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Nonlinear effects in Anderson localization of light by two-level atoms
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We investigate the simultaneous presence of several photons in disordered three-dimensional cold atom clouds,
beyond the idealized condition of a single photon for Anderson localization. We find that the presence of these
multiple excitations does not affect substantially the abnormal intensity fluctuations which characterize the
Anderson localization transition, provided that the radiated light is frequency filtered. Indeed, long-lived modes,
and particularly the localized ones, are strongly saturated even for a weak pump, leading to a large increase
of the inelastic scattering and to reduced fluctuations in the total radiation. Yet the atomic coherences and the
resulting elastic scattering remain a proper witness of the Anderson localization transition. Thus, frequency
filtering appears as an efficient tool to discriminate single-excitation phenomena from many-body ones, and one
can expect that the fluorescence spectrum will in turn allow us to investigate many-body localization.
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Introduction. Since its introduction in the context of the
metal-to-insulator transition for electronic transport [1], An-
derson localization by disorder has been shown to be a general
wave phenomenon. In three dimensions, it has since been
reported experimentally for elastic waves [2], atomic matter
waves [3], and electrons [4]. Anderson localization formally
corresponds to the localization of a single excitation; that is,
if several waves or excitations are present, they do not interact
with each other.

In this context, the localization of light seems particu-
larly promising, since photons are notoriously inefficient at
interacting with each other. However, the initial experimental
reports of light localization in three dimensions [5,6] have
been later reinterpreted [7–9], and an unambiguous observa-
tion is still missing [10]. From a theoretical point of view, the
near-field terms coupling the different polarization channels
have been pointed at as an obstacle to localization [11–13],
challenging the mere existence of Anderson localization of
light in three dimensions. These advances stimulated new
proposals to restore light localization [14,15], taking advan-
tage of the tunability of the light-emitter interaction in cold
atom platforms, along with their relative absence of decoher-
ence mechanisms: decoupling the polarization channels with
a strong external field [14] or randomly shifting the atomic
resonance of each atom with a disordered field [15]—one step
closer to the original Anderson model [1].

Nonetheless, while the use of a weak drive may seem
sufficient to guarantee that the atoms will react linearly to
the pump field, thus guaranteeing the pristine condition of
noninteracting waves, long-lived modes have actually been re-
ported to be particularly sensitive to nonlinear effects [16,17].
Indeed, localized modes present lifetimes which are orders of
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magnitude larger than those of single atoms, so their effective
saturation may be equally larger. This questions the possibility
to observe light localization in cold atomic clouds, as nonlin-
ear effects may arise even for the weakest pumps.

In this work, we investigate the localization of light in
disordered clouds of two-level atoms submitted to a clas-
sical weak pump, and in the scalar light approximation. A
mean-field (MF) approximation allows us to simulate large
disordered systems, neglecting the quantum correlations be-
tween the atomic dipoles, yet capturing collective linewidths
and frequency shifts. Close to the atomic resonance, where
localized and subradiant modes are most efficiently addressed,
a strong increase of the inelastic scattering is observed, which
stems from the narrow linewidth of these modes. Never-
theless, we show that the coherence stored in the atomic
dipoles preserves the signature of the localization transition,
even when the localized modes are strongly saturated: The
resulting enhanced intensity fluctuations can be monitored
by frequency filtering the radiated light, as the elastically
scattered signal exhibits these abnormal statistics [18,19]. Our
work is, thus, a first step toward the transition from single- to
multiexcitation localization of light in three-dimensional cold
atom systems.

Single excitation vs mean field. Let us here consider a
cloud of N two-level atoms (ground and excited states |gj〉
and |e j〉, respectively) with positions r j , with a transition
characterized by its frequency ωa, linewidth �, and raising
and lowering operators σ̂±

j for atom j. The system is pumped
by a monochromatic classical field with a Gaussian profile of
waist w0, with Rabi frequency �0 at the waist, and detuned
by � = ωlaser − ωa from the atomic transition. We introduce
the resonant saturation parameter at the beam waist, s0 =
2�2

0/�
2, and the nonresonant one s(�) = 2�2

0/(�2 + 4�2).
Within the Born-Markov approximation, the light-mediated
interactions between the atomic dipoles give rise to a master
equation of the form dρ/dt = − i

h̄H[ρ] + L[ρ] associated
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with the following Hamiltonian and Lindbladian:

H[ρ] = − i

h̄

N∑
j=1

[Hj, ρ] − i
N∑

j,m �= j

� jm[σ̂+
j σ̂−

m , ρ], (1)

L[ρ] = 1

2

∑
j,m

� jm[2σ̂−
j ρσ̂+

m − ρ̂σ+
m σ̂−

j − σ̂+
m σ̂−

j ρ], (2)

with Hj = − h̄
2 � j σ̂

z
j + h̄

2 � j (σ̂+
j + σ̂−

j ) being the single-
atom Hamiltonian term (� j the local Rabi frequency)
and � jm = −(�/2) cos(k0|r j − rm|)/k0|r j − rm| and
� jm = δ jm� + (1 − δ jm)� sin(k0|r j − rm|)/k0|r j − rm| being
the dipole-dipole interaction terms [20]. Here we work in
the scalar-wave approximation, in which localization occurs
without resorting to external fields [14,15].

Anderson localization refers formally to single-excitation
dynamics, when the waves do not interact with each
other. This corresponds to the case of states with at
most one photon, of the form |ψ〉 = α |g1g2 . . . gN 〉 +∑N

j=1 β j |g1 . . . e j . . . gN 〉, which leads to the following equa-
tion describing the evolution of the atomic coherences:

dβ j

dt
=

(
i� − �

2

)
β j − i

� j

2
− �

2

N∑
m �= j

eik0|r j−rm|

ik0|r j − rm|βm, (3)

hereafter referred to as coupled dipole equations (CDEs). The
set of Eqs. (3) describes the optical coherences, β j = 〈σ̂−

j 〉,
and contains no information on the excited population. In
order to investigate the role of a finite pump strength, and thus
the presence of multiple photons in the system, we resort to
the MF approach. It accounts for the finite atomic population,
z j = 〈σ̂ z

j 〉, and neglects connected correlations between the
atoms: 〈σ̂ α

j σ̂ β
m 〉 ≡ 〈σ̂ α

j 〉〈σ̂ β
m 〉. We then obtain the following 2N

equations for the coherences β j and the populations z j [21]:

dβ j

dt
=

(
i� − �

2

)
β j + iWjz j, (4a)

dz j

dt
= −�(1 + z j ) − 4Im(β jW

∗
j ), (4b)

Wj = � j

2
− �

2

N∑
m �= j

eik0|r j−rm|

ik0|r j − rm|βm, (4c)

where Wj is the effective Rabi frequency for atom j, com-
posed of the pump and of the radiation from other atoms. The
MF approximation is necessary to reduce drastically the com-
plexity of the Hilbert space of a three-dimensional system, yet
account for the saturation of the atoms. In particular, the set
of Eqs. (4) is nonlinear, as one enters the realm of nonlinear
optics where waves can interact with each other through the
atomic medium.

The far-field intensity of the light scattered by the atoms in
a direction n̂, Itot = ∑

j,m e−ikn̂·(r j−rm )〈σ̂+
m σ̂−

j 〉, can be decom-
posed into elastically and inelastically scattered components,
Itot = Iel + Iin, given by

Iel =
∣∣∣∣∣
∑

j

e−ikn̂·r j β j

∣∣∣∣∣
2

, (5a)

Iin =
∑

j

1 + z j

2
− |β j |2. (5b)

FIG. 1. Variance of the scattered intensity, computed from its
fluctuations over the azimuthal angle and over 50 realizations (a) for
the elastically scattered light Iel, (b) for the total intensity Iel + Iin,
and (c) in the single-excitation regime (3). Simulations realized for
a cylindrical cloud with radius R = 3λ and length h = 6λ, pumped
by a Gaussian beam with waist w0 = 1.5λ and saturation parameter
s0 = 0.1.

Note that the inelastic component (5b) contains only single-
atom contributions due to the MF approximation, which
neglects two-atom connected correlations.

Intensity fluctuations from saturated atoms. Intensity
fluctuations have been reported to witness the Anderson local-
ization transition in the single-excitation regime [18,19]: Let
us now probe these in the multiple-excitation regime, using
the MF approach (4). The fluctuations are here characterized
by the intensity variance of the scattered light, σI = 〈I2〉/〈I〉2,
where 〈·〉 refers to an average over both azimuthal angles
and realizations. More specifically, intensity values are ac-
cumulated over 64 different azimuthal angles and 20 to 100
realizations (depending on the atom number), and the variance
is computed over the obtained complete series. In Fig. 1, the
evolution of the variance σI is presented for athe saturation
parameter s0 = 0.1. Figure 1(a) depicts the fluctuations of the
elastically scattered intensity Iel in a range of detuning and
density for which localization manifests [see Fig. 1(c) and
Ref. [19] for the single-excitation case]. The radiation from
the coherences (5a) thus presents large intensity fluctuations
in the localization region, despite the presence of multiple
excitations in the system. Indeed, at first order the number of
excitations Ne in the cloud can be evaluated by making an
independent scatterer hypothesis where the cloud holds Ne =
Ns/2(1 + s) excitations. In the case of Fig. 1, this corresponds
to more than 100 excitations.

L031501-2



NONLINEAR EFFECTS IN ANDERSON LOCALIZATION OF … PHYSICAL REVIEW A 109, L031501 (2024)

FIG. 2. (a) Intensity as a function of the azimuthal angle φ,
considering the elastic component, the total field, and the single-
excitation sector. (b) Intensity probability distribution function P(I )
for the same parameters, averaged over 100 realizations. Simula-
tions realized for a spherical cloud of N = 1500 particles, density
ρ = 25/λ3, detuning � = 0.8�, and saturation parameter s0 = 0.1.

The total intensity scattered Iel + Iin presents a very dif-
ferent behavior, with reduced fluctuations close to resonance
[see Fig. 1(b)]. This feature stems from the nature of the
fluctuations investigated here: As mentioned before, these
fluctuations refer to variations over space (azimuthal angle)
and atomic realizations of the intensity computed as an ex-
pected value I ∼ 〈Ê†Ê〉. For a given direction of observation
and a given realization, this expected value formally corre-
sponds to an infinitely long measurement for static atoms.
Practically, this measurement needs to be long enough to
capture a large number of photons and get a statistically rep-
resentative intensity, yet short enough to prevent the loss of
coherence from mechanisms such as the atomic motion [22].
However, spontaneous emission from the excited state brings
in a new timescale, that is, the excited state lifetime 1/�.
A proper detection of the fluctuations in the spontaneously
emitted field requires a treatment which addresses quantum
fluctuations, so phenomena such as photon bunching and an-
tibunching on a timescale of 1/� can be addressed. In the
context of the master equation used here, this would mean
dealing with higher-order atom-atom correlations [23,24],
which is beyond the scope of our work.

Thus, the measurement we consider does not capture
fluctuations stemming from spontaneous emission, and the
inelastic scattering contributes a homogeneous background
for the radiated light. This is illustrated in Fig. 2(a), where
the polar profile of the intensity is plotted. The total inten-

sity (red dash-dotted curve) presents the same fluctuations as
the elastic component, yet shifted by the inelastic homoge-
neous background. Note that the linear CDE presents slightly
different fluctuations from the MF approach: This is a sig-
nature of the saturation of the atoms, that is, of the excited
population, which is accounted for in that model. The associ-
ated intensity probability density functions are represented in
Fig. 2(b), where both the elastic component of the MF and the
single-excitation signal exhibit increased fluctuations, with
tails larger than those for Rayleigh’s law, P(I ) ∼ exp(−I/〈I〉),
valid for uncorrelated scatterers. We note that these tails are
responsible for the enhanced fluctuations in the presence of
Anderson localization [19]. In this regime, due to the inelastic
background, the total intensity explores, relatively, a smaller
range of values, which results in reduced fluctuations.

The fact that the localized modes are able to contribute
substantially with elastically scattered light, and that strong
intensity fluctuations can be observed, is not trivial: Indeed,
long-lived modes are saturated even for low saturation param-
eters due to their narrow linewidth [16,17]. This is confirmed
by the spectral analysis of the scattered power, monitoring the
elastically and inelastically scattered powers:

Pel = 4π
∑
j,m

sin(k0|r j − rm|)
k0|r j − rm| β jβ

∗
m, (6)

Pin = 4π

⎡
⎣∑

j

1 + z j

2
− |β j |2

⎤
⎦. (7)

These are obtained by integrating the intensity over all an-
gles, and for independent scatterers the ratio between them is
simply given by the saturation parameter: Pel/Pin = 1/s(�).
We thus define the ratio Rel/in = s(�)Pel/Pin, which quantifies
the inelastic contribution beyond the single-atom effect. Its
behavior as a function of the detuning and the saturation
parameter is presented in Fig. 3(a): Close to resonance, where
most long-lived modes are encountered and populated [25],
spontaneous emission is stronger than for independent scat-
terers, which can be interpreted as the fact that even relatively
low saturation parameters (s ∼ 10−4) are able to saturate the
localized modes and make them radiate inelastically. Oppo-
sitely, far from resonance, the broad-linewidth superradiant
modes are less saturated than independent scatterers would be,
which in turn results in a stronger elastic scattering, yielding
a ratio of Rel/in > 1.

Delving farther into collective scattering modes, we inves-
tigate the contribution of the localized modes to the optical
coherences β j . The modes are considered to be localized
when their spatial shape presents an exponential decaying
profile (more precisely, when the logarithm of their profile
presents a linear decay with an R2 Pearson parameter larger
than 0.5 [26]). We then decompose the vector of the steady-
state coherences β j onto the basis of eigenvectors from the
single-excitation sector [that is, the eigenvectors �̂n of the
scattering matrix of Eq. (3)], as

∑
n αn�̂n, and define the

weight of the each mode in the coherence vector as |αn|2.
The map of this population is presented in Fig. 3(b), in the
complex plane of eigenvalues λn = iωn − �n, with γn being
the mode inverse lifetime and ωn its shift from the atomic
resonance—superradiant modes thus correspond to γn > �.
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FIG. 3. (a) Normalized ratio of elastically to inelastically scat-
tered power REl/In = s(�)Pel/Pin, as a function of � and s0, for the
density ρ = 25/λ3. (b) Population of each mode, |αn|2, in the com-
plex plane of eigenvalues λn = iωn − �n, for a drive with s0 = 10−1

and � = 0.5�. The lower and upper rectangles encompass the local-
ized (Loc) and superradiant (SR) states, respectively. (c) Evolution
of the population of localized and superradiant states in the atomic
coherences, as a function of the saturation parameter s. Simulation
realized for a spherical cloud with N = 1000 particles, the density
ρ = 146/λ3, and a drive detuned by � = 1.27�, which corresponds
to the typical energy of localized modes for these parameters, the
average of 20 realizations. (d) Relative weight of the localized
modes, defined as (

∑
n∈Loc/SR |αn|2)/

∑
n∈All |αn|2, as a function of the

saturation parameter s(�). Same parameters as for panel (c).

Localized modes are weakly populated compared to superra-
diant ones, yet their large number makes up for their weak
coupling to the external world.

Let us now define the weight of the localized (superradi-
ant) modes in the coherences as WLoc = ∑

n∈Loc |αn|2 (WSR =

∑
n∈SR |αn|2). As shown in Fig. 3(c), a below-linear growth

of the weight with the saturation parameter s0 is observed
for localized modes. This is yet more evidence that the lo-
calized modes are more easily saturated than superradiant
ones, so their population grows slower with the saturation
parameter. Note that this situation is different from the decay
dynamics probed in Ref. [17], where the decay by collective
spontaneous emission from multiple-excitation states toward
few-excitation ones actually increases the contribution of
long-lived states to the radiative dynamics: While the differ-
ence between spontaneously emitted light and the coherently
scattered one was not done in that work, we here focus on
the coherences in the steady-state regime. In particular, by
monitoring the relative weight of localized and superradiant
modes in the coherence vector (by normalizing the vector of
{αn}), we can see that the relative contribution of the localized
ones is reduced by a factor of 3 as the saturation parameter
increases by 4 orders of magnitude, for the benefit of super-
radiant ones [see Fig. 3(d)]—the remaining population lies
in subradiant extended modes [26]. The present observation
of largely saturated localized modes even at low satura-
tion parameters makes it all the more remarkable that the
elastic-scattering intensity fluctuations characteristic of the
localization transition can be preserved for a finite-strength
drive.

Perspectives. Although localized modes are effectively
strongly saturated by relatively weak probes, for which sin-
gle atoms would remain very close to the ground state, the
signature of intensity fluctuations at the localization transi-
tion, in the scalar approximation, is preserved, provided that
the light is filtered to select the elastic-scattering component.
This result is particularly important for setups where the
single-photon condition—the pristine condition for Anderson
localization of light—is challenging to achieve.

Our work paves the way to future studies on light scattering
in the presence of multiple excitations [27]. In particular,
the fluorescence spectrum of collective modes may also re-
veal precious information regarding the correlations between
the dipoles [23]. Hence, delving deeper in the hierarchy of
quantum correlations is a next natural step to understand the
many-body regime of these disordered systems [28].
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