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Submicrosecond high-fidelity dispersive readout of a spin qubit with squeezed photons
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Fast and high-fidelity qubit measurement is essential for realizing quantum error correction, a key ingredient
to universal quantum computing. For electron spin qubits, fast readout is one of the significant challenges toward
error correction. Here we examine the dispersive readout of a single spin in a semiconductor double quantum
dot coupled to a microwave resonator. We show that using displaced squeezed vacuum states for the probing
photons can improve the qubit readout fidelity and speed. With proper phase matching, moderate squeezing can
enhance both the signal-to-noise ratio and the fidelity of the qubit readout, and the optimal readout time can
be shortened to the submicrosecond range with above 97% fidelity. These enhancements are achieved at low
probing microwave intensity, ensuring nondemolition qubit measurement.
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Introduction. Significant progress has been made toward
building a universal quantum computer over the past decade
based on a variety of qubit platforms [1–12]. Among these
options, spin qubits in silicon quantum dots, while lagging
somewhat behind other systems such as superconducting and
trapped ion qubits [13,14], hold tantalizing long-term poten-
tial due to their excellent quantum coherence [5], a small
qubit footprint, and compatibility with the well-established
microelectronics industry [15]. Further development of spin
qubits still faces a multitude of challenges. For example, a
key element of scalable quantum computing is active quantum
error correction (QEC) [16–18], which hinges on high-fidelity
readout in times that are significantly shorter than the qubits’
decoherence times [15]. For a spin qubit in isotopically puri-
fied silicon, spin dephasing time is typically of the order of
tens of microseconds [5], making it crucial to attain readout
fidelity above the 99% threshold of the surface code for QEC
[19–21] in a submicrosecond timescale.

Commonly used spin measurement approaches based on
spin-dependent tunneling [22] or spin blockade [23], together
with a DC charge sensor, are too slow for active QEC. A radio
frequency (rf) charge sensor, such as the rf single-electron
transistor (rf-SET), could speed up the measurement, having
achieved single-shot readout of a single-spin qubit with 97%
fidelity in 1.5 µs [24] and 99.9% fidelity in 6 µs [25]. Recently,
a single-shot singlet-triplet readout based on rf reflectometry
has achieved a signal-to-noise ratio (SNR) of 6 in 0.8 µs [26],
while another reached 99% fidelity in 1.6 µs [27]. However,
a charge sensor adds to the complexity of a device, and
the larger footprint of rf-SETs constrains their placement in
highly connected qubit architectures [28]. Gate-reflectometry-
based dispersive spin readout skips the charge sensor and
sends the probing pulse directly to the qubit through one of its
gates [29]. Using an off-chip resonator, readout fidelities rang-
ing from 73.3% to 98% have been achieved, though achieving
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single-shot readout has so far required integration times of
the order of milliseconds [30–32]. With an on-chip resonator
and a microwave probe pulse, a single-shot readout fidelity
of 98% has been achieved at a respectable 6 µs measurement
time [33]. In short, fast readout with high fidelity and small
footprint remains a formidable challenge for scalable quantum
information processing based on spin qubits.

One approach to improve a reflectometry-based spin read-
out protocol is to employ squeezed states for photons in
the measurement process. Squeezed states are nonclassical
states with modified quantum noise profiles [34–36]. By
introducing quantum correlations among photons, quantum
fluctuations are periodically reduced to below the standard
quantum limit in one field quadrature, while simultaneously
increased in the conjugate quadrature [37]. Squeezed states
have been extensively studied in various research fields. For
instance, high-intensity squeezed light has been employed
in the latest gravitational wave detectors [38,39], resulting
in a nearly tenfold increase in sensitivity [40]. In the field
of quantum information processing, a squeezed state has
been applied in continuous-variable quantum key distribu-
tion [41], quantum sensing [42], and high-precision cavity
spectroscopy [43]. Squeezed states have helped enhance the
signal-to-noise ratio (SNR) of superconducting qubit read-
out [44], leading to a 24% increase in the final SNR for
superconducting qubit measurement [45]. A 31% enhance-
ment in the SNR for superconducting qubit readout with 99%
fidelity was realized when a two-mode squeezed vacuum was
used [46]. Squeezing has also been suggested for nondemoli-
tion qubit readout, achieving intracavity squeezing beyond the
3 dB limit [47], exponentially enhanced light-matter interac-
tion [48], and shortcuts to adiabaticity for the quantum Rabi
model [49].

Here we explore the impact of squeezing on the dispersive
readout of a spin qubit coupled to an on-chip microwave
resonator, and its subsequent backaction on the spin qubit
(Fig. 1). We find that using a low-intensity (so as to re-
duce photon-induced decoherence) squeezed state could yield
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FIG. 1. Schematic of the setup for dispersive detection of spin
qubits.

significant enhancements in the SNR, enabling rapid and
high-fidelity dispersive readout of the spin qubit through stan-
dard techniques. Interestingly, we also find that only a modest
degree of squeezing, under proper phase-matching conditions,
improves spin measurement. Larger squeezing actually leads
to a deterioration of measurement SNR and fidelity due to
contributions from the “antisqueezed” quadrature.

The model. We consider dispersive readout of a spin qubit
assisted by a single-mode microwave resonator. In the rotating
frame, the dispersive coupling Hamiltonian between the qubit
and the resonator field is [50]

Hs = 1
2 (δs − χs)σz + (δc − χsσz )a†a, (1)

where δc and δs denote the detunings of the probe from the res-
onator and the spin qubit, respectively, and χs is the dispersive
coupling strength between the spin qubit and the resonator.
The photons can enter and leave the resonator through a single
input-output port with a coupling rate κ , governed by an
interaction of the form [50]

Vin = i
√

κ (b†
ina − bina†), (2)

where bin and b†
in are the annihilation and creation opera-

tors of the input radiation field mode. From the effective
Hamiltonian Heff ≡ Hs + Vin for the coupled qubit-photon
system, the Langevin equation for the resonator field takes the
form

ȧ = −
[
i(δc − χsσz ) + κ

2

]
a − √

κbin, (3)

where the first term on the right-hand side describes the dis-
persive shift of the resonator field as well as damping, while
the last term represents the driving of the resonator through
its input port. The damping term in Eq. (3) is a result of the
Markovian approximation, depending solely on the system
operators at the current time. It forms the basis of the input-
output theory [51,52]. Under the Markovian approximation,
the output radiation field mode is given by [51]

bout = bin + √
κa, (4)

where bout and b†
out are the annihilation and creation operators

of the output radiation field mode, respectively. To ensure
the commutation relation [bout, b†

out] = [bin, b†
in], [b†

in, a] =
[a†, bin] =

√
κ

2 [a, a†] are required [51].
The Langevin equation (3) and the input-output relation (4)

form the basis of our study. The former describes how the res-
onator field is affected by the qubit and the pumping from the

outside, while the latter relates the reflected field to the input
and the resonator field, allowing us to evaluate how the qubit
state affects the output. When the qubit-resonator interaction
is dispersive, the spin measurement becomes nondestructive
when the resonator field is weak, wherein σz(t ) is approxi-
mately a constant of motion: σz(t ) ≈ σz(0). Consequently, σz

can be represented as a real number σ = ±1, allowing for an
analysis of the readout contrast. Without loss of generality, we
assume δc = 0 from now on.

In rf reflectometry, the output field bout is sent through a
phase-preserving amplifier [53], which detects both quadra-
tures equally well and is subsequently measured using a
homodyne detector [54] by mixing with a local oscillator
with phase ϕ. The resulting photocurrent I ∝ 1√

2
(boute−iϕ +

b†
oute

iϕ ). By properly choosing the local oscillator phase, the
photocurrent could be proportional to any field quadrature,
such as Qout ≡ 1√

2
(bout + b†

out ) or Pout ≡ 1√
2i

(bout − b†
out ). We

thus rewrite the resonator Langevin equation in terms of their
quadratures as

Ẋ (t ) = MX (t ) − √
κXin, M ≡ −κ

2
I ∓ iχsτy, (5)

where X ≡ (Q, P)� is the column vector of the two orthogo-
nal quadratures for the resonator field, Xin ≡ (Qin, Pin )�, and
τy is the y-Pauli matrix in the field quadrature subspace. Here,
Q and P are referred to as the amplitude and phase quadra-
tures of the resonator field, and Qin and Pin are those of the
input field. For a continuous wave input, the resonator field
quadratures are obtained as

X (t ) = eMt X (0) − √
κ

∫ t

0
dseMsXin, (6)

where eMt = f (t )I ∓ ig(t )τy, f (t ) ≡ e− κ
2 t cos χst , and g(t ) ≡

e− κ
2 t sin χst . Substituting this result into Eq. (4) would then

yield the solutions for the output field quadratures.
Signal-to-noise ratio. Recall that in rf reflectometry, the

homodyne measurement yields a photocurrent that is propor-
tional to the expectation value of an output field quadrature.
Without loss of generality, we choose the output quadrature
as Pout ≡ Pin + √

κP, which is specified by a local oscillator
phase of π/2. To quantify the distinguishability between the
two qubit states, we introduce the signal-to-noise ratio (SNR)
defined as

SNR(t ) ≡ |〈M +1(t )〉 − 〈M −1(t )〉|
	M +1(t ) + 	M −1(t )

. (7)

Here, 〈M ±(t )〉 and 	M ±(t ) are the expectation values and
standard derivations, respectively, of the time-integrated out-
put quadratures M ±(t ) ≡ ∫ t

0 P±
out (s)ds, where the superscript

refers to the two qubit states. M ±(t ) takes the explicit form

M ±(t ) = A(t )Pin ∓ B(t )Qin + √
κF (t )P(0) ± √

κG(t )Q(0),

(8)

where the time-dependent coefficients are A(t ) ≡ t − κ∫ t
0 F (s)ds, B(t ) ≡ κ

∫ t
0 G(s)ds, F (t ) ≡ ∫ t

0 f (s)ds, and G(t ) ≡∫ t
0 g(s)ds. Interestingly, when the resonator field is initially

in a vacuum state, the contrast between the output signals
is given by 2|B(t )〈Qin〉|, which depends solely on the input
quadrature Qin and is independent of Pin.
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Now we are ready to explore the effect of squeezing
in the input field. We choose a displaced squeezed vac-
uum state |α, ξ〉 ≡ D(α)S(ξ)|0〉 as an input, where D(α) ≡
exp

∫
dk(αkb†

k − α∗
k bk ) is a continuous displacement operator,

and S(ξ) ≡ exp 1
2

∫
dk(ξ ∗

k b2
k − ξkb†2

k ) is a continuous squeez-
ing operator [55,56]. Here, α = αeiθα and ξ = ξeiθξ . In this
state, the expectation values of the annihilation and creation
operators coincide with those of the coherent states: 〈bin〉 =
α(t ) and 〈b†

in〉 = α∗(t ) (see Supplemental Material [57]).
For a homodyne detection with a local oscillator phase

ϕ = π/2, the signal contrast is proportional to | cos θα|. To
maximize this contrast, θα must vanish. For time shorter than
2/κ , one can make the approximations A(t ) ≈ t − 1

2κt2 and
B(t ) ≈ 1

6κχst3. Consequently, during a fast dispersive read-
out, the noise from the input quadrature Pin when leaving the
resonator largely exceeds that from Qin. To enhance the SNR,
it is thus beneficial to choose Pin as the squeezed quadrature,
associated with θξ = ±π , which leads to

[	M ±(t )]2 = e−2r

2
A2(t ) + e2r

2
B2(t ) + κ

2
[F 2(t ) + G2(t )].

(9)

For a fixed value of squeezing amplitude r, the optimal read-
out time is t ≈ e−r (6/κχs)1/2.

In general, in a homodyne detection setup with an arbitrary
local oscillator phase ϕ, the SNR of the chosen quadrature is
still determined by Eq. (9), but with B(t ) and A(t ) replaced by
B(t ) cos 	θ + A(t ) sin 	θ and −B(t ) sin 	θ + A(t ) cos 	θ ,
respectively. Here, 	θ ≡ ϕ − θξ /2 is the phase mismatch be-
tween the local oscillator and the squeezing. In this general
scenario, the signal contrast is proportional to | sin(θα − ϕ)|.
To maximize the contrast between the output signals, the
phase of the displacement amplitude should lead or lag that of
the local oscillator by π/2. Meanwhile, to minimize the noise
from the input quadratures, the phase mismatch between the
local oscillator and the squeezed state should be an integer
multiple of π . Hence, the optimal SNR enhancement is char-
acterized by the phase-matching relations

θα − ϕ =
(

m + 1

2

)
π and ϕ − θξ

2
= m′π, (10)

where m and m′ are arbitrary integers. Equation (10) im-
mediately leads to a constraint on the phases of squeezing
parameter ξ and displacement α: 2θα − θξ = [2(m + m′) +
1]π , which is required for squeezing to help enhance the SNR
for qubit readout.

Fidelity. When the standard derivations of the
time-integrated output quadratures are equal [	M +(t ) =
	M −(t )], the single-shot readout fidelity F (t ) is determined
exclusively by the SNR as F (t ) = erf[SNR(t )/

√
2], where

erfz is the error function [61]. For qubits with a spin relaxation
time T1, the single-shot readout fidelity at time t � T1 is
given by

F (t ) = exp

(
− t

2T1

)
erf

(
SNR(t )√

2

)
. (11)

It incorporates both the relaxation of the qubit and the impact
of the photon noise on the readout. Notably, the single-shot
readout fidelity depends only on the spin relaxation time T1,

FIG. 2. SNR and readout fidelity with respect to different
squeezing parameters and coupling rates. Here, α = √

30, χs/2π ≡
0.15 MHz, θξ = π , and T1 = 3 ms [50]. The coupling rates are (a),
(b) κ = χs and (c), (d) κ = 2χs. The black (lower) lines represent the
coherent state inputs.

as the dispersive Hamiltonian (1) involves only the population
difference between the two qubit states.

The results. Figure 2 shows that employing squeezing for
probing photons can enhance SNR and reduce measurement
time. Here the black curves are for a coherent state input,
setting the benchmark for comparison. Figure 2(a) reveals that
using current technology (κ/2π = χs/2i = 0.15 MHz) and a
displaced squeezed vacuum state (with θα = 0 and θξ = π ) as
input, there is a clear SNR enhancement in the submicrosec-
ond temporal regime. For example, there is a nearly 50%
enhancement in the SNR at around 0.9 µs, or a 20% reduction
in detection time for SNR around 1.5, achieved with around
30 photons and a moderate squeezing parameter of r = 0.85
(about 7.38 dB). Figure 2(b) shows that the chosen displaced
squeezed vacuum state yields a notable readout fidelity of
97% at around 1 µs. Figure 2(c) indicates that by increasing
the coupling rate slightly to κ = 2χs, the same SNR can be
achieved within an even shorter measurement time. Conse-
quently, as shown in Fig. 2(d), a readout fidelity of 97% is
attained at around 0.8 µs.

In Fig. 3, we show that a phase mismatch between the local
oscillator and the squeezed state consistently lowers both the
SNR and fidelity. At a fixed measurement time t ≈ 0.714 µs
and a fixed squeezing r ≈ 0.74, the SNR increases from 3
to 3.5 compared to a coherent state input by fixing 	θ as a
multiple of π , while a phase mismatch could reduce SNR to
below 2 [Fig. 3(a)]. On the other hand, with the same mea-
surement time t ≈ 0.714 µs and for a perfect phase match of
	θ = ϕ − θξ /2 = 0, the SNR increases as r increases from 0,
but then peaks at r ≈ 0.74 (equivalent to 6.43 dB in decibels).
Further increasing squeezing would then lead to a reduction in
SNR. Both of these trends for SNR in Figs. 3(a) and 3(b) are
closely followed by measurement fidelity as well, as shown in
Figs. 3(c) and 3(d).
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FIG. 3. SNR and readout fidelity with respect to different phase
mismatches and squeezing parameters at a fixed measurement time
t ≈ 0.714 µs. Here, |α| = 10, κ = 2χs, χs/2π ≡ 0.15 MHz, and
T1 = 3 ms. (a), (c) A squeezing parameter of r = 0.74 is chosen, and
the black dashed lines represent the coherent state inputs. (b), (d) The
phase-matching condition is given by 	θ ≡ φ − θξ /2 = 0.

The results in Fig. 3 challenge the seemingly reasonable
assumption that measurement accuracy can continue to im-
prove as the degree of squeezing increases. What we find here
is that in a quantum measurement with a single-mode pho-
tonic state and a small number of photons, the contributions
from the antisqueezing quadrature to the signal and noise are
unavoidable. These contributions lead to the eventual decline
of SNR and measurement fidelity as squeezing parameter
r increases. While the utilization of two or more photon
modes theoretically allows for a higher signal-to-noise ratio
by selecting two commuting quadratures, it could pose fur-
ther challenges through intricate circuit architecture demands,
such as incorporating two modes with opposing dispersive
coupling constants [62–64].

The required squeezing in the current proposal is well
within reach of the current state-of-the-art microwave experi-
ments, where squeezing factor ranges from a few decibels to
several dozens of decibels have been achieved. For instance,
a squeezed microwave with a squeezing factor of up to 8 dB
has been reported using a mechanical oscillator [65], while
a broadband squeezed microwave radiation with a squeez-
ing factor of up to 11.35 dB for a single-mode field has
been reported using a Josephson traveling-wave parametric
amplifier [66].

While all our calculations here are done with a displaced
squeezed vacuum state for the input photons, a squeezed
coherent state works as well, with the same phase-matching
condition θξ − 2θα = ±π . To achieve the same SNR and
fidelity, the squeezed coherent state |ξ, γ 〉 needs to have a
modified displacement amplitude, γ = αe−r .

Backaction on the qubit. In the above discussion, we as-
sume that qubit properties such as its relaxation time are
not affected by the probing photons. Such an assumption
is reasonable considering that we work with weak-intensity

probing photons. Nevertheless, we now analyze how these
photons, especially their squeezing, may affect qubit relax-
ation. For an accurate examination of spin relaxation, we
revisit the original spin-photon coupling Hamiltonian, which
describes the direct energy exchange between the spin qubit
and the resonator via the absorption or emission of a resonator
photon. Up to the leading order in spin-photon coupling
gs, the effective coupling Hamiltonian takes the following
form [50]: i

√
κgs	

−1(b+
inσ− − binσ+), where 	 is the spin-

resonator detuning. A straightforward calculation yields (see
Supplemental Material [57])

1

T1
= 2γpu cosh 2r, (12)

where γpu ≡ κg2
s	

−2 is the Purcell relaxation rate, character-
izing the emission of a resonator photon into the environment.
Equation (12) shows that the qubit relaxation rate is pro-
portional to the Purcell relaxation rate, as expected, but
is modified by the presence of squeezing. Specifically, the
relaxation rate increases monotonically with the degree of
squeezing, regardless of the displacement amplitude |α| when
|α|2 � nc = 	2/4g2

s [50]. For r = 1, one obtains T −1
1 ≈

7.52γpu. For a stronger probe, there would be further correc-
tions to the total relaxation rate due to spin transitions induced
by probe photons.

Conclusion. In this study, we have demonstrated the effec-
tiveness of employing displaced squeezed vacuum states to
enhance the readout fidelity and reduce the readout time for a
single spin in a semiconductor double quantum dot through
dispersive coupling to a resonator. The key for squeezing
to help enhance detection efficiency lies in a set of phase-
matching conditions among the squeezing phase, the coherent
displacement phase, and the local oscillator phase during
homodyne detection. When these phase-matching conditions
are met, a moderate degree of squeezing (a few decibels)
proves effective in reducing the spin readout time to the sub-
microsecond range while maintaining high readout fidelity.
For instance, with current technology (κ/2π = χs/2π ≈
0.15 MHz), using a displaced squeezed vacuum state with
30 photons and a moderate squeezing parameter of r = 0.85
(∼7.38 dB) allows us to achieve a readout fidelity of 97%
within a readout time of about 1 µs. With a slightly larger
coupling rate for the resonator (κ = 2χs), the same readout
fidelity can be attained in approximately 0.8 µs. Interest-
ingly, we also find that squeezing beyond a certain threshold
starts to hinder rather than help spin measurement, due to
the inevitable contribution from the antisqueezing quadrature
to both the signal and noise because of our constraints of
fast measurement using a low-intensity microwave. In com-
parison, superconducting transmon qubits have demonstrated
readout fidelity of 98–99% for integration times below 100 ns
because of their strong electric coupling to resonators [67].
Similarly, if the dispersive coupling strength of the spin qubit
can be increased by an order of magnitude, i.e., χs/2π ≈
2.1 MHz, while maintaining κ = χs, a fidelity of 90% could
also be achievable for a shorter integration time of 200 ns.
Hence, within contemporary spin-resonator coupling schemes
grounded on charge-photon interaction, the optimization of
charge-photon coupling emerges as the foremost strategy for
quantum dots [68].
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