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Nonlinear interference in the interaction of intense laser pulses with atoms profoundly affects the photoelec-
tron momentum distribution (PMD). We theoretically show that the interference pattern in the PMD arises from
the interaction of electrons with the fundamental frequencies concealed within the pulse. Nonlinear interference
also imprints distinctive features on the ionization spectrum, providing valuable information about electron
dynamics and phase relationships within the laser pulse. Additionally, the augmentation of optical cycles induces
a distinct confinement in the PMD.
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Strong-field ionization is a crucial initial stage in many
experiments that aim to uncover and manipulate the intricate
dynamics of atoms, molecules, and solids [1,2]. Accurate
interpretation of the outcomes of these experiments requires
a deep understanding of nonlinear ionization dynamics in the
presence of intense optical fields. The electrons ionized by a
strong field can trigger a diverse range of dynamic processes
in strong-field and attosecond physics [3,4].

Recent developments in high-intensity laser technology
have enabled the generation and manipulation of pulses
with just a few optical cycles [5,6]. Such pulses can be
characterized by a vector potential of the form A(t ) =

A0√
1+ε2 f (t )[cos(ω0t + φcep)ex + ε� sin(ω0t + φcep)ey], where

A0 represents the magnitude, f (t ) denotes the envelope, ω0

signifies the frequency, φcep refers to the carrier-envelope
phase (CEP), and corresponding ellipticity and helicity are
given by ε and �, respectively. On a significantly short tem-
poral scale [7,8], these pulses possess the capability to study
molecular and atomic dynamics. The ionization process in-
duced by these pulses is exquisitely sensitive to the pulse
shape and the CEP, highlighting the importance of precise
control over these parameters [9–11].

Few-cycle pulses are the superposition of plane wave
beams with slightly different phases [12]. Each plane
wave contributes a specific phase and amplitude to the overall
pulse by interfering constructively and destructively to create
the desired temporal shape. This unique temporal structure
has a profound impact on the photoelectron momentum dis-
tribution (PMD) in strong-field laser-matter interactions. The
PMD, which describes the probability of finding electrons
with various momenta, becomes highly sensitive to the precise
characteristics of the few-cycle pulse, as seen from Fig. 1.

The strong-field approximation (SFA), also known as
Keldysh-Faisal-Reiss (KFR) theory, is the most widely used
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analytical approach for describing the process of strong-
field ionization of atoms, ions, and molecules [13–15]. There
are various formulations of the SFA, but they all share the
common notion that electron continuum states can be ap-
proximated by plane Volkov waves. These waves are exact
solutions to the Schrödinger equation when a free electron
interacts with a plane electromagnetic wave [16].

In this Letter, we report that nonlinear interference in-
fluences the PMD and ionization spectrum of atoms under
intense laser pulses. Using the strong-field approximation,
we demonstrate that these complex interference patterns
arise from the electron’s interaction with the laser pulse’s
fundamental frequencies, leaving distinctive marks on the
ionization spectrum. An increase in optical cycles leads to
PMD confinement perpendicular to the laser’s propagation
direction. This work offers insights into intense laser-atom
interactions and electron dynamics, relevant to phenomena
such as above-threshold ionization, recollision processes, high
harmonic generation, and nonsequential double ionization
[17–20].

We begin by considering the evolution of an electron from
an initial hydrogenlike 1s state, defined by the wave function
|�0(t )〉, to a continuum state |�p(t )〉. In the SFA, the transi-
tion amplitude for such a direct electron ionization reads

T (0)
p = (−i)

∫ τp

0
dτ 〈χp(τ )|V̂le(r, τ )|�0(τ )〉. (1)

The laser field is activated at a certain starting time t0 =
0, and its pulse duration is denoted by τp. We describe
the electric field E (τ ) emitted by the laser through a vec-
tor potential A(τ ), which satisfies the condition A(τ ) = 0
for τ < 0 and τ > τp. The continuum state is approximated
by the Volkov state through the time evolution operator as
〈�p(t )| Ûle(t, τ ) ≈ 〈χp(τ )|. In the velocity gauge, the laser-
electron interaction potential is given by V̂le(r, τ ) = A(τ ) ·
p + 1

2 A2(τ ).
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FIG. 1. Schematic representation of strong-field ionization. The
left panel illustrates the momentum distribution of a photoelectron
emitted from an atom (A) ionized by a strong laser pulse, with the
colored lines indicating the frequencies within the pulse imprinted
on the momentum distribution along the propagation direction. The
right panel displays the momentum distribution of photoelectrons in
the laser polarization direction. In both scenarios, the laser pulse is
characterized by the vector potential A(t ), depicted as the solid black
line.

We now simplify the initial wave function to a hydro-
genlike 1s state and substitute it with a modified ionization
potential, denoted by Ip. The initial wave function can then

be expressed as |�0(t )〉 = |�0〉 eι̇Ipt = 2I
3
2

p√
π

e−
√

2Ipreι̇Ipt . So far,
we have described the basic framework of the transition am-
plitude in the strong-field limit. We now turn our attention
to the Volkov state, specifically focusing on the characteris-
tics of the laser pulse. The Volkov state is a solution to the
Schrödinger equation that comprises a plane wave component
and a phase that describes the classical action of a free elec-
tron. In the velocity gauge, the Volkov state can be represented
as χp(r, τ ) = e−ι̇Sv (τ )

(2π )3/2 eι̇p·r, where Sv (τ ) = 1
2

∫ τ dt ′[p + A(t ′)]2

denotes the Volkov phase.
To solve the Volkov states, we consider the vector potential

of a circularly polarized laser pulse (ε = 1) with an envelope
described by a sine-squared function f (t ) = sin2(ω0t/2np),
for 0 � t � τp and 0 otherwise, where np is the number of
optical cycles. We can expand the trigonometric products
and modify the vector potential as a superposition of three
monochromatic plane-wave beams with different frequen-
cies [12,21]:

A(t ) =
1∑

j=−1

Aj√
2

[cos(ω jt + φCEP)ex

+ � sin(ω jt + φCEP)ey], (2)

where j represents the indices for the lower (−1), central
(0), and upper (1) frequencies. Specifically, when j = −1,
the frequency ω j is given by ω j = (1 − 1/np)ω0. For j = 0,
the frequency ω j equals ω0, and for j = 1, the frequency is
ω j = (1 + 1/np)ω0. The amplitude of the vector potential of
each frequency also changes by −A0/4, A0/2, and −A0/4 for
the lower, central, and upper frequencies, respectively.

Figure 2 displays the vector potential (2) as a function
of time as well as frequency by taking the Fourier trans-
form. In the frequency domain, the superposition of just three

FIG. 2. Vector potential A(t ) of a circularly polarized laser pulse
as function of time (left panels) and frequency [F (A)](ω) (right
panel). This potential is shown for pulses with two (blue), four
(orange) and eight (green) optical cycles, a carrier-envelope phase
φ cep = 0, and wavelength λ = 800 nm of the incident laser light. The
ordinate in the right panel shows the absolute amplitude of the vector
potential at a peak intensity of 5 × 1014 W/cm2, and the amplitude
provides insight into its contributions to the PMD in strong-field
ionization measurements.

frequencies arises from the sin2 envelope of the pulse with
finite duration. As seen from the right panel, this frequency
spectrum can be modified by either adjusting the laser fre-
quency ωo or the number of optical cycles within the pulse.
In strong-field ionization, both of these adjustments then also
affect the PMD and may lead to either an enhanced or a
suppressed yield of emitted photoelectrons.

To obtain the solution of the Volkov state, it is necessary to
resolve the Volkov phase. The Volkov phase for a pulse with
vector potential (2) can be written as

Sv (τ ) = εp τ + A2
0

4

∫ τ

dt ′ f 2(t ′)

+
1∑

j=−1

Aj p sin θp√
2

∫ τ

dt ′ cos(ω jt
′ + β ), (3)

where, for the sake of brevity, we use β = φcep − �ϕp and
εp = p2/2. θp and ϕp are the corresponding polar and az-
imuthal angles, respectively. The Volkov phase comprises
again three terms: (i) the contribution due to the asymptotic
energy εp of the photoelectron at the detector; (ii) the con-
tribution due to its ponderomotive energy of the electron as
accumulated within the envelope of laser pulse, and (iii) the
contribution due to the momentum as obtained from its in-
teraction with the frequency components of the laser pulse.
Below, we refer to the second and third terms as the envelope
energy and nonlinear response (terms), respectively.
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FIG. 3. ATI energy spectra and PMD for a sin2 driving laser laser pulses with two (left column), four (middle column), and eight optical
cycles (right column). The ATI energy spectra (upper row) are shown as functions of εp(units of ω) and for pz = 0, whereas the PMD are
displayed in the px-pz plane for the carrier-envelope phases φ cep = 0 (middle row) and φ cep = π/2 (lower row), respectively. All distributions
are shown for a laser with wavelength λ = 800 nm and peak intensity I = 5 × 10 14 W/cm2 as well as for an argon target with ionization
potential Ip = 15.7596 eV.

Using the vector potential (2), we calculate the PMD in
strong-field ionization within the SFA. The photoionization
probability [12] is given by

P(p) = p |Tp| 2 ≈ p
∣∣T (0)

p

∣∣ 2
, (4)

focusing on the direct transition amplitude (1). Figure 3
presents the energy and momentum distributions for laser
pulses of two, four, and eight optical cycles. In the above-
threshold ionization (ATI) spectra, each peak corresponds to
a concentric ring in the PMD at pz = 0, with the inner and
outer rings indicating photoelectrons at the lowest and highest
kinetic energies, respectively, often emitted at low probabili-
ties. The distributions generally highlight photoelectrons with
moderate kinetic energy.

As seen from the PMD in Fig. 3, the inner rings quickly
dissolve as the number of pulse cycles increase, while the
outer rings get broadened. Of course, the same lowering and
broadening of peaks appear in the ATI spectra as np becomes
larger. For an increasing number of cycles, however, new
features arise in the ATI spectra. At the higher photoelec-
tron energies, the peaks get broader with small oscillations
on top of them. To explain these oscillations, we derive the
Volkov state using the vector potential in Eq. (2). By using a

Jacobi-Anger expansion to the Volkov phase, we can express
the Volkov state as (see Supplemental Material [22] for de-
tailed solution)

χp(r, t ) = (2π )−3/2
5∏

i=1

∞∑
ni=−∞

Jni (xi ) e−ι̇(EN t−p·r−�N ). (5)

In this expression, the summation index ni counts the photons
that are absorbed from the beam, whereas the arguments of
the Bessel functions x1, . . . , x5 have the values Upnp/2ω,
Upnp/16ω, ρ0/2, −ρ0/4(1 − 1/np), and −ρ0/4(1 + 1/np),
respectively. Moreover, ρ0 = A0 p sin θp/

√
2ω and Up is the

pondermotive energy.
The modified photoelectron energy (EN ) is given by

EN = p2

2 + 3Up

8 + [−n1/np + 2n2/np + n3 + n4(1 − 1/np) +
n5(1 + 1/np)]ω. Similarly, the modified phase (φN )
is defined as φN = (n3 + n4 + n5)(φCEP − �ϕp). It is
now apparent that the set of ni satisfies the equation
( −n1+2n2−n4+n5

np
+ n3 + n4 + n5)ω = Nω, where N is a fixed

integer. This equation plays a crucial role in determining
the final kinetic energy of the photoelectron. Nω specifies
the energy of the absorbed photon, while ni represents the
fraction of photons absorbed at individual frequencies.
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FIG. 4. Temporal evolution of the Volkov phase (3) at p = 0.5 a.u., including the full contribution (top row) and contributions from
individual terms (bottom row), as derived from the analytical solution of the time-dependent Schrödinger equation (TDSE). Sv (τ )k are the four
terms in Eq. (3) representing the four components and only the real components of Sv (τ )k and Sv (τ ) are shown. Each panel sequence (from left
to right) represents varying cycle counts (two, four, and eight), corresponding to a wavelength of 800 nm and an intensity of 5 × 1014 W/cm2.
β and θp are set to 0 and π/2, respectively. The profile of the vector potential is shown in arbitrary units (middle row).

The energy conservation for an ATI order N is given by

εp = Nω −
(

3Up

8
+ Ip

)
, (6)

where Ip is the ionization potential. The cyclical peaks in the
photoelectron spectrum, depicted in Fig. 3, result from the
stepwise increase of N with energy, moderated by the Bessel
functions’ behavior in the Volkov state (5). These peaks,
whose spacings reflect the photon energy, exhibit energy
variations not strictly aligned with photon energy multiples,
detailed in our Supplementary Material [22].

Equation (6) shows that the ponderomotive energy cru-
cially influences ionization peak positioning due to oscillating
electromagnetic fields. In few-cycle pulses, intense fluctua-
tions create varying ponderomotive potentials across cycles,
causing incoherent ionization amplitude alignment at different
energy levels, affecting ATI peak formation. Ionization shifts
towards lower energies near peak fields, and to higher energies
at lower intensities, altering the photoelectron spectrum’s ATI
peaks.

Regarding the Bessel function parameters and their phys-
ical implications, x1 and x2 relate to pulse envelope energy,
whereas x3,4,5 correspond to the nonlinear response at dif-
ferent frequencies. The first two parameters change with the
optical cycles in the pulse, while the latter three also depend

on photoelectron momentum. Hence, envelope energy Bessel
functions oscillate faster with longer pulses, and nonlinear re-
sponse functions oscillate faster with increased photoelectron
momentum. For pulses with fewer optical cycles, envelope en-
ergy oscillations dominate, minimizing interference, as shown
in Fig. 3 for lower energies in four and eight-cycle cases.
With more optical cycles, both envelope energy and nonlinear
response enhance oscillations, leading to visible interference
patterns in higher-energy ranges, as depicted in Fig. 3 for the
same cases.

The interference patterns in photoelectron spectra, influ-
enced by the temporal evolution of the Volkov phase (3),
are crucial for understanding the photoelectron dynamics. As
depicted in Fig. 4, the real part of the cumulative Volkov phase
for varying pulse durations and the vector potential profile
are analyzed at a photoelectron momentum of 0.5 a.u. and a
laser wavelength of 800 nm. It is observed that the Volkov
phase oscillates significantly at vector potential peaks, with
oscillations intensifying with longer pulse durations. Detailed
analysis of Fig. 4 (bottom row) reveals the role of the enve-
lope energy and three distinct frequencies from the nonlinear
photoelectron response. For short pulses (two-cycle case), dis-
tinct phase differences among these frequencies broaden the
Volkov phase peaks. As pulse duration extends, these phase
differences diminish, yet oscillations strengthen, leading to
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FIG. 5. Temporal evolution of a Volkov phase for an eight-cycle
pulse. The left panel shows the composite effect of the temporal
evolution of the Volkov phase within the laser pulse, while the right
panel focuses on the contribution from the primary two terms. The
laser parameters are the same as those in Fig. 4, except for the
parameter p, which is set to 0.1 a.u.

interference effects that accelerate the Volkov phase oscilla-
tions. Conversely, at a lower photoelectron momentum of 0.1
a.u. (Fig. 5), the envelope energy predominantly drives the
Volkov phase’s temporal evolution. The amplitude variations
across different components’ envelopes, lower, upper, and
central frequencies, highlight their collective contribution to
the phase profile’s reconstruction, as shown in the top row of
Fig. 4.

To this end, we analyzed the interference patterns ob-
served in PMD arising from the ionization by few-cycle pulses
shaped with a sin2 envelope. This phenomenon is anticipated
to be consistent across other trigonometrically based envelope
functions, given their discrete spectral nature which facilitates
decomposition into distinct frequency components. Contrar-
ily, a Gaussian envelope, characterized by its continuous and
extensive spectral distribution, is likely to induce interference
features that diverge from those documented in our study. The
wider frequency range of a Gaussian envelope can diminish
the contrast of interference fringes, a consequence of the su-
perposition over a continuous frequency spectrum. Moreover,
Gaussian-type envelopes pose significant challenges for ana-
lytical solutions, rendering them beyond the analytical scope
of our current study.

Increasing the number of optical cycles in a laser pulse not
only affects nonlinear interference but also leads to a narrower
electron emission, as evidenced by a decrease in the PMD
width. This is illustrated in Fig. 6, where the full width at half
maximum (FWHM) of the most intense ring in the momentum
distribution narrows with more optical cycles. This effect is
attributed to the enhanced ability of electrons to react to the
laser’s electric-field fluctuations during each optical cycle.
Short pulses with fewer cycles produce a wider PMD due
to limited interaction time, whereas longer pulses with more
cycles allow electrons to more precisely follow the laser field’s
variations, resulting in a more focused PMD around certain
polar angles within each cycle.

FIG. 6. Full width at half maximum (FWHM) of the prominent
ring with the highest intensity in the momentum distribution within
the propagation plane. The lines in the figure demonstrate a trend:
at higher optical cycles, the FWHM progressively decreases for
increasing intensity and vice versa for wavelength. (Left) The wave-
length remains consistent at 600 nm. (Right) The intensity remains
consistent at 1 × 1014 W/cm2.

In summary, we report the observation of intricate nonlin-
ear interference in strong-field ionization. Such interference
has a profound impact on the photoelectron momentum
distribution and the ionization spectrum. By utilizing the
strong-field approximation, we showed that these nonlinear
interference patterns in the PMD originate from the interac-
tion of electrons with individual frequencies concealed within
the laser pulse. Furthermore, we emphasize that nonlinear
interference imparts unique characteristics to the ionization
spectrum, providing valuable insights into the behavior of
electrons and the phase relationships inherent in the laser
pulse. Additionally, our research highlights that increasing
the number of optical cycles in the laser pulse induces a
distinct confinement effect within the PMD. These findings
significantly enhance our comprehension of intense laser field
interactions, rendering them a potent tool for exploring com-
plex electron dynamics. Notably, these insights hold relevance
for phenomena such as above-threshold ionization, recollision
processes, high harmonic generation, and nonsequential dou-
ble ionization.
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