝ 1/
3
√

�ω as �ω → 0. This confirms the previously
unexplained prediction in Ref. [13] that diverging extinction
power is possible in the presence of loss without having to
come arbitrarily close to field singularities at infinitely sharp
tips [19,35–38]. (Note that Ref. [13] finds a weaker 1/

4
√

�ω

bandwidth dependence as the emitter is adjacent to rather than
surrounded by the structured medium.) In practice, achievable
extinction powers will ultimately rest on fabrication and ma-
terial tolerances. Fortunately, the predicted cube root scaling
of the optimal material thickness on the bandwidth suggests
fabricable feature sizes for moderate bandwidths: considering
�ω/ω0 = 10−3 and silicon, with χ = 11.8 + 3.6 × 10−3i at
near-infrared λ0 = 1 µm wavelengths, the optimal thickness
h ≈ 15 nm, within reach of electron-beam lithography. Lastly,
we remark once more that while we focused here on TM fields
(applicable to thin-film slab geometries), similar conclusions
follow for 2D TE and 3D fields. Likewise, while we focused
on dielectrics, the formalism is applicable to metals as well.
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[7] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W.
Rodriguez, Cavity-enhanced second-harmonic generation via
nonlinear-overlap optimization, Optica 3, 233 (2016).

[8] E. M. Purcell, Spontaneous emission probabilities at radio fre-
quencies, in Confined Electrons and Photons: New Physics and
Applications (Springer, Berlin, 1995), p. 839.

[9] E. Yablonovitch, Inhibited spontaneous emission in solid-state
physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).

[10] S. Molesky, P. Chao, W. Jin, and A. W Rodriguez, Global
T operator bounds on electromagnetic scattering: Upper
bounds on far-field cross sections, Phys. Rev. Res. 2, 033172
(2020).

[11] H. Shim, L. Fan, S. G. Johnson, and O. D. Miller, Fundamental
limits to near-field optical response over any bandwidth, Phys.
Rev. X 9, 011043 (2019).

L041501-5

https://doi.org/10.1086/150207
https://doi.org/10.1364/OE.18.016327
https://doi.org/10.1364/OE.27.035189
https://doi.org/10.1021/acs.jpcc.1c08445
https://doi.org/10.1364/OE.22.000A99
https://doi.org/10.1021/acsphotonics.8b01031
https://doi.org/10.1364/OPTICA.3.000233
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevResearch.2.033172
https://doi.org/10.1103/PhysRevX.9.011043


BENJAMIN STREKHA et al. PHYSICAL REVIEW A 109, L041501 (2024)

[12] P. Chao, B. Strekha, R. K. Defo, S. Molesky, and A. W.
Rodriguez, Physical limits in electromagnetism, Nat. Rev. Phys.
4, 543 (2022).

[13] P. Chao, R. K. Defo, S. Molesky, and A. Rodriguez, Maximum
electromagnetic local density of states via material structuring,
Nanophotonics 12, 549 (2023).

[14] X. Liang and S. G. Johnson, Formulation for scalable optimiza-
tion of microcavities via the frequency-averaged local density
of states, Opt. Express 21, 30812 (2013).

[15] E. Yablonovitch, Photonic crystals, J. Mod. Opt. 41, 173
(1994).

[16] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.
(Princeton University Press, Princeton, NJ, 2008).

[17] M. C. Rechtsman and S. Torquato, Method for obtaining upper
bounds on photonic band gaps, Phys. Rev. B 80, 155126 (2009).

[18] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M.
Sigalas, Photonic band gaps in three dimensions: New layer-by-
layer periodic structures, Solid State Commun. 89, 413 (1994).

[19] L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed.
(Cambridge University Press, Cambridge, U.K., 2012).

[20] K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, Defini-
tion and measurement of the local density of electromagnetic
states close to an interface, Phys. Rev. B 68, 245405 (2003).

[21] W. R. Hindmarsh and D. ter Haar, Atomic Spectra: The Com-
monwealth and International Library: Selected Readings in
Physics (Elsevier Science, Amsterdam, 2014).

[22] L. D. Landau, E. M. Lifšic, L. P. Pitaevskii, and L. D. Landau,
Electrodynamics of Continuous Media, Course of Theoretical
Physics, 2nd ed. (Elsevier/Butterworth-Heinemann, Amster-
dam/Heidelberg, 2009), Vol. 8.

[23] W. C. Chew, Waves and Fields in Inhomogeneous Media (Wiley,
New York, 1999), Vol. 16.

[24] L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electro-
magnetic Waves: Theories and Applications (Wiley, New York,
2004), Vol. 27.

[25] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[26] H. Hashemi, C.-W. Qiu, A. P. McCauley, J. D. Joannopoulos,
and S. G. Johnson, Diameter-bandwidth product limitation of
isolated-object cloaking, Phys. Rev. A 86, 013804 (2012).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.109.L041501 for further details on the
derivations of the presented semianalytic expressions, asymp-
totics, and numerical results.

[28] T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465
(2008).

[29] J. Zhang, K. F. MacDonald, and N. I. Zheludev, Controlling
light-with-light without nonlinearity, Light: Sci. Appl. 1, e18
(2012).

[30] N. Gutman, A. A. Sukhorukov, Y. D. Chong, and C. M. de
Sterke, Coherent perfect absorption and reflection in slow-light
waveguides, Opt. Lett. 38, 4970 (2013).

[31] D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong,
Coherent perfect absorbers: Linear control of light with light,
Nat. Rev. Mater. 2, 17064 (2017).

[32] M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A.
Lagendijk, and W. L. Vos, Inhibited spontaneous emission of
quantum dots observed in a 3D photonic band gap, Phys. Rev.
Lett. 107, 193903 (2011).

[33] A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M.
de Sterke, and N. A. Nicorovici, Two-dimensional Green’s
function and local density of states in photonic crystals con-
sisting of a finite number of cylinders of infinite length, Phys.
Rev. E 63, 046612 (2001).

[34] E. Yeganegi, A. Lagendijk, A. P. Mosk, and W. L. Vos, Local
density of optical states in the band gap of a finite one-
dimensional photonic crystal, Phys. Rev. B 89, 045123 (2014).

[35] M. Idemen, Confluent tip singularity of the electromagnetic
field at the apex of a material cone, Wave Motion 38, 251
(2003).

[36] B. V. Budaev and D. B. Bogy, On the electromagnetic field
singularities near the vertex of a dielectric wedge, Radio Sci.
42, RS6S08 (2007).

[37] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino,
and W. E. Moerner, Improving the mismatch between light and
nanoscale objects with gold bowtie nanoantennas, Phys. Rev.
Lett. 94, 017402 (2005).

[38] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and
W. E. Moerner, Large single-molecule fluorescence enhance-
ments produced by a bowtie nanoantenna, Nat. Photon. 3, 654
(2009).

L041501-6

https://doi.org/10.1038/s42254-022-00468-w
https://doi.org/10.1515/nanoph-2022-0600
https://doi.org/10.1364/OE.21.030812
https://doi.org/10.1080/09500349414550261
https://doi.org/10.1103/PhysRevB.80.155126
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevA.86.013804
http://link.aps.org/supplemental/10.1103/PhysRevA.109.L041501
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/lsa.2012.18
https://doi.org/10.1364/OL.38.004970
https://doi.org/10.1038/natrevmats.2017.64
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevE.63.046612
https://doi.org/10.1103/PhysRevB.89.045123
https://doi.org/10.1016/S0165-2125(03)00059-3
https://doi.org/10.1029/2006RS003578
https://doi.org/10.1103/PhysRevLett.94.017402
https://doi.org/10.1038/nphoton.2009.187

