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Nonstabilizerness, also colloquially referred to as magic, is a resource for advantage in quantum computing
and lies in the access to non-Clifford operations. Developing a comprehensive understanding of how nonstabiliz-
erness can be quantified and how it relates to other quantum resources is crucial for studying and characterizing
the origin of quantum complexity. In this work, we establish a direct connection between nonstabilizerness and
entanglement spectrum flatness for a pure quantum state. We show that this connection can be exploited to
efficiently probe nonstabilizerness even in the presence of noise. Our results reveal a direct connection between
nonstabilizerness and entanglement response, and define a clear experimental protocol to probe nonstabilizerness
in cold atom and solid-state platforms.
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Introduction. Simulating quantum states is, in general, very
hard for classical computers. It is expected that the exact clas-
sical simulation of arbitrary quantum systems is inefficient, as
the resource overhead exponentially grows with the size of the
system [1]. For this reason, Feynman put forward the notion
of a quantum computer [2] as only a quantum device would be
able to simulate a generic quantum system efficiently, as was
later proven in [3].

Entanglement, one of the defining characteristics and
essential resources for quantum processing and quantum
technology, has been thoroughly studied [4–12]. However,
probing entanglement is insufficient for quantum advantage,
nor it is enough to characterize entanglement by a single num-
ber [13–17]. For instance, one can obtain highly entangled
states by Clifford circuits [18] that can be efficiently simulated
classically [19–22]; moreover, entanglement complexity is
revealed in the finer structure of the entanglement spectrum
statistics [23–25]. Transitions between different classes of
entanglement complexity are driven by non-Clifford resources
[26–31], which are indeed also the necessary resources to
quantum advantage [32].

Any extension of Clifford circuits (that is, circuits only
containing the Hadamard gate, the π/2-phase gate, and
the controlled-NOT gate)enables them to perform universal
computation by allowing the input states to include the so-
called magic states [33–35]. The canonical magic state is
|T 〉 = (|0〉 + eiπ/4|1〉)/

√
2, which enables the application of

a single-qubit unitary T = diag(1, eiπ/4). A circuit composed
of elements from the Clifford and T gate set acting on the
standard computation basis input suffices for universal quan-
tum computation. Classical simulation of such circuits needs
a runtime scaling exponentially with the number of input

magic-state qubits, yet still polynomial in the number of
stabilizer-state qubits [21]: consequently, one can perform an
efficient classical simulation for any class of circuits that is
nearly stabilizer in the sense that they use only logarithmically
many input magic-state qubits [36–38].

As explained above, non-Clifford resources are necessary
for any quantum advantage so they are a precious resource in
quantum information processing, often dubbed nonstabilizer-
ness, or, more colloquially, magic [35]. The resource theory
for nonstabilizerness has been developed in the last few years.
Proposed measures of magic often incorporate the concept
of quasiprobability, with many of these measures relying
on the discrete Wigner formalism as a foundation [39–44].
Prominent examples include the relative entropy of magic
and the mana (for qudit) [22], the stabilizer rank [36,37,45],
the robustness of magic [46,47], the thauma (for qudit) [48],
and the stabilizer extent [49]. Most of these quantifiers of
nonstabilizerness are difficult to compute even numerically.
One computable and remarkable measure of nonstabilizerness
was introduced recently: the stabilizer Rényi entropy (SRE)
[50], which can be computed efficiently for matrix product
states [51–54], is amenable to experimental measurement
[55,56] and has tight connections with quantum verification
and benchmarking [57].

In this Letter, we establish a deep connection between the
SRE and the flatness of the entanglement spectrum associ-
ated to a subsystem density operator. At the conceptual level,
this connection shows clearly how this resource is associ-
ated with entanglement structure: nonstabilizerness is directly
tied to entanglement response, a quantum analog of “heat
capacity” for thermodynamic systems. At the very same time,
it opens the door for important practical applications. We
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FIG. 1. Summary of the results. (a) A schematic of the method to quantify the nonstabilizerness of a pure state. We start from a product
state and then we apply random Clifford gates (both single- and two-qubit gates, see text). After NLayers, the state is fully entangled. Checking
the entanglement spectrum in any bipartition, we can distinguish whether the initial state possesses nonstabilizerness. (b) In the upper panel,
a sketch of the Clifford orbit of a pure state is shown. In the lower panel, we show the relation between antiflatness FA and nonstabilizerness,
quantified by c(d, dA)Mlin. We initialize the system as a product state |ψ (0)〉 = ⊗n

i=1|ψi〉, where |ψi〉 = 1√
2
(|0〉 + eiθ |1〉) and n = 14, for

different values of θ . Then we apply several random Clifford layers NLayers. In the limit of a very deep circuit, the ratio approaches 1 as
predicted by the theorem as shown in the inset. (c) Algorithm to determine if a state is a stabilizer state or possesses some nonstabilizerness.
We show the pseudocode in the upper part of the panel. In the lower part, we show the probability of catching a no-stabilizerness. We generate
product states |ψ (0)〉 = ⊗n

i=1|ψi〉, where |ψi〉 = 1√
2
(|0〉 + eiθ |1〉) for n = 12 qubits, and we fix the number of Clifford layers NLayers = 100.

After performing NR = 1000 realizations, we compute the probability of success Psuc for different values of threshold, as a function of the
initial value of nonstabilizerness in the initial state calculated using the second SRE.

present a simple practical protocol for experimentally prob-
ing this quantity efficiently using randomized measurement
techniques.

Our main findings are summarized in Fig. 1. In Fig. 1(a),
we show the setup that we use to make the connection be-
tween nonstabilizerness and entanglement response concrete:
we prepare initial states as a product states and evolve them
using random Clifford gates, followed by the measurement
of the entanglement spectrum flatness. We find that a state
possesses nonstabilizerness if and only if its entanglement
spectrum is not flat. In the second panel [Fig. 1(b)], we il-
lustrate the Clifford orbit of a pure state: its nonstabilizerness
is proportional to its average flatness over the orbit. Finally, in
the third panel [Fig. 1(c)], we present an algorithm for detect-
ing non-stabilizerness and show the probability of success as
a function of their degree of nonstabilizerness.

Stabilizer Rényi entropy and the flatness of entanglement
spectrum. In this section, we define the SRE and its con-
nection with the flatness of the entanglement spectrum. In
particular, we will show that we can quantify the nonstabi-
lizerness of an arbitrary pure state by taking the average of the
flatness along its Clifford orbit.

Consider the d = 2n-dimensional Hilbert space of n qubits
H � C⊗2n. A subset � of the n qubits with |�| = n� defines

a subsystem that is obviously represented by the d� = 2n� -
dimensional Hilbert space H� � C⊗2n� . Let Pi ∈ {I, X,Y, Z}
be the Pauli operators on the ith single-qubit space C2. Pauli
operators on the full H have the form P = ⊗n

i Pi and local
Pauli operators can be written also as PX = ⊗i∈�Pi. Let us call
Pn the group of all n-qubit Pauli operators with phase 1, and
define �ψ (P) = d−1 Tr(Pψ ) as the squared (normalized) ex-
pectation value of P in the pure state ψ ≡ |ψ〉〈ψ | with d = 2n

the dimension of the Hilbert space of n qubits. Moreover, �ψ

is the probability of finding P in the representation of the state
ψ . Now we can define the SREs as

Mα (|ψ〉) = Eα (�ψ ) − ln d, (1)

where Eα (�ψ ) is the α-Rényi entropy of the probability dis-
tribution �ψ . The SRE is a good measure from the point of
view of resource theory: it tells how many magic states can
be distilled, and it is, as such, an important resource for quan-
tum information algorithms [50]. The SRE has the following
properties: (i) faithfulness Mα (|ψ〉) = 0 iff |ψ〉 ∈ STAB, oth-
erwise Mα (|ψ〉) > 0; (ii) stability under Clifford operations:
∀� ∈ Cn we have that Mα (�|ψ〉) = Mα (|ψ〉); and (iii) addi-
tivity Mα (|ψ〉 ⊗ |φ〉) = Mα (|ψ〉) + Mα (|φ〉) (the proof can be
found in [50]).
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Another useful measure of nonstabilizerness is given by the
stabilizer linear entropy, defined as

Mlin(|ψ〉) = 1 − d‖�ψ‖2
2, (2)

which obeys the following properties: (i) faithfulness
Mlin(|ψ〉) = 0 iff |ψ〉 ∈ STAB, otherwise Mlin(|ψ〉) > 0; (ii)
stability under Clifford operations: ∀� ∈ Cn we have that
Mlin(�|ψ〉) = Mlin(|ψ〉); and (iii) upper bound Mlin < 1 −
2(d + 1)−1. The relationship between the second SRE M2

and the linear non-stabilizing entropy follows easily from the
equation below:

M2(|ψ〉) = − ln [1 − Mlin(|ψ〉)]. (3)

Let us now discuss the relationship between the SRE and
the flatness of the entanglement spectrum. Consider a pure
state ψ in a bipartite system H = HA ⊗ HB and its reduced
density operator ψA = TrBψ . The (anti)flatness of its entan-
glement spectrum is defined as

FA(ψ ) := Tr
(
ψ3

A

) − Tr2
(
ψ2

A

)
. (4)

One can easily check that FA(ψ ) = 0 if the entanglement
spectrum is flat, i.e., if the spectrum λα = 1/χ for some
integer 1 � χ � min(dA, dB), whereas FA(|ψ〉) > 0 in other
cases. Notice that, in order for FA(ψ ) �= 0 the state must
be either not entangled or without any magic. While every
linear combination of different moments would be a sensible
measure of (anti)flatness, the one proposed above is the most
natural one as it is the variance of the corresponding probabil-
ity distribution according to itself: if a state σ is given in its
spectral resolution σ = ∑

i piσi, then F (σ ) = Var({pi}) :=
〈(pi − 〈p〉p)2〉p.

In this Letter, we use the flatness of the entanglement
spectrum to quantify or witness non-stabilizerness of a pure
state.

Theorem. The stabilizer linear entropy Mlin of a pure state
|ψ〉) is proportional to the antiflatness of the entanglement
spectrum averaged over the Clifford orbit

〈FA(� |ψ〉)〉Cn = c(d, dA)Mlin(|ψ〉), (5)

where 〈·〉Cn denotes the average over the Clifford orbit � |ψ〉
and the proportionality constant c(d, dA) ∼ (d2 − d2

A)d−3 for
large d , see [58] for the proof.

Notice that the above result holds true for any bipartition
of the system, which is reflected in the constant c(d, dA). We
see that a pure stabilizer state possesses a flat entanglement
spectrum over all its Clifford orbit and antiflatness is stable
under Clifford operations. Moreover, one can utilize a mea-
surement of antiflatness to measure Mlin. The theorem above
poses also a relationship between entanglement and magic.
Indeed, without entanglement, there is no antiflatness in the
reduced density operator. Along the Clifford orbit, entangle-
ment is near-maximal and this is reflected in c(d, dA). It would
be interesting to see whether (for an equal bipartition) antiflat-
ness assumes the form FA(|ψ〉) ∼ g(dA)Purβ (ψA)Mlin(|ψ〉) or
if this relation only holds for highly entangled states.

Numerical experiments. As it was shown in [56], SRE can
be experimentally measured via randomized unitaries [59],
providing an important handle on the quality of a quan-
tum circuit. However, SRE is a very expensive quantity to

measure, requiring, in general, exponential resources (though
better than state tomography). The result of the theorem opens
the way to a very efficient way to measure SRE. However,
things are not so simple. In the best case scenario, c(d, dA) =
O(d−1), which means that one needs to resolve an expo-
nentially small quantity, thereby requiring again exponential
resources, even if with the considerable advantage that oper-
ations on a small subset are needed, thus relaxing one of the
most challenging requirements of previous methods. This is
because ψA is typically very entangled over Cn and therefore
FA is very close to be flat. Another issue is that, for weakly en-
tangled states, direct exploitation of the theorem is extremely
challenging in practice, as we shall demonstrate numerically
in the following. One can intuitively understand that as for
very weakly entangled states there are very few eigenvalues
at all in the entanglement spectrum. As an extreme example,
the entanglement spectrum of a product state is absolutely flat,
regardless whether the state possesses any degree of nonsta-
bilizerness. A very long circuit (inevitably, very sensitive to
noise) will thus be required in those cases.

The key insight is that we can get around the requirement
of a full Clifford orbit by (numerically) analyzing the interme-
diate regime. Approaching volume law one might be able to
see a deviation from a flat spectrum without having to resolve
an exponentially small quantity. If this is true, one would
have found a witness for nonstabilizerness that is efficiently
computable and measurable. Moreover, as one gets into the
volume law for the entanglement phase, one should be able
to evaluate accurately the actual value of Mlin, even without
averaging over all the Clifford orbit. Of course, in this case,
one still needs to resolve a very small quantity.

We consider an initial state that is a product state of n
qubits with linear topology |ψ0〉 = ⊗n

i=1|ψi〉, where |ψi〉 =
1√
2
(|0〉 + eiθ |1〉). This state has initially computable nonsta-

bilizerness (vanishing for θ = 0, π/2). Note that θ = π/4
corresponds to the canonical T state. The state |ψ0〉 is then
evolved under a random Clifford circuit of depth NLayers de-

noted by UCl = ∏NLayers

k Uk , where Uk contains n − 1 Clifford
gates (Hadamard, phase eiπ/2 gate and CNOT) [18] between
nearest neighbors.

We are interested in how the entanglement spectrum,
that is, the eigenvalues of the reduced density matrix ρA =
TrB|ψ〉〈ψ | (for dA = dB = 2n/2 and n = 14 qubits) evolves
under random Clifford circuit evolution. In Fig. 1(b), we
present the average of the antiflatness 〈FA〉 as a function of the
circuit depth NLayers. The average is obtained from NR = 1000
different realizations and it is calculated for various values
of θ . For a small number of Clifford layers, the antiflatness
increases and exhibits a sharp dependence on θ . When the
circuit is very deep, the system explores a very large portion
of its Clifford orbit, and the ratio between average antiflatness
〈FA〉 and c(2n, 2n/2)Mlin approaches 1 (the solid red line in the
inset of Fig. 1), as predicted by the Theorem.

In Fig. 2, we show that one can accurately estimate Mlin

even by shallow Clifford circuits provided one starts with
volume law entanglement. We again consider a n = 14 qubit
system in a volume law phase by subjecting the initial state
|ψ0〉 to NLayers = 1500 Clifford layers, for various values of θ .
We then plot the ratio 〈FA〉/c(2n, 2n/2)Mlin as a function of the
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FIG. 2. Numerical simulations of shallow circuits. We prepared
the initial state in the volume law phase and we plot the ratio
FA/c(d, dA)Mlin as a function of number of Clifford layers NLayers

of shallow circuit. As shown in the plot, the ratio approaches 1 very
fast verifying Eq. (5).

number of Clifford NLayers. The theoretical line predicted by
the theorem is shown as a solid red line. Notably, we observe
that even for circuits as short as NLayers = 7 Clifford layers,
the average antiflatness reaches the value predicted by the
theorem [60].

Probing nonstabilizerness through flatness. As we dis-
cussed above, one could probe nonstabilizerness by probing
flatness, which is amenable to be measured in experiments
[61–63]. However, a naïve application of the theorem would
result in a very costly procedure. We present an algorithm
that can efficiently witness magic by exploring the Clifford
orbit in the intermediate region between weak and volume-law
entanglement [60]. Since measuring nonstabilizerness can be
resource-intensive, the concept of witness provides a scalable
approach to assess the accurate implementation of stabilizer
operations or evaluate the fit of quantum hardware for prepar-
ing magic states.

The procedure works as follows. (1) Start with |ψ0〉, a
pure state. (2) Draw a random Clifford gate � and apply it to
the initial state: |ψ�〉 ≡ �|ψ0〉. (3) Measure the entanglement
spectrum antiflatness FA(ψ� ). 1 If the original state |ψ0〉 is
a stabilizer state, the output of the circuit is still a stabilizer
state with zero antiflatness. On the contrary, if |ψ0〉 has a non-
vanishing amount of nonstabilizerness, we expect that even
a modest exploration of the Clifford orbit will result into a
nonflat entanglement spectrum. Therefore, if after a number
of Clifford unitaries we measure FA > 0 we can establish
that the initial state possesses nonstabilizerness. The resulting
algorithm is summarized in Fig. 1(c). In this algorithm, we set
both the number of iterations (which determines the number
of Clifford layers) and the threshold for measuring flatness.

Notably, our proposed protocol does not demand an
exhaustive exploration of the Clifford group, which is ex-
ponentially large. Instead, our findings in the previous
section demonstrate that a shallow quantum circuit gener-
ated by fixing the number of Clifford layers to a reasonably
small value is sufficient for detecting nonstabilizerness with a
high probability. This is illustrated in Fig. 1(c): we show the

1For small partitions, this can be done either via state tomography
or utilizing the random unitary toolbox [59].

FIG. 3. Algorithm sensitivity. Probability of success PSuc, for a
fixed threshold ε = 0.005 and for different NLayers. After collecting
NR = 1000 realizations, we compute the probability of success PSuc,
as a function of the initial value of nonstabilizerness calculated using
the second SRE M2(|ψ0〉).

probability of success PSuc (for n = 12 qubits) as a function
of the initial value of non-stabilizerness calculated using the
second SRE defined in Eq. (1). To address the role of errors
in the measurement of FA, we introduce a threshold value ε

for our test. The success probability is defined as the number
of times in which the algorithm gives True as output, thus
detecting the nonstabilizerness of the initial state normalized
to the total number of iterations.

Figure 1(c) displays a knee point effect of the probability of
success PSuc as a function of the nonstabilizerness calculated
using the second SRE M2, depending on the threshold value ε.
While, as argued earlier, away from volume law, the general
behavior of this algorithm requires a numerical analysis, the
knee-point can be explained analytically in a rigorous way.

Proposition. Define Smax(ψ ) := maxσ | 〈σ |ψ〉 |2 the stabi-
lizer fidelity with σ a stabilizer state. Then, if Smax(ψ ) >

1 − ε2/7, i.e., if the state is too close to a stabilizer state, the
success probability is zero, that is, PSuc(ε) = 0.

The above proposition provides insight into the sensitivity
of the algorithm shown in Fig. 1 with respect to the stabilizer
fidelity Smax, which is closely linked to the stabilizer entropy
Mlin. See [58] for the proof.

In Fig. 3, we present the probability of success PSuc (for
n = 12 qubits) for a different maximum number of Clifford
layers NLayers. We fix the threshold ε = 0.005 and we compute
the probability as a function of nonstabilizerness calculated by
M2(|ψ0〉) of the initial state. The plot shows that increasing the
number of algorithmic iterations NLayers push the probability
of success to 1 for any fixed values of nonstabilizerness.

Noisy Clifford circuit. So far we assumed that Clifford
unitaries are ideal. In reality, they have a residual noise due
to the fact that Clifford circuits are fine-tuned. In this situ-
ation, it is more natural to perform error mitigation at the
level of channels rather than states. Consider a simple error
model where each two-qubit Clifford U (k) is independently
affected by unitary noise. In particular, every two-qubit gate
is transformed as follows:

Ũ (k) = e−i
∑

α εαPα

U (k)ei
∑

α εαPα

, (6)

where εα is a random number chosen from a Gaussian dis-
tribution with average zero and standard deviation σ that
represents here the strength of the noise (see [58] for more
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(a) (b)

FIG. 4. Flatness in noisy circuit. (a) We show the average of the
antiflatness, over NR = 1000 realizations, as a function of NLayers.
We start from an initial STAB state |ψ0〉 = 1√

2
(|0〉 + |1〉). We inject

magic using a modified CNOT gate and the average of the antiflatness
FA increases after few layers of our circuit. (b) We show the average
of flatness, over NR = 1000 realizations, as a function NLayers. We
initialize the system in the ground state of Toric code, that is a STAB
state, on a 4 × 2 unit cell (16 spins). We show that the antiflatness
increases almost linearly with the number of Clifford layers NLayers.
Error bars correspond to a 95% confidence interval.

details). The choice of coherent noise is due to the fact that
SRE is a proper measure of distillable magic only for pure
states. For mixed states, it still has an important operational
meaning in quantifying resources beyond Clifford [50]: for
example, it is the key resource for establishing the cost of di-
rect fidelity estimation [57], cleansing algorithms and efficient
purity estimation [64]. The study of the effect of incoherent
noise is to be carried out in future work.

Introducing noise to Clifford gates represents a magic-state
injection that can be accurately captured by measuring the
antiflatness FA. In Fig. 4(a) we present the evolution of the
average of the antiflatness FA for a noisy Clifford circuit with
n = 14 qubits. We initialize our system in a stabilizer state
|ψ〉 = 1√

2
(|0〉 + |1〉) and then we measure the antiflatness

after every Clifford layer. Moreover, we also investigate the
effect of noise starting from the ground state of the toric code,
a stabilizer code formulated on a square lattice [65–68]. The
basic construction of the toric code is a square lattice with
a spin-1/2 degree of freedom on every bond, the physical
qubits. The model is given in terms of a Hamiltonian Ĥ =
−∑

ν Aν − ∑
p Bp, where p runs over all plaquettes and ν

over all vertices (sites). The ground state of the toric code

is a stabilizer state of the sets {Aν} and {Bp}. After applying
a Clifford circuit with a transformed CNOT gate, we measure
the antiflatness FA after every layer. In Fig. 4(b) we show the
evolution of FA for different strengths of noisy σ . It increases
almost linearly with the number of Clifford layers. These
results quantify how, upon close inspection of the micro-
scopic imperfections, it is possible to define an error threshold
that is able to discriminate between magic injected by errors
along the Clifford orbit, and intrinsic magic of the original
state.

Conclusion. We demonstrated how nonstabilizerness of
quantum states, while completely unrelated to entanglement
per se, is deeply and exactly related to entanglement response,
via the entanglement spectrum flatness of arbitrary partitions.
Leveraging on this connection, we formulated a simple pro-
tocol to efficiently witness and quantify nonstabilizerness in
quantum systems that is applicable to both atom and solid
state settings where local operations and probing are available.
The protocol is particularly efficient for states with volume
law entanglement, and can cope with the inevitable presence
of noise, as we demonstrate utilizing both random states and
toric code dynamics. Our results pave the way for witnessing
nonstabilizerness in large-scale experiments (a pivotal step to
demonstrate computational advantage), and motivate further
study of nonstabilizerness in quantum many-body systems, in
particular, in connection to critical behavior, where entangle-
ment response is expected to be particularly relevant.
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