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Interaction quenches in nonzero-temperature fermionic condensates
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We revisit the study of amplitude oscillations in a pair condensate of fermions after an interaction quench, and
generalize it to nonzero temperature. For small variations of the order parameter, we show that the energy transfer
during the quench determines both the asymptotic pseudoequilibrated value of the order parameter and the
magnitude of the oscillations, after multiplication by, respectively, the static response of the order parameter and
spectral weight of the pair-breaking threshold. Since the energy transferred to the condensed pairs decreases with
temperature as the superfluid contact, the oscillations eventually disappear at the critical temperature. For deeper
quenches, we generalize the regimes of persistent oscillations and monotonic decay to nonzero temperatures,
and explain how they become more abrupt and are more easily entered at high temperatures when the ratio
of the initial to final gap either diverges, when quenching toward the normal phase, or tends to zero, when
quenching toward the superfluid phase. Our results are directly relevant for existing and future experiments on
the nonequilibrium evolution of Fermi superfluids near the phase transition.
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Introduction. Fermionic condensates, unlike most of their
bosonic counterparts, are made of composite objects, known
as Cooper pairs. This internal structure implies more degrees
of freedom beyond the usual sound waves found in bosonic
systems [1]. At the individual level, single Cooper pairs can
break into two unpaired fermions, which leads to a gapped
spectrum of fermionic quasiparticles [2]. At the many-body
level, whole wave packets of quasiparticles can be excited, for
example, by tuning the interparticle interaction strength [3].
This causes the amplitude of the order parameter to oscillate
in a characteristic way [4], with a frequency and damping
determined by the spectral distribution of the wave packet.

In contrast with the typical picture of amplitude or Higgs
modes relying on a single complex bosonic field [5] in a Mex-
ican hat potential, amplitude oscillations in a fermionic con-
densate are an intrinsically many-body effect, emerging only
from the superposition of individual quasiparticle vibrations
[4,6–8]. Still, for spatially dependent and weak perturbations
of the interaction strength, the evolution of the excited quasi-
particle wave packet can be summarized by a single pole of the
order-parameter response function, such that the oscillations
can be interpreted as a damped collective mode [9,10].

The case of homogeneous (zero-momentum) perturbations
is more subtle: one can no longer identify a pole in the order-
parameter response function, such that the collective mode
disappears. There remains, however, a non-Lorentzian singu-
larity in the spectral function, right at the threshold energy
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for breaking Cooper pairs. In the time domain, this converts
into the famous power-law decaying oscillations of the order
parameter [4]. The density of quasiparticle states available
around the pair-breaking threshold changes depending on
whether the gapped fermionic spectrum has its minimum
at zero or nonzero momentum, corresponding, respectively,
to the Bose-Einstein condensate (BEC) or Bardeen-Cooper-
Schrieffer (BCS) regimes. The lower density of states in the
BEC regime makes the damping exponent increase to 3/2,
compared to 1/2 in the BCS regime [7].

This remarkable collective effect has recently been the cen-
ter of much experimental attention with ultracold fermionic
atoms [11,12], superconductors [13], and cavity QED sim-
ulators [14,15]. The observations in those experiments have
revealed some important limits in our theoretical understand-
ing of the oscillations. Previous studies [7,8] have been
restricted to zero temperature, whereas experimentally the
oscillations have been recorded from low temperature to the
vicinity of the phase transition. Additionally, important ob-
servables [12], such as the magnitude of the oscillations or
the asymptotic limit of the order parameter, have not yet been
fully understood.

Here, we show that oscillations of the order parameter for
small interaction quenches in the regime of linear response
have the same form at zero and nonzero temperature: the
power-law damping retains the same exponent, and the os-
cillation frequency 2� simply decreases with temperature as
the gap �. However, the presence of thermally excited quasi-
particles before the quench limits the variation of the order
parameter, which, in contrast to the zero-temperature case, no
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longer tends at long time to its value expected following an
adiabatic change of the interaction strength. We interpret the
magnitude of the oscillations as the product of the spectral
weight of the pair-breaking threshold with the energy change
during the quench, itself related to the change in the scattering
length through the contact.

We also argue that nonlinear effects increase near the criti-
cal temperature since the ratio of the initial to final equilibrium
gap �i/� f either diverges or tends to zero when the depth of
the interaction quench is kept fixed. The regime of power-law
damped oscillations is thus hidden by the nonlinear regimes of
persistent oscillations (regime III of Ref. [8]) or overdamped
evolution (regime I), and the evolution in those two regimes
becomes more abrupt compared to low temperatures.

Model. We consider a balanced two-component Fermi gas
trapped in a three-dimensional volume V at temperature T =
1/β (we use h̄ = kB = 1 throughout this Letter), with contact
interactions between ↑ and ↓ components. The density ρ of
the gas fixes the Fermi wave number kF = (3π2ρ)1/3, and
the bare coupling constant g is renormalized [16] to yield
the appropriate s-wave scattering length a. In the mean-field
approximation, the homogeneous system evolves according to
the time-dependent BCS equations [17]

i∂t ck = (k2/m)ck + �(1 − 2nk ), (1)

i∂t nk = �c∗
k − �∗ck, (2)

where m is the atomic mass, nk = 〈â†
k↑âk↑〉 = 〈â†

k↓âk↓〉 the
momentum distribution, ck = 〈â−k↓âk↑〉 the pairing wave
function, and � = g

∫
d3k ck/(2π )3 the order parameter.

Before the quench, the gas is at equilibrium at temper-
ature Ti, chemical potential μi, and scattering length ai.
This corresponds to the static solution of the BCS equa-
tions, that is, the usual BCS thermal state with nk,i = {1 −
[1 − 2F (εk )]ξk/εk}/2 and ck,i = −[1 − 2F (εk )]�i/2εk, in
terms of the free-fermion and BCS dispersion relations, ξk =
k2/2m − μi and εk =

√
ξ 2

k + �2
i , and Fermi-Dirac distribu-

tion F (ε) = 1/(1 + eε/Ti ). The abrupt variation of a from ai to
a f leaves the microscopic variables unchanged [nk(t = 0+) =
nk,i and similarly for ck] but affects the coupling constant
through

1

g f
− 1

gi
=

(
1

a f
− 1

ai

)
m

4π
, (3)

obtained via the Lippmann-Schwinger equation [18,19].
The initial kink in the order parameter then follows from

the gap equation

�(t = 0+) − �i = g f − gi

gi
�i. (4)

This kink corresponds to an energy variation that is propor-
tional to the volumic contact C [20–25]:

ε ≡ E f − Ei

V
= − C

4πm

(
1

a f
− 1

ai

)
. (5)

While Eq. (5) is valid in general, the BCS approximation of
the contact is CBCS = m2�2. This expression vanishes at the
critical temperature as BCS theory approximates the normal
phase by an ideal gas, and restricts the contact to the contribu-

tion of the condensed pairs. For the general description of the
gas, this is a rather crude approximation, in particular, near the
critical temperature, but for the amplitude oscillations studied
in this Letter, the superfluid contact is precisely the important
quantity.1

Linear response. Shallow quenches are generally charac-
terized by a small injected energy per particle, although this
rule is brought into question later in this Letter. In this weakly
excited regime, one can linearize the BCS system Eqs. (1)
and (2) around the initial equilibrium state and solve using
the Laplace transformation [7,26] (see Appendix A). With the
initial condition (4), the phase of the order parameter is not
excited, and only its modulus evolves as

�(t ) = �∞ − ε

∫ +∞

ωth

2dω

π

cos ωt

ω
Im f (ω + i0+). (6)

This expression is composed of an asymptotic value �∞
reached when t → +∞, and a time-dependent, oscillatory
part, written as the frequency integral of the order-parameter
modulus-modulus response function

f (z) = − M11(z)

�i
[
M11(z)M22(z) − M2

12(z)
] (7)

over the pair-breaking continuum, bounded only from below
by the threshold ωth. The linear response matrix Mi j ap-
pearing here is given by integrals over the internal degrees
of freedom of the Cooper pairs M11/z2 = M22/(z2 − 4�2

i ) =∫
d3k

(2π )3
1−2F (εk )

2εk (z2−4ε2
k )

and M12 = M21 = ∫
d3k

(2π )3
zξk[1−2F (εk )]

εk (z2−4ε2
k )

.

Quite intuitively, the final shift in �, obtained when the
oscillations have decayed, is the product of the transferred
energy and static modulus response f (ω = 0):

�∞ = �i + f (0)ε. (8)

We identify here an important effect of temperature on the
postquench dynamics. When Ti = 0, the asymptotic gap �∞
matches the equilibrium gap � f that would be reached after
an adiabatic change of the scattering length from ai to a f . This
is due to the static modulus response saturating the injected
energy f (0) = d�/dε. This is no longer true for Ti > 0, and
instead

|�∞ − �i| < |� f − �i|. (9)

In other words, the order parameter remains closer to its
initial value than it would under an adiabatic transformation,
as a part of the injected energy is absorbed by the ther-
mally excited quasiparticles. In the limit T → Tc, the ratio
(�∞ − �i )/(� f − �i ) (shown in Fig. 1) vanishes as �(T )
in the BCS regime (μ > 0) and as �2(T ) in the BEC regime.
In the BCS limit (1/kF a → −∞), where time-dependent BCS
theory is most reliable, we extracted the limiting behavior (for

1While the inverse coupling constants 1/gi and 1/gf diverge lin-
early with a momentum cutoff, their difference does not, according
to Eq. (3). Thus, the injected energy [Eq. (5)] remains finite and
nonzero, while the discontinuity in � [Eq. (4)] vanishes. This is
a consequence of the formally divergent interaction energy Eint =
�2/g according to BCS theory.
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FIG. 1. The asymptotic change of the order parameter �∞ − �i

measured relative to the change � f − �i under an adiabatic evolu-
tion, as a function of temperature at unitarity, in the BCS and BEC
limits. At T = 0, �∞ = � f despite the nonadiabatic nature of the
quench. Near Tc, we indicate the asymptotic behavior in the BCS
limit, Eq. (10). (Inset) The change �∞ − �i (in units of εF ) relative
to the change in the scattering length 1/kF a f − 1/kF ai throughout
the BEC-BCS crossover at T = 0 (red curve) and T → Tc (black
curve). In both cases, a maximum is reached near unitarity. Note that
the change remains nonzero (in units of εF ) on the BCS side (μ > 0),
which means the linear approximation breaks down (if the quench
depth 1/kF a f − 1/kF ai is kept independent of temperature).

details, see Ref. [27] and the Supplemental Material [28]):

�∞ − �i

� f − �i



1/kF a→−∞
T →Tc

0.8312
√

1 − T/Tc. (10)

Note that at both zero and nonzero initial temperature, the
state reached asymptotically is not an equilibrium state and,
in particular, does not have a well-defined temperature. To
describe equilibration, the integrable BCS system should be
replaced by an ergodic model.

Equation (8) provides a criterion for the validity of the lin-
ear regime. For the deviation of the order parameter to remain
small, it is necessary and sufficient that |�∞ − �i| � �i.
At low temperatures, �i is comparable to the Fermi energy
εF , so this condition simply translates into |a f − ai| � ai,
which is not a particularly demanding constraint. Near Tc,
however, (�∞ − �i )/(1/kF a f − 1/kF ai ) is comparable to εF

(as shown by the black curve in Fig. 1) and hence much larger
than �i, which scales as

√
Tc − Ti. This leads to a stricter

condition |a f − ai| � ai�i/εF for the validity of the linear
approximation. In other words, the quench depth |1 − ai/a f |
has to be scaled as �i/εF ≈ √

1 − Ti/Tc in order for the
time evolution of � to remain in the linear regime. This
explains why the linear approximation is always violated for
Ti sufficiently close to Tc in an experimental scenario such as
Ref. [12], where the quench depth is fixed independently of
temperature.

We now turn to the time evolution described by
Eq. (6). The continuity of �(t ) at t = 0 is guaranteed by
the sum rule of the modulus-modulus response function:∫ −∞+i0+

+∞+i0+ dz f (z)/2iπz = 0. Then, at long times, the nature
of the oscillations of �(t ) depends on the behavior of f in

FIG. 2. The spectral weight of the pair-breaking edge fth [relative
to the static response f (0)] as a function of the interaction strength
at T = 0 (solid curves) and T → Tc (dashed curves). In red is the
BCS regime where the edge exhibits a square root divergence [upper
line of Eq. (11)], and in blue is the BEC regime where instead this
edge is a square root cancellation [lower line of Eq. (11)]. Note that
the boundary between those two regimes (shaded area) shifts from
1/kF a 
 0.55 at T = 0 to 1/kF a 
 0.68 at T → Tc.

the vicinity of the pair-breaking threshold ωth. In the BCS
regime (μi > 0) and irrespective of the temperature, the re-
sponse function has a square root divergence near ωth = 2�i.
Conversely, in the BEC regime (μi < 0) at all temperatures,
the response function is canceled as a square root near the
dimer-breaking threshold:

Im f (ω + i0+) ∼
ω→ωth

⎧⎨
⎩

fth

√
ωth

ω−ωth
when μi > 0

fth

√
ω−ωth

ωth
when μi < 0

. (11)

After the frequency integration, these behaviours near ωth

translate into power-law attenuated oscillations of �(t ):

�(t ) − �∞
�i − �∞

∼
t→+∞

⎧⎨
⎩

fth

f (0)

√
4

πωtht cos
(
ωtht + π

4

)
, μi > 0

fth

f (0)
1√

πω3
tht3

cos
(
ωtht + 3π

4

)
, μi < 0

.

(12)
The spectral weight fth which characterizes the asymptotic
behaviors at the threshold is shown in Fig. 2 as a function of
the interaction regime. Comparing the zero-temperature case
(solid curves) to the vicinity of Tc (dashed curves), we observe
a suppression of the relative weight fth/ f (0) on the BEC side
but an increase on the BCS side. While this increase a priori
favors the observability of the power-law damped oscillations,
we note that fth/ f (0) characterizes the amplitude of the signal
only when scaled to the asymptotic change in �, see Eq. (12).
Scaled to the adiabatic variation � f − �i, the amplitude will
vanish as �∞ − �i as shown by Fig. 1.

Quenches in the nonlinear regime. The fact that the nonlin-
earity increases with temperature (as long as the quench depth
|ai − a f | is fixed) suggests extending our study to the nonlin-
ear regime. We do this numerically by simulating Eqs. (1) and
(2) on a fine momentum grid.

We recall the zero-temperature quench diagram of Ref. [8]
(see Fig. 5 therein) that identified three qualitatively dis-
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(a) (b)

(c)

FIG. 3. (a) The onset of regime III (persistent oscillations) in a quench from 1/(kF ai ) = −0.18 to 1/(kF a f ) = 0 when raising the initial
temperature. (b) Effect of temperature on the persistent oscillations for a quench from 1/(kF ai ) = −2 to 1/(kF a f ) = 0 belonging to regime III
at all temperatures. To make the curves oscillate in phase, we introduce here the frequency ωpo = 0.6(2� f ) at zero temperature and 0.13(2� f )
at T = 0.88Tc,i. (c) Illustration of the quenches studied in (a) and (b) in the [1/(kF a), T/TF ] plot.

tinct regimes in the (�i, � f ) plane. In regime I, there
are no oscillations as �(t ) is overdamped; this regime
includes, in particular, the limit �i � � f . Regime II is
the regime of power-law damped oscillations, which con-
tains the linear regime on the diagonal �i 
 � f . Finally, a
regime III of undamped oscillations was identified around the
limit � f � �i.

We show now how regimes I and III generalize to nonzero
temperatures and tend to hide regime II when the initial state
approaches the critical point (Ti → Tc,i) and the quench depth
is fixed. For an initial state in the regime |T − Tc| � Tc, that
is, �i � εF , quenches in the direction of the superfluid phase
end up in � f ≈ εF � �i, and therefore in regime III of per-
sistent oscillations. Conversely, quenches toward the normal
phase yield �i � � f = 0, and thus fall into the overdamped
regime I.

In Fig. 3, we illustrate the onset of regime III at high
temperatures when quenching in the direction of the super-
fluid phase. Going from the BCS side (ai < 0) to unitarity,
with a quench depth sufficiently low to be in regime II at
T = 0, as in Fig. 3(a), we notice an increase of the oscillation
amplitude (scaled to �∞), which precedes the appearance
of persistent oscillations at temperatures close to Tc,i. The
persistent oscillations also become much more abrupt than at
low temperature, as illustrated by Fig. 3(b), where the quench
depth is chosen to be in regime III already at T = 0.

In Fig. 4, we consider the opposite case of quenches to-
ward the normal phase with 1/ai = 0 and a f on the BCS
side. As shown in Fig. 4(a), quenches sufficiently shallow
to be in regime II at low temperatures undergo a gradual
decrease of their asymptotic limit and oscillation frequency

(both determined by �∞) with temperature, up to a point
where the order parameter tends to zero and no longer oscil-
lates. In Fig. 4(a), this occurs at T/Tc = 0.999, corresponding
to � f /�i ∼ 2 × 10−4. This threshold of regime I is reached
at a lower temperature for larger quench depths. When the
quench is sufficiently deep to be in regime I already at T = 0,
it remains in this regime at all temperatures, and the decay of
�(t ) becomes more abrupt, as illustrated by Fig. 4(b).

Conclusion. We have studied amplitude oscillations in
a nonzero temperature fermionic condensate within time-
dependent BCS theory. We showed how the magnitude of
the oscillations and the asymptotic change of the order pa-
rameter �∞ − �i are both proportional to the BCS contact.
The oscillations thus fade out as this contact vanishes at the
phase transition. While the oscillation frequency is predicted
to vanish at Tc as � on the BCS side, it stays nonzero on the
BEC side and coincides with the molecular binding energy
Emol = 2|μ|. The fact that time-dependent BCS theory does
not correctly describe the normal phase of the interacting gas
limits our description of what happens outside the superfluid
phase in particular during dynamical phase transitions [29].
Going beyond BCS theory, one can also imagine that am-
plitude oscillations would occur in the pseudogap regime at
(twice) the pseudogap frequency, rather than at the BCS gap
frequency; amplitude oscillations could therefore persist in the
normal phase [30,31].
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(a) (b)

(c)

FIG. 4. (a) The onset of regime I (overdamped evolution) when raising the initial temperature of quenches from 1/(kF ai ) = 0 to 1/(kF a f ) =
−0.18. (b) The decay of �(t ) becomes more abrupt at higher temperature, as shown here for a quench from 1/(kF ai ) = 0 to 1/(kF a f ) = −1.5
belonging to regime I at all temperatures. (c) Illustration of the quenches studied in (a) and (b) in the [1/(kF a), T/TF ] plot.
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Appendix A: Linearization of the Hartree-Fock-Bogoliubov
equations. We give here additional details on our analytical
solution of the BCS equations (1) and (2) in the regime of
weak perturbations, leading to Eq. (6). We linearize the evolu-
tion around the initial equilibrium state, rather than around
a virtual final equilibrium state as in Ref. [7]. At nonzero
temperature, where �(t ) never reaches � f , this is far more
intuitive.

We introduce the fluctuations δck = ck − ck,i, δnk = nk −
nk,i, and δ� = � − �i and linearize the BCS system (1) and
(2):

i∂tδck = 2ξkδck − 2�iδnk + ξk

εk
F (εk )δ� (A1)

i∂tδnk = −�i(δck − δc∗
k ) − �i

2εk
F (εk )(δ� − δ�∗). (A2)

Although the quench scenario corresponds to δnk = δck = 0
at t = 0−, we make so far no assumption on the initial state.
In this more general case, the fluctuation of � has a time-
dependent part caused by the δc, and a constant part δ�0 =
g f −gi

V

∑
k ck,i caused by the quench on g:

δ�(t ) = gi

V

∑
k

δck(t ) + δ�0. (A3)

In the spirit of Ref. [32], we now move to the quasiparticle
basis

α+
k = ξk

εk
(δck + δc∗

k ) − 2�i

εk
δnk

α−
k = δck − δc∗

k (A4)

mk =2ξk

εk
δnk + �i

εk
(δck + δc∗

k ) (A5)

so as to diagonalize the individual parts of Eqs. (A1) and (A2):

i∂tα
+
k = 2εkα

−
k + F (εk )(δ� − δ�∗) (A6)

i∂tα
−
k = 2εkα

+
k + ξk

εk
F (εk )(δ� + δ�∗) (A7)

i∂t mk = 0. (A8)

In the quasiparticle basis, the fluctuations of � take the form

δ� = δ�0 + gi

2

∫
d3k

(2π )3

[
α−

k + ξk

εk
α+

k + �i

εk
mk

]
. (A9)

To solve the time-dependent system, we introduce the Laplace
transform of the variables

A±
k (ω) =

∫ +∞

0−
eiωtα±

k (t )dt, (A10)

and similarly, for Mk(ω) and δ±(ω), the transform of mk(t )
and δ�(t ) ± δ�∗(t ), respectively. This allows us to express
the microscopic variables in terms of the fluctuations of �,

A+
k (ω) = iωα+

k (0−) + 2iεkα
−
k (0−)

ω2 − 4ε2
k

+ 2ξkF (εk )

ω2 − 4ε2
k

δ+(ω)

+ ωF (εk )

ω2 − 4ε2
k

δ−(ω) (A11)

A−
k (ω) = iωα−

k (0−) + 2iεkα
+
k (0−)

ω2 − 4ε2
k

+ 2εkF (εk )

ω2 − 4ε2
k

δ−(ω)

+ ωξkF (εk )

εk(ω2 − 4ε2
k )

δ+(ω) (A12)

Mk(ω) = imk(0−)

ω
, (A13)
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and finally to eliminate them using the resummation Eq. (A9),
yielding a closed system of equations on δ±:

M

(
δ − δ∗
δ + δ∗

)
= −i

(
S−
S+

)
. (A14)

The fluctuation matrix M is introduced below Eq. (7) of the
main text, and the sums encoding the initial conditions on �

are given by

S+ =
∫

d3k
(2π )3

[
ωξkα

+
k (0−) + 2ξkεkα

−
k (0−)

εk(ω2 − 4ε2
k )

+ �i

εk

mk(0−)

ω

]

+ δ�0 + δ�∗
0

giω
(A15)

S− =
∫

d3k
(2π )3

ωα−
k (0−) + 2εkα

+
k (0−)

ω2 − 4ε2
k

+ δ�0 − δ�∗
0

giω
.

(A16)

Inverting Eq. (A14) and switching back to the time do-
main [using the inverse Laplace transformation f (t ) =
− 1

2π

∫ −∞+iη
+∞+iη dze−izt F (z)] yields, for the time-evolution of �,

(
δ�(t ) − δ�∗(t )
δ�(t ) + δ�∗(t )

)
= −

∫ −∞+iη

+∞+iη

dz

2iπ
e−izt M−1

(
S−
S+

)
.

(A17)
We now input the initial condition corresponding to the in-
teraction quench, that is [as explained above Eq. (3) of the
main text], α±

k = mk = 0, and δ�0 = εgi/�i, which converts
into S− = 0 and S+ = 2ε/ω�i. Finally, we derive Eq. (6) of
the main text by closing the integration contour in Eq. (A17)
around the branch cuts of M (see Fig. 1 in Ref. [7]), and
by remarking that the modulus-modulus response function
[Eq. (7)] is related to M by f (z) = −(M−1)22/�i.

Appendix B: Adiabatic derivative of �. To form the ratio
(�∞ − �i )/(� f − �i ) plotted in Fig. 1 we must evaluate the
adiabatic derivative

d(1/kF a)

d�
= 1/kF a f − 1/kF ai

� f − �i
. (B1)

We do so by deriving the gap equation

1

g
= −

∫
d3k

(2π )3

1 − 2F (εk )

2εk
(B2)

with respect to � at fixed density ρ = k3
F /3π2 and tempera-

ture T . This yields

d(1/kF a)

d�

∣∣∣∣
ρ,T

= 2π

mkF �2

[
I0 − J0 − dμ

d�
(I1 − J1)

]
, (B3)

where we have introduced the integrals

In =
∫

d3k

(2π )3

�3−nξ n
k

ε3
k

[1 − 2F (εk )], (B4)

Jn =
∫

d3k

(2π )3

�3−nξ n
k

ε2
k

[−2F ′(εk )]. (B5)

The derivative of the chemical potential is evaluated by deriv-
ing the number equation ρ = ∫

d3k
(2π )3 [1 − ξkF (εk )/εk]:

dμ

d�

∣∣∣∣
ρ,T

= −I1 + J1

I0 + J2
. (B6)

The variation of � during the quench is given by (8) of the
main text, which we rewrite as

�∞ − �i

1/kF a f − 1/kF ai
= −m�2

i kF

4π
f (0), (B7)

where f (0) = −2I0/(I2
0 + I2

1 ) in terms of the integrals in-
troduced in Eq. (B4). Combining this with the adiabatic
derivative Eq. (B3), we obtain

�∞ − �i

� f − �i
= �∞ − �i

1/kF a f − 1/kF ai

d(1/kF a)

d�

= I0

I2
0 + I2

1

[
I0 − J0 + (I1 − J1)2

I0 + J2

]

→
1/kF ai→−∞

1 − J0

I0
. (B8)
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