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Caustic effects on high-order harmonic generation in graphene
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We employ two-band density-matrix equations and time-dependent density-functional theory to calculate
high-order harmonic generation (HHG) in graphene under femtosecond laser irradiation. Our investigation
uncovers a striking harmonic enhancement structure (HES) in the HHG spectrum. We find that the HES is
associated with the bunching of multiple interband electron-hole recombination trajectories, in analogy to the
focusing behavior of the light rays known as caustics. In contrast to the atom situation, where the caustic effects
are confined to a narrow energy regime around the HHG cutoff energy, for graphene, the caustic effects can
dominate the entire interband harmonic generation regime. The magnitude of enhancement is significant and
can be estimated to be on the order of ∼N2/3, with N representing the harmonic order, according to catastrophe
theory.

DOI: 10.1103/PhysRevA.109.L041102

Introduction. The propagation of light can exhibit inter-
esting behavior termed as a caustic phenomenon, in which
multiple light rays converge and give rise to bright focusing
features [1–3]. In analogy to light propagation, generalized
caustic effects occur when multiple particle trajectories con-
verge, resulting in a caustic singularity and the subsequent
enhancement of physical phenomena [4–9]. The magnitude
of enhancement can be approximately predicted by catastro-
phe theory, which associates each caustic singularity with a
specific topological type of catastrophe [3]. Caustic phenom-
ena have been observed in diverse fields, including acoustics
[10], radio propagation [11], as well as high-order harmonic
generation (HHG) [12–15].

Attosecond pulses [16] have sparked considerable re-
search interest in HHG across various media, including gases
[17–21], crystalline solids [22–26], and two-dimensional (2D)
materials [27–31]. When an atom is irradiated by a femtosec-
ond laser, caustic effects occur at the cutoff energy of HHG. At
this critical point, two branches of electron trajectories, com-
monly referred to as “short” and “long” trajectories, converge
and contribute to the same harmonic energy, resulting in an
enhancement in the spectrum magnitude [12,32]. Recently,
the discussions of caustic effects on HHG are extended to
solid material such as MgO [14]. It was claimed that the Van
Hove singularities in the energy-band structure might result
in caustic singularity. However, the enhanced HHG spectra
observed in the experiment apparently deviate from the loca-
tions of the Van Hove singularities [14]. On the other hand,
theoretical investigations of the caustic effects on the HHG of
a one-dimensional (1D) periodic potential model have been
made [15]. Similar to atomic scenarios, it is found that caustic
enhancement emerges only at a cutoff regime determined by
the maximum electron-hole recombination energy [15].
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In this Letter, we present the theoretical exploration of
caustic effects in the HHG of the celebrated 2D material,
graphene. Graphene features a periodic hexagonal lattice with
two carbon atoms per unit cell and shows many interesting
phenomena in the external fields [33–36]. We attempt to in-
vestigate the caustic effects of the HHG in graphene irradiated
by a linearly polarized midinfrared (MIR) laser. In contrast to
the atom scenario, we find that caustic effects might dominate
the entire interband harmonic generation regime. In particu-
lar, the location of the HHG enhancement peak is found to
correspond to the zero determinant of the Hessian matrix of
the semiclassical action of the electron-hole recombination
trajectories and has nothing to do with the Van Hove energy-
band singularities.

Harmonic enhancement structure (HES). We perform
calculations of HHG using the two-band density-matrix
equations (TBDMEs) as well as the time-dependent density-
functional theory (TDDFT). Here, the vector potential of the
MIR laser field is A(t ) = A0 sin2(ω0t/2n) sin(ω0t )e, where
n = 3, and A0 denotes the amplitude. The frequency of the
MIR laser field, denoted as ω0, corresponds to a wavelength
of λ = 5500 nm. The unit vector e indicates the direction
along the �-M axis of graphene. Throughout this Letter,
atomic units are employed unless otherwise specified. The
harmonic spectra shown in Fig. 1 are simulated for a laser
intensity of 8 × 1011 W/cm2. Both spectra exhibit a region
of enhanced intensity, termed as the harmonic enhancement
structure (HES) in the following (see the region marked by
the blue dashed rectangle). For comparison, the Van Hove
singularities (M and � points of graphene) are indicated in
Fig. 1 as vertical dotted lines. We find that the energy of the
observed HES does not match the energies of the Van Hove
singularities, similar to the observations in Ref. [14].

Electron-hole recombination trajectory. To unveil the
underlying mechanisms behind the HES in graphene, we in-
vestigate the electron-hole recombination trajectories in the
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FIG. 1. The harmonic spectra calculated by (a) TBDMEs and
(b) TDDFT with a laser intensity of 8 × 1011 W/cm2 and a wave-
length of 5500 nm. In (a) and (b), the obvious HES are marked by
blue dashed rectangles, and the HES peak corresponding to the local
harmonic maximum intensity is indicated by red arrows at ω∗ = 0.34
in (a) and ω∗ = 0.31 in (b). The upper and lower boundaries of
the blue dashed rectangle marked by Ipeak and I0 correspond to the
harmonic energy of the HES peak and the background harmonic
energy away from the HES, respectively. The vertical dotted lines
label the energy difference between the c and v bands at the Van
Hove singularities (M and � points of graphene).

framework of TBDMEs [37]. Within the strong-field approx-
imation formulation [38,39], the intraband currents become
negligible and the interband currents play a dominant role in
the harmonic generation. The Fourier transform of the total
current can be expressed as

j(ω) ∼
∫

BZ
dK0x

∫
BZ

dK0y

∫ ∞

−∞
dt

∫ t

−∞
dt ′g(K0x, K0y, t, t ′)

× e−iS(K0x,K0y,t,t ′,ω) + c.c., (1)

where K0 = (K0x, K0y) represents the lattice momentum
within the first Brillouin zone (BZ). S(K0x, K0y, t, t ′, ω) =∫ t

t ′ εcv (Kx(τ ), K0y)dτ − ωt denotes the semiclassical action,
with Kx(t ) = K0x + A(t ). The term εcv (k) represents the en-
ergy difference between the c and v bands for the lattice
momentum k. g(K0x, K0y, t ′, t ) constitutes a slowly varying
prefactor [37].

In contrast to other solid materials such as MgO and
ZnO [14,39], graphene is unique, due to Dirac cones. Conse-
quently, when employing the stationary phase approximation
for all four integral variables in Eq. (1), a constraint arises
where the electrons in the valence band can only be excited
to the conduction band through the Dirac points. However, we
find that, under this constraint, the excited electrons have no
possibility to recombine with the hole. This differs from the
situation of Ref. [35], where the laser field is applied along the
�-K direction and the electron-hole recombination can occur
for the electrons originating at the Dirac points.

To overcome this difficulty, we apply the stationary phase
approximation only to three integral variables of K0x, K0y, t ,

FIG. 2. For the harmonic frequency of ω = 0.22 a.u. [(a) and (c)]
and ω = 0.33 a.u. [(b) and (d)], the red dots in (a) and (b) mark the
saddle-point momenta Kst

0 calculated using Eqs. (2). The harmonic
intensities H (K0, ω) calculated by TBDMEs are shown in (c) and
(d). The different subpatterns marked by A, B, and C correspond to
recombination times in the different half cycles of the short pulse
as shown in Figs. 3(a) and 3(b). (For details, see Sec. IV of the
Supplemental Material [37].)

and obtain following three saddle-point equations,∫ tr

t ′
∇Kst

x (τ )εcv
(
Kst

x (τ ), Kst
0y

)
dτ = 0, (2a)

∫ tr

t ′
∇Kst

0y
εcv

(
Kst

x (τ ), Kst
0y

)
dτ = 0, (2b)

εcv
(
Kst

x (tr ), Kst
0y

) − ω = 0, (2c)

in which t ′ and tr represent the birth and recombination times
of the electron-hole pair, respectively. Kst

0 = (Kst
0x, Kst

0y) is
the saddle-point momentum and Kst

x (t ) = Kst
0x + A(t ). Equa-

tions (2a) and (2b) represent the conditions for perfect
electron-hole recombination trajectories [35], in contrast to
imperfect recollisions [40–43]. The harmonic energy ω emit-
ted during electron-hole pair recombination is given by
Eq. (2c).

In practical numerical calculations, we choose initial mo-
menta randomly distributed in the first BZ, and calculate the
corresponding electron-hole trajectories that satisfy the three
constraints in Eqs. (2). We illustrate the momenta of these
saddle-point trajectories Kst

0 as red dots, corresponding to
recombination energies of ω = 0.22 and 0.33 a.u. in Figs. 2(a)
and 2(b), respectively. Here, we consider the real-valued so-
lutions of the five variables of t ′, tr , Kst

0x, Kst
0y, ω. Because

of the three constraints in Eqs. (2), one can express ω as a
function of (Kst

0x, Kst
0y). Therefore, for a selected frequency ω

and the specific branch, the saddle-point trajectories form a
1D manifold in the momentum plane of (Kst

0x, Kst
0y).

In Figs. 2(c) and 2(d), we also present the harmonic intensi-
ties H (K0, ω) calculated by TBDMEs [37]. Upon comparing
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FIG. 3. (a), (b) The time-frequency distributions corresponding to the harmonic spectra shown in Fig. 1. In (a) and (b), the dark cyan points
represent the recombination trajectories calculated by Eqs. (2). The subpatterns marked by A, B, and C correspond to the recombination times
in the different half cycles of the short laser pulse. (c) The recombination energy ω as a function of the saddle-point momenta Kst

0 = (Kst
0x, Kst

0y )
for branch A. The black curves show the relationship between the recombination energy ω and Kst

0x for specific Kst
0y. In (a)–(c), the blue

dots indicate 1D caustic trajectories with ∂ω/∂Kst
0x = 0, and the red points ω∗ indicate 2D caustic trajectories with ∂ω/∂Kst

0x = ∂ω/∂Kst
0y = 0

corresponding to branch A.

Fig. 2(a) with Fig. 2(c) and Fig. 2(b) with Fig. 2(d), one can
see that the distribution of the saddle-point trajectories quali-
tatively aligns with the region where the harmonic intensities
calculated by TBDMEs are relatively larger. This fact suggests
that these perfect electron-hole recombination trajectories can
cover the essential solutions.

Caustic effects on HHG. The harmonic intensity, denoted
by H (ω), can be evaluated using H (ω) = ω2| j(ω)|2, where
j(ω) from Eq. (1) can be deduced according to the saddle-
point trajectories that satisfy Eqs. (2):

j(ω) ∼
∫ ∞

−∞
dt ′ ∑

Kst
0x,K

st
0y,tr

g
(
Kst

0x, Kst
0y, tr, t ′)

× e−iS(Kst
0x,K

st
0y,tr ,t

′,ω)√∣∣det
[
S′′(Kst

0x, Kst
0y, tr, t ′, ω

)]∣∣ + c.c. (3)

Here, S′′(Kst
0x, Kst

0y, tr, t ′, ω) is the Hessian matrix of the semi-
classical action S(Kst

0x, Kst
0y, tr, t ′, ω) with respect to Kst

0x, Kst
0y,

and tr , whose determinant is

det[S′′] = ∂ω

∂Kst
0x

H1 − ∂ω

∂Kst
0y

H2 − E (tr )
∂ω

∂Kst
0x

H3. (4)

Here, H1, H2, and H3 are the second-order determinants (for
the calculation details, refer to the Supplemental Material
[37]).

We can then obtain the following caustic equations,

∂ω/∂Kst
0x = 0, ∂ω/∂Kst

0y = 0, (5)

which determine a specific saddle-point trajectory that orig-
inates from the lattice momenta of (Kst∗

0x , Kst∗
0y ) and finally

emits a harmonic photon with energy ω∗. The caustic equa-
tions also imply that the multiple trajectories originating from
the vicinity of (Kst∗

0x , Kst∗
0y ) tend to emit harmonic photons

with the same energy ω∗, demonstrating a kind of 2D caustic
phenomenon. One can find the 2D caustic phenomenon is

caused by the two-dimensional nature of the reciprocal space
plane of graphene and is closely related to the concrete form of
the energy-band structure. According to Eqs. (3) and (4), we
also find that, for this specific trajectory, the determinant of the
Hessian matrix S′′(Kst∗

0x , Kst∗
0y , t∗

r , t ′∗, ω∗) becomes zero and
the integrand diverges into infinity. According to our extensive
numerical explorations, we find that the corresponding inte-
gral might be also divergent. This caustic singularity indicates
a potentially significant amplification in the magnitude of the
harmonics with the energy around ω∗.

Using the field parameters in Fig. 1 and with the help of
saddle-point equations (2), we have solved the 2D caustic
equations (5) and obtained ω∗ = 0.35 a.u., which is qual-
itatively in agreement with the location of the HES peak
illustrated in Fig. 1. Notice the caustic singularity is different
from the Van Hove singularities [14] of the energy bands that
are determined by |∇kεcv (k)| = 0 and correspond to ω = 0.2
and 0.6 a.u. as shown in Fig. 1. In our case, the excited
electrons are accelerated along the �-M direction and the
trajectories do not pass by the Van Hove singularities (see
Fig. 2). In contrast, when the laser field is along the �-K
direction as discussed in Ref. [35], the electron trajectories
might pass by the Van Hove singularities. In this situation, the
caustic singularities predicted by Eq. (5) could be consistent
with the Van Hove singularities.

In Figs. 3(a) and 3(b), we present the time-frequency distri-
butions corresponding to the harmonic spectra of Fig. 1 [37].
The results obtained from both TBDMEs and TDDFT demon-
strate qualitative agreement. The red points correspond to the
2D caustic trajectory. One can find that the red point approx-
imatively locates at the brightest spot of the time-frequency
distributions.

Corresponding to the recombination trajectories (the dark
cyan points) shown in Figs. 3(a) and 3(b), we illustrate the
recombination energy ω as a function of the saddle-point
momenta Kst

0 = (Kst
0x, Kst

0y) in Fig. 3(c). In one-dimensional
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FIG. 4. (a) The gray area corresponds to the region where the
interband currents dominate the harmonic generation according to
TBDMEs (for details, see Sec. V of the Supplemental Material [37]).
The HES regions are indicated by bars, which represent the energy
intervals associated with the harmonic enhancement structure, corre-
sponding to the energy regions of the blue dashed rectangles shown
in Fig. 1. The pink area indicates the energy regions of 1D caustic
singularities where ∂ω/∂Kst

0x = 0. (b) The black squares and blue
stars show the energy of HES peaks as a function of A0, calculated by
TBDMEs and TDDFT. At specific A0 = 0.58 a.u., they correspond
to local harmonic peaks denoted by the red arrows in Fig. 1. The
red lines are the predictions of caustic equation (5). (c) The black
square and blue star show the amplification of harmonic intensity at
the HES peaks, calculated by Ipeak/I0. The red line is the prediction
of the catastrophe theory.

sections for a fixed Kst
0y, the blue dots indicate the local

maxima of the recombination energies where ∂ω/∂Kst
0x = 0,

termed as 1D caustic singularity. These trajectories are also
marked by the blue dots in Figs. 3(a) and 3(b). Additional
calculations reveal that for these trajectories, the determinant
of S′′(Kst

0x, Kst
0y, tr, t ′, ω) is not zero but is relatively smaller,

indicating a relatively higher-order harmonic enhancement
due to the 1D caustic effect. It is noteworthy that the blue dots
in Figs. 3(a) and 3(b) are approximately situated at the central
area of the highlighted time-frequency distributions, suggest-
ing that these particular trajectories may play a dominant role
in the generation of interband harmonics [37].

Laser parameter-dependent caustic effects. We perform
extensive calculations of HHG across a broad range of laser
intensities. The HES information as a function of amplitude
A0 of the laser vector potential is shown in Fig. 4. Figure 4(a)
shows that the energy regions of 1D caustic singularities are
qualitatively consistent with those of HES simulated by both
TBDMEs and TDDFT. In contrast to the atom situation where
caustic effects are limited to a narrow regime around the
cutoff energy of HHG [12,37], the caustics in graphene will
lead to a broad energy region of HHG enhancement and even
dominate the entire interband harmonic generation process.

Figure 4(b) clearly demonstrates that the energy of HES peaks
can be approximately predicted by the caustic equation (5).
It is seen that the peak energy tends to saturate to 0.35 a.u.
with an increase of A0. This saturation energy is related to the
maximum gap that the electron-hole pair can achieve during
the excursion in the energy band. Note that the saturation of
the cutoff frequency with the laser intensity is not related
to the energy gap at the � point (i.e., 0.6 a.u.), because the
electron-hole recombination trajectories do not pass by the �

point (see Fig. 2).
The enhancement amplitude of the HES peaks can be

roughly estimated by the catastrophe theory Ipeak/I0 ≈ N2δ

[3,12]. Here, Ipeak represents the intensity of the 2D caustic
peak at ω∗. I0 denotes the background harmonic intensity
away from the caustic region. For specific A0 = 0.58 a.u.,
they have been labeled in Fig. 1. N is the harmonic order
corresponding to the caustic peak. The focusing index δ de-
pends on the types of catastrophes, which are determined by
the number of the control parameters and state variables. In
the case of atoms excited by a linearly polarized monochro-
matic laser field, the harmonic amplitude can be evaluated by
E (ω) = ∫

EXUV(ti, ω)e−iS0 (ti,ω)dti [12], in which EXUV(ti, ω)
is the amplitude of the quantum trajectory associated with the
ionization time ti. In the semiclassical action S0(ti, ω), there
is only one control parameter (ω) and one state variable (ti),
corresponding to the fold catastrophe with δ = 1/6 [12].

In our case of graphene irradiated by a linearly polar-
ized MIR laser field, according to the saddle-point equa-
tions (2), there are two state variables of Kst

0x, and Kst
0y.

Then, the harmonic amplitude can be evaluated as E (ω) =∫∫
dKst

0xdKst
0yg(Kst

0x, Kst
0y, ω)e−iS(Kst

0x,K
st
0y,ω). The types of catas-

trophes turn out to be elliptic umbilic or hyperbolic umbilic
with the focusing index δ = 1/3. If we assume that Kst

0y is
fixed, the above 2D caustic singularity will degenerate to be a
1D caustic singularity corresponding to the fold catastrophe
with focusing index δ = 1/6, in analogy to atomic or 1D
periodic potential cases [12,15].

Figure 4(c) indicates that catastrophe theory can roughly
predict the tendency of the amplification of the HES peaks
with increasing A0, while some deviations remain, especially
for large A0. The TDDFT simulation includes multiple energy
bands rather than the two energy bands of TBDMEs. Intu-
itively, one would expect that the catastrophe theory agrees
better with the TBDMEs simulations than with the TDDFT
simulations, while in our situation, the TDDFT results are
closer to the prediction of the catastrophe theory. This might
be an interesting issue for further study.

Summary. Our numerical simulations with both TBDMEs
and TDDFT uncover a striking HES for the HHG in graphene,
which we attribute to caustic effects. We have developed an
electron-hole recombination trajectory theory and then de-
duced the caustic equations that can approximately predict
the location of the HES peak as well as the width of HES. It
is shown that catastrophe theory can roughly predict the ten-
dency of the amplification of the HES peaks with increasing
field strength. Our findings can be experimentally observed
utilizing contemporary techniques [44], and our theoretical
analysis is related to other 2D materials as well as bulk
materials.
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