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Transmission of vortex electrons through a solenoid
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We argue that it is nonstationary Laguerre-Gaussian (NSLG) states rather than the Landau ones that appro-
priately describe electrons with orbital angular momentum both in their dynamics at the boundary between
a solenoid and vacuum and inside the magnetic field. It is shown that the root mean square (rms) radius of
the NSLG state oscillates in time and its period-averaged value can significantly exceed the rms radius of
the stationary Landau state. We propose several experimental scenarios to probe this unconventional quantum
dynamics in the magnetic fields typical for electron microscopes and particle accelerators.
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Introduction. The manipulation of electrons with or-
bital angular momentum (OAM), dubbed twisted or vortex
electrons [1,2], is a useful tool with great prospects for appli-
cations in electron microscopy, nanomaterials studies, particle
physics, accelerator physics, and other fields [3–8]. The most
common technique to generate twisted electrons is to let the
beam go through a phase plate [9,10] or a hologram [3,11,12],
alongside methods using surface plasmon polaritons [13]. The
states obtained with these methods can often be described as
Laguerre-Gaussian wave packets [1,8]. The probability den-
sity of such states evolves in time, and a solenoid (magnetic
lens) can be used to effectively control the spreading of the
packets, both in an electron microscope [14,15] and in a
particle accelerator [16].

Within the hard-edge approximation, a thick magnetic
lens can be described as a semi-infinite magnetic field. In a
real-life experiment (see Fig. 1), a free electron first prop-
agates in vacuum towards the solenoid while spreading,
then enters the lens, and continues its propagation inside it.
A common description of the transmission of an electron
from the field-free space to the solenoid relies on evalu-
ating the dynamics of the observables via the Heisenberg
equation of motion, and so no assumptions regarding the
electron state are needed. However, far from the boundary
the electron state is conventionally thought of as a stationary
Landau state [8,17,18] that does not spread in time. There
have been several approaches to extend the description of
an electron in the field beyond the Landau states [8,19–
24]. Nonetheless, the transformation of the electron state it-
self during the transmission process has not yet been fully
understood.

The aim of the present Letter is to point out that it is
the nonstationary Laguerre-Gaussian (NSLG) states rather
than the Landau ones that provide an accurate description
of an electron inside a solenoid after passing the boundary.
Moreover, we show that the relevance of employing the NSLG
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states is not only in gaining a consistent description of the
electron dynamics near the boundary, but also in predicting
the oscillations of the rms radius far from it. In particular, we
demonstrate that the time-averaged rms radius of the NSLG
state inside the field usually significantly exceeds that of
the Landau state, even far away from the boundary where
the Landau state might be expected to provide an adequate
description. This increase in the rms radius is somewhat
analogous to broadening of the classical trajectories during
synchrotron radiation [25], but it occurs even when no photons
are emitted.

For simplicity, we illustrate our approach with a spinless
electron, the transverse energy of which stays much less than
mc2. In principle, spin can easily be included [23], and our
approach can be extended into the relativistic regime via the
light-cone variables [22,26–28]. Throughout this Letter, h̄ =
c = 1, the electron charge e < 0, and the electron mass equals
the inverse Compton wavelength, m = λ−1

C .
Landau states approach. We introduce the magnetic lens

as a semi-infinite stationary and homogeneous magnetic field
H = Hθ (z − z0)ez, ez = (0, 0, 1). The step function θ (z) re-
flects the hard-edge boundary of the lens located at z0.

z

H
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FIG. 1. A free electron passing the boundary between vacuum
and a solenoid (magnetic lens). Here, zg and z0 are the coordinates of
the electron source and the boundary, respectively.
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Detailed comments on the whole-space wave function in such
an external field, its continuity, and on the applicability of
the hard-edge approximation are given in the Supplemental
Material [29] (see also Refs. [30,31] therein). The electron
wave packet propagates rectilinearly along the z axis with the
mean velocity v. To characterize the transverse dynamics of
the packet, we study the dynamics of the rms transverse radius
ρ(t ) =

√
〈ρ2〉(t ).

The wave packet generated in free space at a time tg is
known to spread in time according to

ρf(t ) = ρw

√
1 + (t − tg)2/τ 2

d , (1)

where τd = ρw/u is the diffraction time, ρw is the beam waist,
u is the transverse velocity dispersion, and the subscript
“f” stands for “free” [8]. As such an electron travels from
the source to the lens, it acquires a nonzero divergence rate
ρ ′

0 = dρf/dt |t=t0 and its rms radius grows by a factor of

ρ0/ρw =
√

1 + (t0 − tg)2/τ 2
d , where t0 = |z0 − zg|/v is the

moment the electron enters the lens.
Inside the field, the system is described by the Hamiltonian

Ĥ = −λC

2
� + ω

2
L̂z + ω2

8λC
ρ2 = Ĥ⊥ − λC

2
∂2

z , (2)

where λC = m−1 is the Compton wavelength, and L̂z =
−i∂/∂ϕ is the canonical OAM operator. The rms radius of
the electron starts oscillating according to the Heisenberg
equation of motion [8,17,32],

ρ2(t ) = ρ2
st + (

ρ2
0 − ρ2

st

)
cos (ωτ ) + 2ρ0ρ

′
0

ω
sin (ωτ ),

ρ2
st = 2λCω−1(2ω−1〈Ĥ⊥〉 + 〈L̂z〉). (3)

Here, ω = eHλC is the cyclotron frequency and τ = t − t0 >

0. The subscript in ρst implies the “stationary” radius; the
quantity itself is the square root of the period-averaged mean-
square radius and is the characteristic radius around which the
oscillations occur.

Both in vacuum (1) and inside the lens (3) the expres-
sions for the rms radii can be obtained without specifying the
electron state. Nonetheless, the latter quantitatively affects the
oscillations of the rms radius by dictating ρ2

st in Eq. (3), as
well as ρw and τd in Eq. (1). Far from the boundary, electrons
are usually believed to be described by the Landau states, and
ρ2

st is commonly evaluated with the aid of the Landau wave
functions as

ρ2
st

∣∣
Landau = ρ2

L = σ 2
L (2n + |l| + 1), (4)

where σL = √
2/|eH | and ρL is the rms radius of the Landau

state with a radial quantum number n = 0, 1, 2, . . . and an
OAM l = 0,±1,±2, . . . [8,17,32].

As we show hereafter, it is generally not the case that
ρst = ρL. Equation (4) is satisfied only for the specific bound-
ary values ρ0 and ρ ′

0, not governed by any physical principle.
In experiment, these parameters can vary from these specific
values, leading to a significant increase of ρst as compared to
ρL. That affects the main characteristics of the oscillations.

NSLG states. Let us find an alternative to the Landau state
that would describe a twisted electron inside a solenoid after

entering it from free space with arbitrary parameters ρ0 and ρ ′
0

at the boundary. Following the seminal work of Silenko et al.
[33], we note that the transverse electron wave function admits
a general form, both in vacuum (z < z0) and in the magnetic
field (z > z0) [8,33]:

�n,l (ρ, t ) = N
ρ|l|

σ |l|+1(t )
L|l|

n

(
ρ2

σ 2(t )

)

× exp

[
ilϕ − i�G(t ) − ρ2

2σ 2(t )

(
1 − i

σ 2(t )

λCR(t )

)]
.

(5)

We refer to it as a nonstationary Laguerre-Gaussian state. The
wave function (5) describes a vortex electron with an OAM
l , and the difference between the NSLG states in free space
(NSLGf) and in the magnetic field (NSLGH) is governed by
the optical functions: dispersion σ (t ), radius of curvature R(t ),
and Gouy phase �G(t ).

The rms radius of the NSLG state is

ρ(t ) = σ (t )
√

2n + |l| + 1. (6)

Equations for the optical functions of the NSLGH state follow
from the Schrödinger equation:

1

R(t )
= σ ′(t )

σ (t )
,

1

λ2
CR2(t )

+ 1

λ2
C

[
1

R(t )

]′
= 1

σ 4(t )
− 1

σ 4
L

,

1

λC
�′

G(t ) = l

σ 2
L

+ (2n + |l| + 1)

σ 2(t )
. (7)

The first equation in (7) allows us to further use σ ′(t ) rather
than R(t ) as a characteristic of the NSLG packet.

A special choice of the initial conditions σ (t0) = σL,
σ ′(t0) = 0 for the system (7) leads to a nonspreading solution

σ (t ) = σL, σ ′(t ) = 0, �G(t ) = ε⊥t, (8)

where ε⊥ = ω(2n + |l| + l + 1)/2 is the energy of the Lan-
dau state. These optical functions turn the state (5) exactly
into the Landau one with ρst given by Eq. (4).

To find the more general form of the NSLGH state, we
suggest solving the system (7) with initial conditions for the
dispersion and its derivative given by the NSLGf state at the
time t0 when the electron enters the lens,

σ (t0) = σ0 = ρ0√
2n + |l| + 1

,

σ ′(t0) = σ ′
0 = ρ ′

0√
2n + |l| + 1

, (9)

where ρ0 and ρ ′
0 are the rms radius (1) and the divergence rate

of the NSLGf state generated in field-free space at the time
tg, respectively. These conditions imply the continuity of the
wave function at the boundary. We abstain from writing down
the Gouy phase because it does not affect the dynamics of the
rms radius.
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FIG. 2. Oscillations of the rms radius of the NSLGH wave packet in a magnetic field (solid red line), ρst = (1/Tc )
∫ Tc

0 ρ2(t )dt (dotted-dashed
green line) and ρL(dashed blue line). The parameters are listed in Table I. (a) SEM, (b) TEM, (c) medical linac, (d) conventional linac.

The dispersion of the NSLGH packet then reads

σ (t ) = σst

√√√√
1 +

√
1 −

(
σL

σst

)4

sin [s(σ0, σ
′
0)ω(t − t0) − θ ],

σ 2
st = σ 2

0

2

[
1 +

(
σL

σ0

)4

+
(

σ ′
0σ

2
L

λCσ0

)2
]
, (10)

θ = arcsin
1 − (σ0/σst )2√
1 − (σL/σst )4

,

where we have defined

s(σ0, σ
′
0) =

⎧⎪⎨
⎪⎩

sgn(σ ′
0), σ ′

0 �= 0,

sgn(σL − σ0), σ ′
0 = 0,

0, σ0 = σL and σ ′
0 = 0.

(11)

Notice that the quantum numbers n and l do not affect the rms
radius dynamics, except for scaling the oscillation magnitudes
according to Eq. (6). Thus, even if a Gaussian electron with
n = l = 0 approaches the magnetic field, the same conditions
σ (t0) = σL, σ ′(t0) = 0 have to hold for the electron to turn
into the Landau electron inside the field.

An NSLGH state may be thought of as a complex super-
position of a large number of Landau states [34]. However, it
is still possible to obtain a single Landau state in a solenoid.
This can be achieved by refocusing the electron beam so that
its waist is at the boundary and adjusting the beam size and
the field strength, ensuring σ0 = σL, which can be somewhat
challenging to realize in experiment.

One can give the following qualitative explanation for the
oscillations of the rms radius according to Eq. (10) involving
two processes. First, the wave packet shrinks because of the
Lorentz force acting on each Bohmian trajectory. Second, the
wave packet spreads similar to an NSLGf in Eq. (1). While
the wave packet is wide, the radial Lorentz force, caused by
the azimuthal velocity component in the longitudinal mag-
netic field, dominates, leading to a decrease in the rms radius.
As the radius becomes small enough, the quantum-mechanical
spreading of the wave packet takes over and leads to expan-
sion instead of shrinking.

The mean energy of the NSLGH state,

〈E⊥〉 = ω

2
(2n + |l| + 1)

σ 2
st

σ 2
L

+ ω

2
l � ε⊥, (12)

is almost always greater than the energy of the Landau state
because σ 2

st/σ
2
L � 1. The resulting energy excess can be at-

tributed to the intrinsic motion of the wave packet due to
the rms radius oscillations. This motion can be interpreted as
quantum betatron oscillations [25]. Such an NSLGH state’s
“breathing” is also reflected in a larger scale of the stationary
radius ρ2

st, when evaluated with the NSLGH state,

ρ2
st

∣∣
NSLGH

= 1

Tc

∫ Tc

0
ρ2(t )dt = ρ2

L
σ 2

st

σ 2
L

� ρ2
L, (13)

where Tc = 2πm/|eH | is the cyclotron period. To underline
the distinction between the NSLGH state and the Landau one
we introduce

ξ1 = σL

σ0
, ξ2 = |σ ′

0|σL

λC
. (14)

When ξ1 = 1 and ξ2 = 0, ρ2
st of Eq. (13) coincides with that

of Eq. (4), obtained with the Landau state. However, in this
case Eq. (3) degenerates into ρ2(t ) = ρ2

L and no oscillations
occur at all. From Eq. (13) it follows that ρ2

st|NSLGH � ρ2
L

when either ξ1 � 1, ξ1 	 1, or ξ2 � 1.
To illustrate the current approach, we compare our results

with the dynamics of twisted electrons investigated experi-
mentally in Refs. [14,15]. The authors obtained a free-electron
state that, after refocusing, enters a region of a quasiuniform
magnetic field and shrinks in size while propagating inside it.
During the time when the size of the electron wave packet
inside the solenoid stays comparable to ρL, the electron is
thought of as a Landau state. However, the process of the
electron crossing the boundary between vacuum and magnetic
field and further propagating inside might be better interpreted
in the NSLG states formalism. One can reproduce the ob-
tained behavior of the rms radius inside the lens [see Fig. 2(b)
in Ref. [14]] using Eqs. (10) and (6) and the parameters n = 0,
|l| = 1, σ0 = 4.77 × 10−2 µm, σ ′

0 = −3.1 × 10−4. Thus, we
argue that what was observed in Ref. [14] may be a part of the
oscillations predicted by the NSLG states approach. For the
discussed experimental setup we estimate that ξ1 = 0.76 and
ξ2 = 29.21 � 1 leading to

ρ2
st

∣∣
NSLGH

= 20.7 ρL � ρL. (15)

Hence, typically, ρst significantly exceeds ρL and for oscilla-
tions to occur around the latter very specific parameters of the
incoming electron packet must align.

Experimental feasibility. To observe the oscillations of
the rms radius described by the NSLGH state, we propose
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TABLE I. Experimental scenarios for observing the oscillations of the rms radius ρ(z). We take σw = 1 µm, n = 0, l = 3. The parameters
ξ1 = σL/σ0 and ξ2 = σ ′

0σ
2
L/(λCσ0) reflect the discrepancy between the NSLGH state and the Landau one, the latter being reproduced when

ξ1 = 1 and ξ2 = 0.

Setup E‖ v H ρL d zR ρ0 dρ/dz|z=z0 ξ1 ξ2

SEM 1 keV 0.06 c 1 T 72.6 nm 16.3 cm 16.3 cm 2.82 µm 8.7 pm/µm 0.026 6.7×10−4

TEM 200 keV 0.70c 1.9 T 52.7 nm 10 cm 179 cm 2 µm 62 pm/mm 0.026 3.9×10−5

Medical linac 1 MeV 0.94c 0.1 T 0.23 µm 10 cm 243 cm 2 µm 0.34 nm/cm 0.115 5.5×10−4

Linac 1 GeV c 0.01 T 0.72 µm 100 cm 258 cm 2.14 µm 0.28 µm/m 0.339 0.045

several experimental scenarios for the parameters and energy
scales typical for different setups: a scanning electron micro-
scope (SEM), a transmission electron microscope (TEM), a
low-energy linear accelerator (for instance, for medical appli-
cations), and a conventional linac. Additional solenoids must
be adjusted to these electron sources to provide regions of ap-
proximately constant and homogeneous magnetic field. In an
experiment, the distribution of a twisted electron probability
density in the transverse plane can be measured consecu-
tively at various distances z along the solenoid axis with, for
instance, a CCD camera. Subsequently,

√
〈ρ2〉, obtained as

a function of z, can be expressed in terms of t = z/v and
compared to our predictions.

The parameters for different setups are presented in Ta-
ble I and the corresponding oscillations of the rms radii
are depicted in Fig. 2. We take σw = 1 µm (a characteristic
scale [3,9,11] for the devices generating twisted electrons)
and consider quantum numbers n = 0, l = 3, that result in
ρw = 2 µm. A different choice of the quantum numbers would
lead to simple rescaling of the rms radius according to Eq. (6).

In Table I we also use the longitudinal energy E‖, mag-
netic field strength H , and the distance between the source
of twisted electrons and the magnetic field d that are typical
for the proposed experimental scenarios [35]. For SEM, we
take a particular value d = 16.3 cm for calculation conve-
nience, though any distance of the order of several cm is
appropriate. We adjust the magnetic field strength in order to
observe several oscillation periods at realistic distances for
each setup. For instance, for a linac we take H = 0.01 T
in order to observe oscillations at several meters. If needed,
one may increase the field strength to proportionally de-
crease the observation distance. On the other hand, SEM
and TEM usually have magnetic fields of the order of 1 T
and their observation distances are somewhat limited by their
design.

For the NSLGf state with σw = 1 µm, the diffraction time
is τd = σ 2

w/λC = 8.6 ns, and the Rayleigh length, zR = vτd,
scales with the electron energy. For example, in the second
row of Table I, the Rayleigh length for TEM, zR = 179 cm,
is much greater than the distance between the source and
the solenoid, d = 10 cm. This leads to the rms radius at the
boundary ρ0 ≈ 2 µm being almost the same as that at the
electron source ρw = 2 µm. The divergence rate dρ/dz|z=z0 =
ρ ′

0/v reflects the change in the rms radius with the distance
traveled by the electron along the field near the boundary. For
the proposed scenarios, ξ2, the dimensionless analog of the

divergence rate, shows that the divergence rate is low and does
not affect the dynamics of the electron in solenoids.

Notice the sharp wedgelike pattern of the rms radius oscil-
lations in the bottom parts of Figs. 2(a)–2(c). It illustrates the
influence of the parameters ξ1 and ξ2 on the electron behavior
inside the field. Deviations of ξ1 from 1 and ξ2 from 0 in
all the entries of Table I emphasize the distinction between
the NSLGH state and the Landau one. For SEM, TEM, and a
medical linac, ρst (dotted-dashed green line in Fig. 2) is almost
an order of magnitude greater than ρL (dashed blue line). On
the other hand, for a linac [Fig. 2(d)] the parameters ξ1 and ξ2

do not differ as much from 1 and 0, correspondingly, and ρst

is just twice larger than ρL.
Conclusion. We have put forward an approach to the prob-

lem of transmission of a free twisted electron through a sharp
boundary between a solenoid and vacuum based on the de-
scription in terms of NSLG states. This formalism enables the
smooth transition of a free NSLGf state to a single NSLGH

mode inside the field. The transformation of a free Laguerre-
Gaussian electron inside the lens into the NSLGH state leads
to oscillations of the rms radius. These oscillations have
usually been expected to occur around the value predicted
by the stationary Landau state. Somewhat counterintuitively,
the time-averaged value of the rms radius can generally be
much larger (up to several orders of magnitude) than ρL. For
instance, for typical TEM parameters H = 1.9 T, σ0 = 47.7
nm, σ ′

0 = −3.1 × 10−4 from Ref. [14], ρst is 20 times larger
than the one predicted by the Landau states. The opposite case
is σ0 � σL and σ ′

0 	 λC/σL. For such parameters, the NSLGH

states resemble the Landau ones and the oscillations occur
around ρL with a low magnitude.

Although there is evidence that the NSLGH states more
adequately describe quantum dynamics of the vortex electrons
inside a magnetic lens, further experimental as well as the-
oretical scrutiny is required. For example, going beyond the
hard-edge approximation, and considering an off-axis enter-
ing of an electron into a solenoid would make the proposed
approach more realistic. We have proposed several scenarios
that have the potential to observe the rms radius oscillations
with parameters typical for setups ranging from SEM to linear
accelerators.
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