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In any known description of nature, two physical systems are considered independent of each other if any
action on one of the systems does not change the other system. From our classical intuitions about the world,
we further conclude that these two systems are not affecting each other in any possible way, and thus these two
systems are causally disconnected or they do not influence each other. Building on this idea, we show that in
quantum theory such a notion of “classical independence” is not satisfied, that is, two quantum systems can still
influence each other even if any operation on one of the systems does not create an observable effect on the
other. For our purpose, we consider the framework of quantum networks and construct a linear witness utilizing
the Clauser-Horne-Shimony-Holt inequality. We also discuss one of the interesting applications resulting from
the maximal violation of classical independence towards device-independent certification of quantum states and
measurements.
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Introduction. Nonlocality is one of the most fascinating as-
pects of quantum theory, encapsulating the absence of a local
description for spatially separated quantum systems that can-
not communicate with each other. Discovered by Bell in 1964
[1,2] and then experimentally observed in the last decades
[3–6], the phenomenon of nonlocality clearly establishes the
departure of the quantum world from classical physics. An
equivalent way to understand it is that two quantum systems
can be correlated in a stronger way than two classical systems.

In this Letter, we pose an even more stringent inquiry: Con-
sider two systems that exhibit no correlation with each other,
meaning they are mutually independent. The fundamental
question we address is whether these two independent systems
can influence each other in any manner. Equivalently, can one
system exert an impact on its counterpart when there is no
correlation and no communication between them? Drawing
upon our classical understanding of the natural world, it can be
logically deduced that in the absence of communication and
with both systems being mutually independent, they cannot
exert any influence on each other in any conceivable manner.
We consider this viewpoint as a notion of classicality and term
it “classical independence.”

Here, we show that the notion of classical independence
is violated in quantum theory, that is, two mutually indepen-
dent quantum systems might affect each other if they are
individually entangled to some different quantum systems.
For our purpose, we consider the framework of quantum
networks, in particular, the quantum bilocality scenario [7,8]
with weaker constraints on the network. We then derive a
linear inequality inspired by the Clauser-Horne-Shimony-Holt
(CHSH) inequality [9]. Restricting to operationally indepen-
dent correlations, we find an upper bound for correlations
that can be described in a classically independent way. We
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then find a set of quantum states and measurements that vi-
olate this bound. For a remark, just as the bilocality scenario
[7,8], our setup is inspired by the phenomenon of entangle-
ment swapping. In fact, one can also consider this Letter
as probing the nature of nonclassicality that is violated in
the entanglement swapping experiment. Furthermore, we find
the maximum value of the inequality that can be attained in
quantum theory. Interestingly, using the methods presented in
Refs. [10,11] also allows us to certify the quantum states and
measurements in a device-independent way from the maximal
violation of the constructed inequality. Most of the recent
works in network nonlocality point to the fact that observing
genuine quantum nonlocality in networks requires nonlinear
inequalities, which additionally require the assumption that
the sources generate independent and identically distributed
random variables, commonly known as the i.i.d. assumption.
We show here that one can also obtain linear inequalities to
observe network nonlocality by considering weaker assump-
tions on the underlying hidden-variable models.

Classical independence. Consider two systems with Alice
and Bob such that measurements A,B with outcomes a, b can
be performed on them, respectively. Now, we define when
these two systems can be considered to be operationally in-
dependent of each other.

Definition 1 (operational independence). Two systems are
operationally independent if the probability of obtaining an
outcome when performing a measurement on one system is
completely independent of the other, that is,

p(a|A, b,B) = p(a|A) ∀a, b,A,B, (1)

and similarly for Bob’s outcome b. The resulting joint proba-
bility p(a, b|A,B) factors out using Bayes rule as

p(a, b|A,B) = p(a|A)p(b|B) ∀a, b,A,B. (2)

Inspired by the above definition, we define the principle of no
influence as stated below.
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Definition 2 (no-influence principle). Two systems do not
influence each other if given any additional information e,
there exist some hidden variables λ such that the probability
of obtaining an outcome when performing a measurement on
one system is completely independent of the other, that is,

p(a|A, b,B, λ, e) = p(a|A, λ, e) ∀a, b, e,A,B, λ. (3)

and similarly for Bob’s outcome b. It is straightforward to
observe that the no-influence principle implies operational
independence. This brings us to the definition of classicality,
which we call classical independence.

Definition 3 (classical independence). Two operationally
independent events (Definition 1) are classically independent
of each other if they do not influence each other (Definition 2),
or to put it simply the notion of classical independence means

Operational Independence ⇒ No Influence. (4)

Equivalently, the above definition can be understood as,
if the correlations between two parties are mutually indepen-
dent for any possible choice of measurement of both parties,
then given any additional information e there always exists
a hidden-variable model where both parties do not influence
each other.

Consider again the no-influence principle which is mathe-
matically equivalent to the assumption of local causality in the
Bell scenario. However, the striking difference is the fact that
the parties involved in the Bell scenario are not operationally
independent. Furthermore, it should be noted that Alice’s or
Bob’s results can be affected by some of Eve’s results, who
is not locally causal to either Alice or Bob. As a result, we
name the assumption as the “no-influence principle” to signify
that there is no causal connection between Alice and Bob
but each of them could be influenced by some other spatially
separated system. Furthermore, in the context of the Bell sce-
nario, one usually justifies the assumption of local causality
due to spacelike separated events and postulates of relativity.
On the contrary, here it is more natural as Alice and Bob
are not correlated to each other. Consequently, the scenario
considered in this Letter is weaker when compared to the Bell
scenario, that is, we identify nonclassical behavior even in
situations where one cannot violate a Bell inequality. Unlike
the Bell scenario, it should be noted here that to ensure oper-
ational independence (1), one needs to perform “all” possible
measurements. Although not practical at present, there exists
an operational criterion to ensure it, unlike the Bell scenario
where one cannot justify special relativity operationally.

Let us now construct a scenario where we can observe the
violation of classical independence with quantum states and
measurements. A natural scenario that one could investigate
in this regard is the standard Bell scenario. However, it is
quite clear that if the correlations between two parties are
operationally independent (2), then one can never observe any
violation of a Bell inequality. Consequently, in this Letter,
we consider the bilocality scenario [7] with three parties as
described below.

The scenario. We consider three parties, namely, Alice,
Bob, and Eve, in three different spatially separated labs. Alice
and Bob receive a single particle from sources S1, S2, re-
spectively, and Eve receives two particles from both sources.
Unlike the bilocality scenario, the sources here need not be

independent of each other, thus we call it the “weak-bilocality
scenario.” Now, Alice and Bob perform two dichotomic mea-
surements on their particles which they can freely choose.
Eve, on the other hand, can only perform a single four-
outcome measurement. The measurement inputs of Alice and
Bob are denoted as x, y = 0, 1, respectively, and their out-
comes are denoted as a, b = 0, 1, whereas the outcomes of
Eve are denoted as e = 0, 1, 2, 3. The scenario is depicted in
Fig. 1. In Fig. 2, we show the causality graph of the weak-
bilocality scenario.

The experiment is repeated enough times to con-
struct the joint probability distribution or correlations, �p =
{p(a, b, e|x, y)}, where p(a, b, e|x, y) denotes the probability
of obtaining outcome a, b, e by Alice, Bob, and Eve when
they choose the inputs x, y, respectively. These probabilities
can be computed in quantum theory using the Born rule as

p(a, b, e|x, y) = Tr
[(

NA
a|x ⊗ NB

b|y ⊗ NE
e

)
ρABE

]
, (5)

where NA
a|x, NB

b|y, NE
e denote the measurement elements of

Alice, Bob, and Eve corresponding to x, y input and ρABE

denotes the joint state generated by the source S1, S2.
The measurement elements are positive semidefinite and∑

a NA
a|x = ∑

b NB
b|y = ∑

e NE
e = 1 for all x, y. It is important

to recall here that Alice and Bob cannot communicate with
each other during the experiment.

It is usually simpler to express the probabilities in terms of
expectation values as

〈
AxByNE

e

〉 = p(0, 0, e|x, y) + p(1, 1, e|x, y)

−p(0, 1, e|x, y) − p(1, 0, e|x, y), (6)

where Ax,By denote Alice’s and Bob’s observable corre-
sponding to the input x, y, respectively, and can be expressed
as si = Ns

0|i − Ns
1|i for s = A, B.

Violation of classical independence. Let us now restrict
that the correlations p(a, b|x, y) are operationally independent
(Definition 1), that is, p(a, b|x, y) = p(a|x)p(b|y).

Now, let us express the joint probability distribution
p(a, b, e|x, y) as

p(a, b, e|x, y) =
∑

λ

p(λ)p(a, b, e|x, y, λ). (7)

Using Bayes rule, the probability p(a, b, e|x, y, λ) can be
rewritten as

p(a, b, e|x, y, λ) = p(a|x, b, y, e, λ)p(b|x, y, e, λ)p(e|x, y, λ).
(8)

Assuming no-influence (Definition 2) allows us to conclude
that p(a|x, b, y, e, λ) = p(a|x, e, λ) and p(b|x, y, e, λ) =
p(b|y, e, λ). Furthermore, the fact that Eve’s outcome e is
independent of Alice’s or Bob’s inputs x, y allows us to
conclude that

p(a, b, e|x, y) =
∑

λ

p(a|x, e, λ)p(b|y, e, λ)p(e|λ)p(λ). (9)

Notice that in the bilocality scenario [7], one addition-
ally assumes that p(a|x, e, λ) = p(a|x, λ) and p(b|y, e, λ) =
p(b|y, λ).

Let us now consider an example, as suggested by
the referee, exhibiting a classical implementation of the
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FIG. 1. Weak-bilocality scenario. Alice and Bob each receive a single particle from their respective sources, which might be correlated
to each other, while Eve receives two particles, one from each of these sources. Alice and Bob have the freedom to independently select and
conduct two dichotomic measurements on their respective particles. In contrast, Eve’s measurement is constrained to a single four-outcome
measurement. None of the parties can communicate with each other.

above-presented notion. Consider again the weak-bilocality
scenario (see Fig. 1) such that each source distributes one bit
to each party. Furthermore, both bits of Alice and Eve are
either 0 or 1 with equal probability. Similarly, both bits of
Bob and Eve are either 0 or 1 with equal probability. In this
case, Alice and Bob are operationally independent, since each
gets in half of the cases when the bit is 0 or 1 independent of
the other party. The additional information e here is whether
Eve’s both bits are equal or different, that is, e = 0 (equal)
or 1 (different). This is similar to the scheme of classical
teleportation or entanglement swapping [12]. Now, one can
always construct a hidden-variable model with λ = 0, 1 such
that for any e, a, b = 0, 1 as

p(a|e, λ) = δa,λ, p(b|e, λ) = δb⊕e,λ, (10)

such that no-influence principle (3) is satisfied. Thus, Alice
and Bob are classically independent.

Inspired by Ref. [9], we will now construct a linear func-
tional constructed from the joint probability distribution �p to
show that quantum theory violates classical independence. In
terms of observables, the functional can be represented as

I = 〈A0(B0 − B1)E0 + A1(B0 + B1)E1〉, (11)

where E0 = NE
0 − NE

1 − NE
2 + NE

3 and E1 = NE
0 + NE

1 −
NE

2 − NE
3 . As shown below, the above inequality can be bro-

ken up into conditional CHSH inequalities, up to the presence
of Eve’s measurement, which were useful to prove that every

FIG. 2. Causality graph of the weak-bilocality scenario. The
square boxes represent the measurement devices and the circles
represent the sources. The gray circle represents a hidden variable
that might correlate the sources.

pure entangled state is Bell nonlocal [13] and self-testing the
Bell basis [14].

Let us compute the maximum value of I (11) achiev-
able using correlations that satisfy “classical independence.”
We will further call this value as the classical bound and
denote it as βC . For this purpose, let us express the expectation
value (6) using (9) as

〈
AxByNE

e

〉 =
∑

λ

p(λ)p(e|λ)[p(0|x, e, λ) − p(1|x, e, λ)]

× [p(0|y, e, λ) − p(1|y, e, λ)], (12)

which can be simply stated as
〈
AxByNE

e

〉 =
∑

λ

p(λ)p(e|λ)〈Ax,e,λ〉〈By,e,λ〉. (13)

Using the above expression, we now calculate the classical
bound of I (11).

Fact 1. Consider the functional I (11). The maximum value
βC that can be achieved by classically independent correla-
tions is βC = 2.

Proof. For our purpose, we rewrite the functional I (11) as

I =
∑

i, j=0,1

〈
I i, j

CHSHNE
i, j

〉
(14)

such that NE
i, j ≡ NE

2i+ j and

I i, j
CHSH = (−1)i(−1) jA0(B0 − B1) + A1(B0 + B1). (15)

Now, taking the absolute value of Eq. (14) and using triangle
inequality gives us

|I| �
∑

i, j=0,1

∣∣〈I i, j
CHSHNE

i, j

〉∣∣. (16)

Expanding the terms on the right-hand side individually and
using (13) gives us

∣∣〈I i, j
CHSHNE

i, j

〉∣∣ �
∑

λ

p(λ)p(i, j|λ)(|〈A0,i, j,λ〉(〈B0,i, j,λ〉

− 〈B1,i, j,λ〉)| + |(−1) j〈A1,i, j,λ〉
× (〈B0,i, j,λ〉 + 〈B1,i, j,λ〉)|). (17)

Now, using the fact that |〈Ax,e,λ〉| � 1 for any x, e, λ we obtain
that

∣∣〈I i, j
CHSHNE

i, j

〉∣∣ �
∑

λ

p(λ)p(i, j|λ)(|〈B0,i, j,λ〉 − 〈B1,i, j,λ〉|

+ |〈B0,i, j,λ〉 + 〈B1,i, j,λ〉|). (18)
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Furthermore,

|〈B0,i, j,λ〉 − 〈B1,i, j,λ〉| + |〈B0,i, j,λ〉 + 〈B1,i, j,λ〉|
= 2 max(|〈B0,i, j,λ〉|, |〈B1,i, j,λ〉|) � 2. (19)

Consequently, we obtain from Eq. (18) that
∣∣〈I i, j

CHSHNE
i, j

〉∣∣ � 2p(i, j), (20)

which summing over i, j finally gives us |I| � 2. This com-
pletes the proof. �

Consider now the quantum state |ψABE 〉 = |φ+
AA

〉 ⊗ |φ+
BB

〉
such that E ≡ AB and |φ+〉 is the two-qubit maximally entan-
gled state. It is easy to check that such a state will always
generate correlations between Alice and Bob that are op-
erationally independent (Definition 1). Also, consider that
Alice’s and Bob’s observables are given by

Ã0 = σz, Ã1 = σx,

B̃0 = σz + σx√
2

, B̃1 = σx − σz√
2

, (21)

along with Eve’s measurement given by the Bell basis as
ÑE

i, j = |φi, j〉〈φi, j | where |φi, j〉 = 1√
2
(|i j〉 + (−1)i|i j〉) where

i, j = 0, 1 and NE
i, j ≡ NE

2i+ j . Plugging these states and observ-

ables in the functional I (11) gives us the value 2
√

2. Thus,
quantum theory violates the notion of classical independence.
Consequently, one can conclude that systems that are oper-
ationally independent can influence each other. We show in
Theorem 1 that 2

√
2 is in fact the maximal value achievable

using quantum theory.
We can identify some necessary conditions to violate the

notion of classical independence using quantum states and
measurements. The first necessary condition is that Eve needs
to perform an entangled measurement as one can observe
from Eq. (9). This is contrary to the violation of bilocality
which can also happen with separable measurements with
Eve. Further on, the sources generating entangled states be-
tween Alice-Eve and Bob-Eve are necessary. Although the
inequality (11) considered in this Letter requires incompati-
ble measurements to obtain any violation, one further needs
to explore whether or not incompatible measurements are a
necessity to violate classical independence. Let us now dis-
cuss an interesting application arising due to the violation of
classical independence.

Self-testing. Self-testing is the strongest device-
independent scheme that allows one to certify the quantum
states and measurements without making any assumption on
the devices involved apart from the fact that they are governed
by quantum theory [15]. Self-testing in quantum networks
has been explored recently [10,14,16–20], however, all of
these schemes also assume that the sources are independent
(see nevertheless Ref. [21]). Here, we do not need to assume
it as we show below that the condition of operational
independence [see Eq. (1)] allows one to conclude that the
sources are independent.

Lemma 1. Consider the weak-bilocality scenario such
that the state shared between Alice and Bob is given by
ρAB. If Alice and Bob are operationally independent, then
ρAB = ρA ⊗ ρB.

Proof. If Alice and Bob are operationally independent, then

p(a, b|A,B) = p(a|A)p(b|B) ∀a, b,A,B. (22)

Putting quantum states and restricting to rank-one projective
quantum measurements gives us

〈ψa|〈ψb|ρAB|ψa〉|ψb〉 = 〈ψa|ρA|ψa〉〈ψb|ρB|ψb〉 (23)

for all |ψa〉, |ψb〉. Thus, we can conclude that

〈ψa|〈ψb|ρAB|ψa〉|ψb〉 = 〈ψa|〈ψb|ρA ⊗ ρB|ψa〉|ψb〉, (24)

and consequently we have that ρAB = ρA ⊗ ρB. This com-
pletes the proof. �

Let us now state the self-testing result. Let us recall here
that any measurement can only be certified on the local sup-
port of the states. Consequently, one can always assume that
the local states of all the parties are full rank. Furthermore,
our self-testing result is based on the definitions introduced in
Ref. [11].

Theorem 1. Assume that the operationally independent
correlations �p attain the quantum bound of I (11). Then, for
s = A, B: (i) The Hilbert spaces of all the parties decompose
as Hs = Hs′ ⊗ Hs′′ and Hs = Hs′ ⊗ Hs′′ , where Hs′ = Hs′ ≡
C2 is the target Hilbert space and Hs′′ ,Hs′′ denotes the junk
Hilbert spaces. (ii) There exist local unitary transformations
Us : Hs → Hs and Us : Hs → Hs such that

(Us ⊗ Us)|ψss〉 = |φ+
s′s′ 〉 ⊗ |ξs′′s′′ 〉 (25)

for some junk state |ξs′′s′′ 〉 ∈ Hs′′ ⊗ Hs′′ , and the measurements
of all parties are certified as

U NE
i, j U

† = |φi, j〉〈φi, j |E ′ ⊗ 1E ′′ , (26)

where U = ⊗sUs and E ≡ AB denoting the system of
Eve such that HE = HA ⊗ HB = C2 ⊗ C2 ⊗ HA

′′ ⊗ HB
′′ ≡

(C2 ⊗ C2)E ′ ⊗ HE ′′ with

UBB0U
†
B = σz + σx√

2
⊗ 1B′′ , UBB1U

†
B = σx − σz√

2
⊗ 1B′′ ,

UAA0U
†
A = σz ⊗ 1A′′ , UAA1U

†
A = σx ⊗ 1A′′ . (27)

The proof of the above theorem is given in the Supplemen-
tal Material [22].

Discussions. Let us observe that the assumptions con-
sidered in this Letter are weaker when compared to the
bilocality scenario [7] as we allow Eve to influence Alice’s
and Bob’s results. Furthermore, in any quantum network in-
cluding the bilocality scenario one needs to further assume
that the sources are statistically independent of each other
(see nevertheless Ref. [21]). This is an extremely strong as-
sumption as one can never operationally establish that two
sources are independent of each other. However, here we do
not put any restrictions on the sources and even allow them to
be entangled. Furthermore, the bilocality scenario has already
been experimentally implemented [23] and thus we believe
that the violation of inequality (11) can be easily tested.

Analyzing the above result from a realist perspective gives
an interesting insight towards understanding whether a mea-
surement on an entangled counterpart produces a physical
change on the other. In the Bell scenario, a possible ex-
planation for the observed nonlocal correlations is that the
measurement by Alice updates the state with Bob or vice
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versa. However, such an explanation in the above-presented
scenario is not consistent. First, consider that Eve performed
her entangled measurement before Alice and Bob, then as the
states between Alice and Bob are entangled, then one can
explain the violation of classical independence using a similar
realist explanation as the Bell scenario. However, consider
now that Eve has not performed her entangled measurement,
then as the states between Alice and Bob are separable, any
measurement by Alice should not alter Bob’s state but can
alter Eve’s state. Consequently, there exist spacelike frames
of reference where Alice’s state update is caused by Bob’s
measurement and other frames where it remains unchanged.
Thus, whether the “physical state” of Alice gets updated when
Bob performs a measurement depends on the information
about Eve’s result which again is problematic if one considers
that the cause-effect relationship is not epistemic.

Several interesting problems follow up from our work. The
most interesting among them would be to explore in detail
whether or not a cause-effect relationship between two events
is consistent in quantum theory. A simpler problem will be to
extend the weak-bilocality scenario to the multipartite regime
with an arbitrary number of sources or a higher number of
outcomes. Furthermore, it will be extremely interesting if one
can use the above-presented self-testing result to construct a
device-independent key distribution scheme or for random-
ness certification.
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