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Thermal fading of the 1/k4 tail of the momentum distribution induced by the hole anomaly
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We study the thermal behavior of correlations in a one-dimensional Bose gas with tunable interaction strength,
crossing from weakly repulsive to the Tonks-Girardeau regime. A reference temperature in this system is that
of the hole anomaly, observed as a peak in the specific heat and a maximum in the chemical potential. We
find that at large momenta k and temperature above the anomaly threshold, the tail C/k4 of the momentum
distribution (proportional to the Tan contact C) is screened by the 1/|k|3 term due to a dramatic thermal increase
of the internal energy emerging from the thermal occupation of spectral excitation states. The same fading is
consistently revealed in the behavior at short distances x of the one-body density matrix (OBDM) where the |x|3
dependence disappears for temperatures above the anomaly. We obtain a general analytic tail for the momentum
distribution and a minimum k fixing its validity range, both calculated with exact Bethe-Ansatz method and valid
in all interaction and thermal regimes, crossing from the quantum to the classical gas limit. Our predictions are
confirmed by comparison with ab initio path-integral Monte Carlo calculations for the momentum distribution
and the OBDM exploring a wide range of interaction strength and temperature. Our results unveil a connection
between excitations and correlations. We expect them to be of interest to any cold atomic, nuclear, solid-state,
electronic, and spin system exhibiting an anomaly or a thermal second-order phase transition.
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Introduction. The Tan relation n(k) ∼ C/k4 describes the
tail of the momentum distribution n(k) at high momenta k
and its amplitude is fixed by the Tan contact parameter C
[1–3]. This universal law is valid for a broad range of quan-
tum systems, from nucleons [4] to ultracold atoms [5,6], of
bosonic and fermionic statistics, with any interaction strength
and particle number [3]. It applies to multicomponent sys-
tems [7,8] and in arbitrary conditions of confinement [5,9,10]
and spatial dimensionality [6,11,12]. It provides a key con-
nection between microscopic large-momenta (short-distance)
correlations and macroscopic thermodynamic quantities such
as C [13].

The Tan relation is based on the assumption that the tail
of the momentum distribution depends entirely on contact
two-body interactions [1–3,13], which are modeled only by
the universal s-wave scattering length [14] entering into C.
n(k) ∼ C/k4 holds then whenever the interaction range r0 is
negligible compared to all other relevant lengthscales of the
problem, including the average interparticle distance d and the
thermal de Broglie wavelength λ =

√
2π h̄2/(mkBT ). Tan law

is valid for momenta much larger than the average momentum
of particles d−1, λ−1 � |k| � r−1

0 . The present work provides
a precise estimate for the minimum momentum kmin above
which the tail of the distribution is defined kmin � |k|. This
new kmin holds for any interaction strength and temperature.
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The Tan relation was believed to be well justified in ul-
tracold atomic gases due to their extreme diluteness and low
temperatures. Recently, possible violations to the Tan relation
have been found in the presence of spin-orbit coupling [15],
particle losses [16], impurity-bath interactions in an expand-
ing gas [17], and hard-wall boundaries [18]. Tan law has been
considered valid at temperatures T even well above the critical
value Tc of the superfluid phase transition [13,14,19], in con-
trast with the Maxwell-Boltzmann Gaussian decay expected
in the classical gas limit. The Tan relation has been experi-
mentally confirmed only at T < Tc [20], raising the question
above which temperature it may be violated [21].

Atomic, solid-state, electronic, and spin systems exhibit
an anomaly, i.e., a thermal feature in the thermodynamic
properties as a function of temperature, identified by a peak
in the specific heat, a maximum in the chemical potential
or a minimum in the magnetization, located at the anomaly
temperature TA [22]. The onset of a thermal second-order
phase transition is signalled by an anomaly where TA = Tc

[23]. In the absence of a phase transition, the anomaly is due to
unpopulated states in the excitation spectrum [24–30]. When
the temperature is comparable to TA, empty spectral states are
thermally occupied, the excitations experience the breakdown
of the low-T quasiparticle description [31], and thermal fluc-
tuations dominate over quantum correlations at T > TA [22].
Thus, the internal energy is almost constant with temperature
at T < TA and rapidly increases at T > TA [32]. Anomalies are
present [22] in any system in one spatial dimension [33–37]
where phase transitions are forbidden [23].

In a one-dimensional (1D) repulsive Bose gas, the
hole anomaly has been recently predicted for any contact
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interaction strength [22]. This mechanism occurs through the
thermal occupation of states located below the spectral hole
branch whose maximum provides the energy scale for the
anomaly temperature TA. The Tan relation is confirmed by
comparison with path-integral Monte Carlo (PIMC) results
at T < TA [38]. No knowledge at T > TA was available so
far and an open question is how the tail of the momentum
distribution n(k) changes across TA.

In this work, we report that the thermal increase of the
internal energy, induced by the hole anomaly, makes dominant
the 1/|k|3 term, by screening the Tan relation n(k) ∼ C/k4

at T > TA. This thermal fading occurs for any interaction
strength at high temperatures as shown by PIMC results. It
may be observed in 1D atomic Bose gases where n(k) was
measured [39–42] and the exploration of a wide range of
interaction strength and temperature values is possible [43].

Model. We consider a 1D uniform gas composed of N
Bose particles interacting via the contact-pairwise repulsive
potential and described by the Hamiltonian [44]

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ g
N∑

i> j

δ(xi − x j ), (1)

where m is the particle mass, g = −2h̄2/(ma) > 0 is the 1D
coupling constant [45], and a < 0 is the 1D s-wave scat-
tering length. We study the thermodynamic limit N → ∞
by increasing the system size L → ∞ while keeping the
linear density n = N/L fixed. The interaction strength is
γ = −2/(na).

In one dimension, there are no phase transitions, but rather
a continuous crossover that encompasses different regimes in
terms of γ and temperature. The gas admits a mean-field de-
scription [14] in the Gross-Pitaevskii limit of weak repulsion
γ � 1, which in one dimension corresponds to high density
n|a| � 1. In the Tonks-Girardeau regime of infinite repulsion
γ → ∞, achieved at low density n|a| → 0, bosons become
impenetrable and the wave function is mapped [46] onto that
of an ideal (noninteracting) Fermi gas, resulting in identical
thermodynamics and spectrum. Many experiments explored
this interaction crossover in ultracold atom platforms [47–53].
At zero temperature, the energetic properties can be obtained
using the exact Bethe-Ansatz method [14,54–56]: the ground-
state energy E0, chemical potential μ0 = (∂E0/∂N )a,L,
and speed of sound v = √

n/m(∂μ0/∂n)a, which are all
functions of γ .

At finite temperature T , the exact thermal Bethe Ansatz
(TBA) approach [57,58] can be used and the thermodynamics
within the canonical ensemble is captured by the Helmholtz
free energy A = E − T S, where E is the internal energy and
S the entropy. The Tan contact can be obtained via [59–61]

C = (4m/h̄2)(∂A/∂a)T,N,L, (2)

which provides information on the interaction energy and a
relation between the pressure and E [1–3,5,6,61,62].

In Fig. 1, we report the exact thermal Bethe-Ansatz re-
sults of the internal energy per particle E/N as a function
of temperature and for characteristic values of the interaction
strength γ . We show energies in units of the Fermi value
EF = kBTF = h̄2π2n2/(2m) and temperatures rescaled by the
quantum degeneracy threshold Td = TF /π2. Vertical lines

FIG. 1. Internal energy per particle E/N , normalized to the
Fermi value EF = kBTF = h̄2π 2n2/(2m), versus temperature in units
of the quantum degeneracy threshold Td = TF /π 2 and for several
interaction strengths γ reported from small (bottom) to large (top)
values. Calculations are performed with TBA. Vertical lines denote
the anomaly temperature TA/Td from small (left) to large (right) γ ,
corresponding to 0.27 (γ = 10−1), 2.05 (γ = 1), and 5.58 (γ = 10).

denote the hole-anomaly temperature TA/Td estimated from
the peak in the specific heat [22]. For any γ , E/N is almost
constant at T � TA, while it exhibits an intense monotonic
increase at T > TA due to the thermal occupation of spectral
states which is completed around TA [22].

One-body density matrix. The one-body density matrix
(OBDM) is defined as the nondiagonal density [14]

g1(x = x1 − x2) = 〈ψ̂†(x1)ψ̂ (x2)〉, (3)

where ψ̂ (x) is the Bose field, x the interparticle distance, and
〈· · · 〉 the average over an ensemble in thermal equilibrium.
The OBDM quantifies the coherence and corresponds to the
amplitude of the process where a particle is annihilated at
position x2 and another one is created at x1. At x = 0, one
recovers the diagonal density n. The momentum distribution
is the Fourier transform of the OBDM.

We employ the PIMC method to calculate the complete
x dependence of the OBDM for a wide range of interac-
tion strength γ and temperatures in a 1D Bose gas [62].
At high temperatures, T � Td , PIMC results show an excel-
lent agreement with the Maxwell-Boltzmann (MB) Gaussian
law g1(x)MB = ne−x2/(2σ 2 ) [62] describing a classical gas
and decaying to zero for x � σ where σ = λ/

√
2π is the

standard deviation proportional to the thermal de Broglie
wavelength λ.

The short-distance expansion of the OBDM is [63]

g1(|x| � xmax)

n
= 1 +

∞∑
i=1

ci(xn)i + b3|xn|3 + O(|xn|4). (4)

The coefficients ci in the Taylor expansion of the analytic part
are the corresponding moments of the momentum distribution
[63], they diverge for i > 3 and the odd ones vanish c1 = c3 =
· · · = 0. From the Hellmann-Feynman theorem [64], one finds
that the second coefficient is a function of the internal energy
E/N and Tan contact C/N per particle

c2 = −1

2

(
E

N

2m

h̄2n2
− C

N

1

γ n3

)
, (5)
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FIG. 2. OBDM g1(x)/n versus interparticle distance xn (n is the density) for the interaction strength γ = 10−1 (first panel), γ = 1 (second),
and γ = 10 (last). Symbols denote PIMC results and their sizes are larger than the statistical error bars. Solid (empty) symbols correspond to
temperatures below (above) the anomaly value TA, Fig. 1. Solid lines represent the short-distance expansion (4) calculated with TBA. Dashed
black lines correspond to Eq. (4) with b3 = 0. Curves are reported from low (top) to high (bottom) temperatures in each panel. The maximal
distance of the expansion xmaxn (7) is shown with vertical lines from low (right) to high (left) temperatures at fixed γ .

and c2 can be also expressed in terms of the average kinetic
energy [14,62]. The nonanalytic part of Eq. (4) starts with a
|x|3 dependence whose coefficient depends on C/N only

b3 = (C/N )/(12n3). (6)

At T = 0, Eqs. (4) to (6) were derived [5] also including the
coefficient of the |x|4 term [65–67]. The finite-temperature
dependence enters in E and C which can be evaluated
with exact TBA [57,58,61,62]. Equation (4) is valid for any
value of γ and T as shown by comparison with PIMC
calculations [62].

We find in this work that Eq. (4) holds up to a maximal
distance

xmax = (ξ−1 + σ−1)−1, (7)

which is determined by the healing length ξ = h̄/(
√

2mv) and
the standard deviation σ of the Gaussian g1(x)MB. At T = 0,
the expression (7) reduces to xmax = ξ , which constrains the
high-momentum range for the tail of the momentum distri-
bution n(|k| � ξ−1) for any interaction strength, as shown
previously by comparison with exact Monte Carlo results
[68]. Equation (7) holds in any system where the sound veloc-
ity v, entering in ξ and depending on the interaction strength
[14], is well defined. At very high temperatures, where the
system approaches the Maxwell-Boltzmann regime, we re-
cover the classical ideal gas limit xmax = σ . Equation (7) is a
smooth interpolation between the zero- and high-temperature
limits, given by ξ and σ , respectively. Equation (7) provides
an excellent approximation, for any interaction strength and
temperature, of the threshold where the short-distance expan-
sion (4) deviates from the exact PIMC results for the OBDM,
as discussed below.

In Fig. 2, we show exact path-integral Monte Carlo re-
sults of the one-body density matrix. The solid symbols
correspond to temperatures below the hole anomaly T < TA,
while the empty ones for T > TA, see Fig. 1. Weakly (γ =
10−1, first panel), intermediate (γ = 1, second), and strongly
(γ = 10, last) interacting regimes are reported. We test the
importance of the nonanalytic contribution by comparing the
short-distance OBDM, Eq. (4), with b3 
= 0 (colored solid
lines) and b3 = 0 (black dashed), calculated with the thermal
Bethe-Ansatz. The maximal distance xmax (7) is shown with
vertical lines.

Our results are valid for any interaction strength γ . The
short-range expansion (4) of the OBDM holds at distances
limited by the upper bound (7) (|x| � xmax) at any temperature
[69], as witnessed by the comparison with PIMC findings. The
nonanalytic term (with coefficient b3) plays a role in Eq. (4) at
distances close to xmax for an accurate description at T < TA,
while it is negligible at T > TA [69]. The reason is that the
internal energy increases at T > TA, see Fig. 1, making b3

(6) small compared to c2 (5). The thermal fading of the |x|3
dependence in the short-distance OBDM is then driven by
the hole anomaly. It is a crossover [69] and not an abrupt
change which is expected crossing the critical temperature of
a second-order phase transition.

In the high-temperature MB regime [69], we obtain xmax =
σ ; E/N = kBT/2 as the energy is defined by thermal fluctu-
ations [22] and contact C = 0 as interactions are negligible,
Eq. (2). The short-range behavior (4) of the OBDM recovers
the analytic terms of the expansion of the Gaussian g1(x �
σ )MB/n = 1 − (x/σ )2/2 + O(x4), where the nonanalytic one
is absent. Even though b3 (6) can be omitted at T > TA, C
also enters into c2 (5) and still plays a role until very high
temperatures are reached, where g1(x)MB is valid.

Momentum distribution. The momentum distribution is re-
lated to the OBDM (3) by a Fourier transform [14]

n(k) = 1

n

∫ +∞

−∞

dx

2π h̄
cos (kx)g1(x), (8)

and gives the probability to find an atom with momentum k.
In a 1D Bose gas, n(k) is calculated at T = 0 with the dif-

fusion Monte Carlo technique [70,71]. At finite temperature,
various numerical and analytical methods were applied but
restricted to strong [38,72] and weak [73] interactions, and
temperatures below the hole anomaly [73,74].

Our work fills an important gap: we compute n(k) in a 1D
Bose gas with the most advanced PIMC method, exploring
all regimes from weak to strong interactions and from low
to high temperatures [69]. To this aim, we apply the Fourier
transform (8) to the PIMC results for the OBDM [62]. At high
T , our PIMC data are captured by the Gaussian n(k)MB =
σ/(h̄

√
2π )e−σ 2k2/2 typical of a MB classical gas [69].

We derive the large-k tail of n(k) by using the short-
distance OBDM (4) in Eq. (8), where we integrate up to
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FIG. 3. Momentum distribution n(k) versus momentum k for
γ = 1 (upper panel) and γ = 10 (lower panel). Symbols correspond
to PIMC results for T < TA (solid) and T > TA (empty). Solid lines
represent the tail (9) calculated with TBA. Dashed lines present (9)
with b3 = 0. Curves are reported from low (bottom) to high (top)
temperatures in each panel. kmin = x−1

max (7) is denoted by vertical
lines from low (left) to high (right) temperatures at fixed γ .

xmax = k−1
min (7) fixing the minimum momentum for the tail

n(|k| � kmin) = 6n3

π h̄

b3

k4

[
1 − cos

(
k

kmin

)]
− 1

π h̄|k|3

× sin

( |k|
kmin

)(
2c2n2+6n3b3

kmin

)
+O

(
1

k2

)
.

(9)

The 1/k4 term emerges from the leading nonanalytic behavior
of the short-distance OBDM and provides the Tan relation
∼C/k4, which, consistently with coordinate space, is more
important at momenta closer to the lower bound |k| � kmin.
The Tan relation has been derived for the 1D Bose gas at
T = 0 [5]. The 1/|k|3 contribution depends even on the c2

coefficient, which is a function of the internal energy and con-
tact (5), as well as the momentum kmin. Equation (9) recovers
the classical limit of the Fourier transform of g1(x � σ )MB.

In Figs. 3 and 4, we show the correlations at large momenta
and crossing the hole-anomaly temperature TA for several
interaction strengths γ . The symbols denote path-integral
Monte Carlo results for T < TA (solid) and T > TA (empty),
see Fig. 1. The minimal momentum kmin = x−1

max (7) for the
tail (9) is reported with vertical lines. In Fig. 3, the solid and
black dashed lines correspond to the tail (9) with and without
the nonanalytic term, respectively, and are calculated with the
thermal Bethe-Ansatz. Figure 4 presents n(k)k4, horizontal

lines denote the coefficient of the Tan relation, from which
the deviation of PIMC predictions is evident at T > TA.

Consistently with our results for the short-distance OBDM,
in Fig. 3, the complete tail for the distribution (9) and its
minimal momentum kmin are excellent approximations for any
interaction strength and temperature [69], as shown by com-
parison with PIMC findings. While the Tan relation ∼C/k4 in
Eq. (9) is verified at low temperatures, it is thermally faded
above the anomaly T > TA. This fading crossover appears for
any interaction strength [69] and at momenta close to kmin, see
Fig. 4, where the Tan relation is more important in Eq. (9).
The deviation from the Tan law in Fig. 4 gets larger by raising
the temperature [69]. However, the fading starts to occur at
the anomaly temperature which is much lower than the one
needed for the achievement of the Maxwell-Boltzmann clas-
sical gas regime, which is a limit described by Eq. (9).

Experimental considerations. One-dimensional atomic
Bose gases can be realized with a single optical tube trap
[43], which allows for the exploration of temperatures be-
low and above the hole anomaly. Spatial uniform density
is achieved with a flatbox potential [75]. The interaction
strength γ ∼ 1/(na) is tuned by changing the density n via the
strongly confining radial potential [45,48,50] or by adjusting
the scattering length a through Fano-Feshbach resonances
[41,76]. The temperature can be extracted from a single
absorption image during time-of-flight expansion with neu-
ral network [77]. The momentum distribution can also be
measured [39–42,47,78–81].

FIG. 4. Scaled momentum distribution n(k)k4 for γ = 10−1

(γ = 1) in the upper (lower) panel. Solid (empty) symbols cor-
respond to T < TA (T > TA) and represent PIMC results. kmin is
denoted by vertical lines from low (left) to high (right) temperatures.
Horizontal lines report 6n3b3/(π h̄) of Eq. (9) obtained with TBA.
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Conclusion. We built a unified theory which describes the
entire contact-interaction and temperature crossover in a 1D
repulsive Bose gas and provides a connection between excita-
tions and correlations. We report that the hole anomaly, due to
the thermal occupation of spectral states, induces an increase
of the internal energy, which is responsible for the high-
temperature fading of the Tan relation in the large-momentum
(short-distance) one-body correlations. Anomalies are ubiq-
uitous in a variety of systems [22], even with interactions
beyond the s-wave pairwise contact model, and behave as a
second-order phase transition at the critical temperature. Our
work suggests that the anomaly temperature may be identified

in many systems [20,63,82–89] with the change from the
quantum to thermal behavior in correlations even at short and
not only at large [84,90] distances.
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