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We present a study on the development of rotating turbulence in Bose-Einstein condensates with a dissipative
Gross-Pitaevskii model. Turbulence is generated by driving the lattice of quantized vortices in a harmonic
potential with a random forcing potential. As the turbulence progresses, the initial alignment of vortices
undergoes slight disruptions, thereby increasing the high-wave-number components of the kinetic energy. In
the turbulent state, the distribution of incompressible kinetic energy exhibits milder anisotropy than that in the
initial lattice state and demonstrates a scaling behavior of k−2.5

z in the direction parallel to the rotation axis. In
contrast, the compressible kinetic energy exhibits an isotropic scaling behavior at high wave numbers.

DOI: 10.1103/PhysRevA.109.L031301

Introduction. Rotating turbulent flow is a common oc-
currence in nature, and the presence of rotation provides
turbulence a characteristic behavior. An example of such be-
havior is the anisotropic energy transfer influenced by the
Coriolis force, which results in an asymmetric energy trans-
fer between the directions parallel and perpendicular to the
axis of rotation; this anisotropic energy transfer has been
thoroughly investigated in classical turbulence [1–9]. The in-
fluence of rotation on turbulence is quantified by the Rossby
number Ro = U/2�l , where U represents the velocity scale
corresponding to the integral length scale l of the turbulence
and � denotes the angular frequency. When Ro < 1, the
kinetic energy distribution of isotropic turbulence is more con-
centrated perpendicularly rather than parallel, resulting in a
coherent redistribution of vorticity along the rotation axis. The
anisotropic characteristics due to the Coriolis force are evident
at wave numbers smaller than the Zeman wave number k� =
(�3/ε)1/2 (ε is the kinetic energy dissipation), where inertial
waves are dominant and the kinetic energy spectrum exhibits a
k−2 scaling steeper than that of a Kolmogorov spectrum k−5/3

[10–13]. On the other hand, at wave numbers higher than k�,
the effect of rotation is diminished and the inertial subrange
of the isotropic Kolmogorov turbulence can be restored.

Rotation plays an important role in the dynamics of the
atomic Bose-Einstein condensate (BEC), resulting in the for-
mation of quantized vortices with quantized circulation κ =
h/m, where m represents the mass of atoms [14]. In the
rotating frame with �, the Hamiltonian can be written as
H ′ = H − �L, where H is the Hamiltonian in the nonrotat-
ing frame and L is the total angular momentum along the
rotation axis. Above the critical angular frequency, the vortex
states exhibit greater stability than a state devoid of vortices.
In such instances, some quantized vortices can penetrate the
condensate and form a vortex lattice along the rotation

axis. Such dynamics in rotating BECs has been investigated
through several experiments [15–19] and numerical calcula-
tions [20–23] using the Gross-Pitaevskii (GP) model. The GP
model represents a nonperturbative mean-field equation for
a classical field that quantitatively captures the dynamics of
weakly interacting BECs.

The BEC provides a highly controllable platform for inves-
tigating turbulence. The unique characteristics of this system
offer valuable opportunities to explore diverse forms of tur-
bulence, including vortex turbulence [24–30], turbulence in a
two-component BEC [31–33], and wave turbulence [34–48].
Recent studies observed the emergence of statistical isotropy
in the momentum distribution during the development of
quantum turbulence despite the anisotropic initial conditions
and energy injection [45,46]. The emergent isotropy is one
of the similarities between classical and quantum turbulence
and has been widely studied in classical turbulence [49–53].
Furthermore, it forms the backbone of various turbulence
theories, as exemplified by Kolmogorov’s theory, and is a
universal characteristic of turbulence independent of classical
and quantum considerations.

The investigation of rotating quantum turbulence (RQT)
remains relatively limited [54–60]. In RQT the rotation fa-
cilitates the alignment of quantized vortices along the rotation
axis within a turbulent flow. A few studies on rotating thermal
counterflow in superfluid 4He have investigated the compe-
tition between the established order due to the rotation and
the disorder due to the turbulence [54–56]. Recent investi-
gations into the decaying RQT in atomic BEC have revealed
anisotropic dissipation mechanisms [58] and a k−1 scaling of
the incompressible energy spectrum which is gentler than the
k−2 scaling in classical rapidly rotating turbulence [58,59].
Thus, the RQT displays distinct characteristics compared to
the classical case, which is attributed to the unique features of
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quantum systems, such as quantized vortices and Kelvin wave
cascades.

However, there is currently a lack of understanding re-
garding the emergence of isotropy in RQT. In particular,
the mechanism by which a direct turbulent cascade produces
isotropy in the presence of rotation causing anisotropy is an
important problem. Therefore, we consider a forced decaying
RQT confined within a harmonic potential and conduct nu-
merical investigations of the emergence of isotropy during its
development using the GP model.

Theoretical model: Gross-Pitaevskii model. Our theoreti-
cal model is governed by the GP equation in a rotating frame
with an angular velocity � = (0, 0,�z ). The dimensionless
equation is defined as

i
∂ψ (r, t )

∂t
= [−∇2 + Vhar (r) + Vfor (r, t ) + g|ψ (r, t )|2

− �zL̂z(r)]ψ (r, t ), (1)

where ψ (r, t ) represents the macroscopic wave function of
the condensate and g denotes the coupling constant. Here
the length scale and time are normalized by the character-
istic scale ã0 = √

h̄/2m̃ω̃ and time 1/ω̃, where m̃ is the
atomic mass and ω̃ represents the trapping frequency of
the harmonic potential. The rotational term is expressed
by the angular momentum operator L̂z(r) = −i(x∂y − y∂x )
and the angular frequency �z. The trapping potential is
characterized as a weakly elliptical harmonic potential,
defined as

Vhar (r) = 1
4 [(1 + δ)x2 + (1 − δ)y2 + z2], (2)

where δ denotes an elliptical deformation parameter.
To induce turbulence, we introduce a random forcing
potential

Vfor (r, t ) = A[W (r, t )] (3)

into the system. Here A is the normalization factor of the am-
plitude of random distribution W (r, t ). The Fourier transform
of W (r, t ) is defined as fk exp[iσ (k, t )], where σ (k, t ) repre-
sents uniform random numbers within the range of [0, 2π )
and fk is unity within k f − δk/2 � k � k f + δk/2 (δk is the
width of the energy injection) and zero otherwise [39,43].
In this study, the forcing wave number k f is set to π/RTF,
where RTF denotes the Thomas-Fermi radius of the conden-
sate trapped by Vhar (r). We place random numbers of Vfor (r, t )
obtained in the above manner at a time interval �T = 1 and
connect them smoothly at each spatial point by using the tem-
poral interpolation with the natural cubic spline. Therefore,
this potential injects energy at a low wave number k f , thereby
initiating a direct cascade, as elaborated in the subsequent
discussion.

In this model, the total energy is expressed as E (t ) =
Ekin(t ) + Epot (t ) + Enon(t ) + Erot (t ). Here each energy com-
ponent is defined as

Ekin(t ) =
∫

|∇ψ |2dr, Epot (t ) =
∫

(Vhar + Vfor )|ψ |2dr,

Enon(t ) =
∫

g

2
|ψ |4dr, Erot (t ) = −�z

∫
ψ∗L̂zψ dr, (4)

where Ekin(t ) is the kinetic energy, Epot (t ) the potential energy,
Enon(t ) the nonlinear energy, and Erot (t ) the rotational energy.
It is widely acknowledged that the kinetic energy can be
decomposed through the Madelung transformation ψ (r, t ) =√

n(r, t ) exp[iθ (r, t )], where n(r, t ) is the density and θ (r, t ) is
the phase [24,25], yielding Ekin(t ) = Eq(t ) + Ei(t ) + Ec(t ),
where the components are defined as

Eq(t ) =
∫

[∇√
n(r, t )]2dr (5)

and

Ei,c(t ) =
∫

[
√

n(r, t )vi,c(r, t )]2dr. (6)

Here v(r, t ) = ∇θ (r, t ) denotes the velocity, [· · · ]i represents
the incompressible part with ∇ · [· · · ] = 0, and [· · · ]c denotes
the compressible part with ∇ × [· · · ] = 0.

Numerical method. To investigate the dynamics of forced
decaying RQT, we numerically solve the equation

[i − γ (k)]
∂

∂t
�(k, t ) = k2�(k, t ) + H (k, t ), (7)

where �(k, t ) and H (k, t ) denote the Fourier trans-
forms of ψ (r, t ) and [Vhar (r) + Vfor (r, t ) + g|ψ (r, t )|2 −
�zL̂z(r)]ψ (r, t ), respectively. The damping term γ (k) emu-
lates the influence of the thermal excitation, as demonstrated
in a previous study [61]. Based on the numerical findings at
0.001Tc (where Tc denotes the critical temperature of an ideal
Bose gas) [61], we adopt the wave-number dependence as
γ (k) = γ0θ (k − kξ ). Here θ (k) represents the step function
and kξ = 2π ã0/ξ̃ is the wave number corresponding to the
healing length ξ̃ . This damping term effectively suppresses the
compressible sound waves at wave numbers greater than kξ

[26,27]. Therefore, in this system, neither the total number of
particles N nor the energy is conserved, owing to the presence
of external forcing and dissipation.

Our computational grid has a size of Vnum = (Lnum )3 =
253, with Ngrid = 1283 grid points. In our simulation, we
set the numerical parameters to g = 0.28 and N = 1.25 ×
104 based on experimental findings [14,15]. Numerical sim-
ulations are conducted using the pseudospectral method
employing a fourth-order Runge-Kutta time evolution with a
time resolution of 10−3. The initial state corresponds to the
equilibrium vortex-lattice state in a rotating BEC at �z =
0.70 trapped by Vhar (r) with a small elliptical deformation
δ = 0.025. Using this initial state, we solve Eq. (7) with a
nonzero forcing amplitude A and γ0 = 0.06 to investigate the
turbulence evolution.

For convenience, in the subsequent discussion, we intro-
duce a spherically averaged spectrum in a discrete wave-
number space defined by

g(k, t ) = 1

u(k)

∑
k′∈�k

G(k′, t ), (8)

where G(k, t ) is an arbitrary real function, �k = {k′

| k − δk/2 � |k′| < k + δk/2}, δk = 2π/Lnum, and u(k) =∑
k′∈�k

1 is the number of grid points in �k . Using the def-
inition above, we represent the spherically averaged spectrum
of a three-dimensional real function as the lowercase character
of that function.
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FIG. 1. Emergence of the turbulent state. (a) Density distri-
butions (top) and configurations of quantized vortices inside the
Thomas-Fermi radius RTF (bottom) at t = 0 and t = 1000. The color
bar shows |ψ (r, t )|2 in units of ã−3

0 . The vortices are visualized by
connecting the points where the phase rotates by 2π . (b) Time evo-
lution of the quantum Eq(t ), incompressible Ei(t ), and compressible
Ec(t ) energies.

Numerical results. We perform simulations at a finite forc-
ing amplitude A = 0.25, as shown in Fig. 1. The top and
bottom panels in Fig. 1(a) illustrate the density distributions
|ψ (r, t )|2 and the spatial distributions of quantized vortices,
respectively, at t = 0 and t = 1000. The initial lattice state,
including eight quantized vortices, transitions to a disordered
turbulent state at t = 1000 by the random forcing. Conse-
quently, the number of vortices decreases from 8 to 7, while
the vortex line density increases from 0.088 at t = 0 to 0.101
at t = 1000. This comes from the distortion of the quan-
tized vortices caused by the turbulent motion, and the helical
structure of the coherent vortices becomes clearer than the
classical rotating turbulence [62]. To identify the development
of turbulence in terms of the kinetic energy, we present the
time evolution of the quantum Eq(t ), incompressible Ei(t ),
and compressible Ec(t ) energies in Fig. 1(b). During the initial
stage, Eq(t ) and Ec(t ) increase by the excitation of intricate
waves due to the random forcing, while Ei(t ) oscillates around
its initial value. In the later phase, all the energy components
become statistically steady at approximately tste ≡ 1000. For
reference, the particle loss at t = tste is only 0.2% of the initial
number of particles.

FIG. 2. Spectra of the linear tlin (k, t ) (black), nonlinear tnon(k, t )
(green), and rotational trot (k, t ) (blue) terms in the GP equation.
The light colored lines show the spectra of the initial state at t = 0
and dark colored lines show the spectra of the turbulent state at
t = tste. The vertical black, gray, and orange dotted lines correspond
to kint (0) = 1.87, kint (tste ) = 2.00, and kξ = 12.3, respectively. The
inset shows the ratios of tlin (k, t ) and trot (k, t ) to tnon(k, t ).

We next discuss the magnitudes of the linear, nonlinear,
and rotational terms in the GP equations. Figure 2 shows
spherically averaged spectra tlin(k, t ), tnon(k, t ), and trot (k, t )
of |Tlin(k, t )|, |Tnon(k, t )|, and |Trot (k, t )| in the initial (at t =
0) and turbulent (at t = 1000) states. Here Tlin(k, t ), Tnon(k, t ),
and Trot (k, t ) are the Fourier transforms of the kinetic (∇2ψ),
interaction (g|ψ |2ψ), and rotational (−�zL̂zψ) terms, respec-
tively. Reflecting the spatial distribution of vortices, trot (k, t )
exhibits a higher magnitude around kint (t ) compared with
other regions of wave numbers, where kint (t ) is the wave
number corresponding to the mean intervortex distance. In the
turbulent state, tlin(k, t ) and trot (k, t ) surpass tnon(k, t ) within
the intermediate-wave-number range 3 � k < kξ , as shown in
the inset. Therefore, in this regime, the interaction between
waves is relatively weak and the dynamics exhibits a weak
rotating-wave turbulent behavior.

In classical rotating turbulence, it is well known that the
dynamics exhibits anisotropic characteristics within the wave-
number region where the Coriolis force is dominant. Drawing
an analogy, we assume that the energy distribution of RQT is
anisotropic in the region where the rotational effect predom-
inates over the nonlinear effect. To ascertain the anisotropy,
we visualize the kr-kz dependence of each energy distribution
at t = 0 and t = tste in Fig. 3, where kr = (k2

x + k2
y )1/2. The

averaged kinetic energy distribution around the kz axis is
defined as

ekin(kr, kz, t ) = 1

w(kr )

∑
k′∈Sk

Ēkin(k′, t ). (9)

Here Sk = {k′ | kr − δk/2 � k′
r<kr+δk/2}, w(kr )= ∑

k′∈Sk
1,

[· · · ] denotes the time-averaged distribution over the
timescale 4�T to reduce the fluctuation with the energy in-
jection, and other energy distributions are defined in a similar
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FIG. 3. Averaged energy distributions in the kr-kz plane at the initial t = 0 (top) and turbulent state t = tste (bottom). Normalized
distributions of (a) kinetic ekin(kr, kz, t ), (b) incompressible ei(kr, kz, t ), and (c) compressible energies ec(kr, kz, t ) are shown. Here the
normalization factor 〈· · · 〉 denotes the spatial average in the system and the distributions are plotted on a logarithmic scale. The white dotted
(solid) line corresponds to the radius of kint (t ) (kξ ).

manner. The top panels show the averaged energy distribu-
tions at t = 0. These energy distributions are anisotropic, with
the energy predominantly concentrated around kint (0) on the
kr axis, reflecting the initial vortex lattice. The bottom panels
display the distributions at t = tste. The initial anisotropic dis-
tribution transitions towards greater isotropy with an increase
in the high-wave-number components. However, ekin(kr, kz, t )
and ei(kr, kz, t ) retain their anisotropic characteristics at
approximately kint (tste ). This anisotropy originates from a
quasi-two-dimensional flow characterized by quantized vor-
tices. By contrast, ec(kr, kz, t ) shows an isotropic distribution
at k > kint (tste ), indicating that the compressible wave motion
at small scales is slightly affected by anisotropy owing to
rotation. Additionally, we observe a decay in the energies
within the dissipative region k � kξ outside the white solid
line.

We now turn to the study of the temporal emergence of
isotropy by employing a quantitative measure of anisotropy
A(k, t ), as introduced in our previous study [46]. This measure
quantitatively evaluates the anisotropy of the distribution on
a spherical surface of radius k, yielding values ranging from
zero to unity. If the distribution is perfectly isotropic at k,
A(k, t ) vanishes.

Figure 4 illustrates the temporal evolution of the
anisotropies Akin(k, t ), Ai(k, t ), and Ac(k, t ) of Ēkin(k, t ),
Ē i(k, t ), and Ē c(k, t ) in the top panels. The bottom

panels show the spherically averaged spectra ekin(k, t ),
ei(k, t ), and ec(k, t ) for these energy distributions. The pro-
nounced influence of the energy injection around k f = 0.62
becomes apparent in ec(k, t ), whereas ekin(k, t ) and ei(k, t )
do not change significantly around k f . The injected energy
propagates toward higher wave numbers owing to nonlin-
ear interactions. The direct turbulent cascade moderates the
initial anisotropic peak structure of each energy component,
resulting in a decrease in their anisotropies at k > kint (t ). Con-
sequently, ec(k, t ) exhibits an isotropic power-law behavior
characterized by k−1.5. Regarding ekin(k, t ), it demonstrates a
k−2.5 dependence in 3 � k � 8; however, Akin(k, t ) displays
high values around kint (tste ) and kξ . Thus, the scaling behavior
depends on the wave-vector direction. The power exponent of
k−4 in ei(k, t ) is consistent with the k−2 scaling observed in
the spherically integrated spectrum of classical rotating tur-
bulence in an incompressible flow [10–13]. However, Ai(k, t )
exhibits significant magnitudes around wave numbers which
are integer multiples of kint (tste ). This anisotropy reflects the
concentration of ei(kr, kz, t ) on the kr axis caused by a weakly
disrupted lattice structure of vortices, as shown in Fig. 3(c).
Therefore, the scaling of ei(k, t ) also exhibits directional de-
pendence.

To validate the anisotropy of the incompressible kinetic
energy distribution, we present the averaged energy spec-
trum ei(kr, kz, t ) near the kr and kz axes in Fig. 5. In the
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FIG. 4. Time evolution of anisotropy (top) and spherically averaged energy spectrum (bottom). (a) Kinetic, (b) incompressible, and
(c) compressible energies are shown. Each spherically averaged energy spectrum is defined as follows: ekin(k, t ) = ∑

k′∈�k
Ēkin(k′, t )/u(k),

ei(k, t ) = ∑
k′∈�k

Ē i(k′, t )/u(k), and ec(k, t ) = ∑
k′∈�k

Ē c(k′, t )/u(k). Each power law within the range of 3 � k � 8 is indicated by red
dashed lines. The kint (0), kint (tste ), and kξ are shown in black, gray, and orange, respectively.

kz direction, a significant increase can be observed, whereas
there is slight change in the kr direction, which indicates the
strong anisotropy of ei(kr, kz, t ). We attribute this anisotropy
to the larger energy flux along the kz axis than along the kr

axis. The anisotropic turbulent cascade forms a k−2.5
z scaling

near the kz axis, and this power exponent is slightly steeper
than that of the spectrum obtained in rapidly rotating wave

FIG. 5. Time evolution of the averaged incompressible kinetic
energy spectrum ei(kr, kz, t ) at kr = δk (green line) and kz = δk (blue
line). The change of color corresponds to the time evolution shown in
Fig. 4. The power law and characteristic wave numbers are indicated
as references.

turbulence [63]. On the other hand, a power-law behavior
does not emerges along the kr axis and ei(kr, δk, t ) shows the
characteristic dependence on kr , reflecting the arrangement of
vortices.

Conclusion. We focused on the effect of rotation on the
anisotropy of quantum turbulence and investigated the devel-
opment of forced decaying RQT trapped by a weakly elliptical
harmonic potential using the GP model. During the develop-
ment of RQT, the alignment of quantized vortices is weakly
disrupted by the turbulent flow and the anisotropy of the
kinetic energy distribution is weakened. In the wave-number
region, where the dominance of the rotation term in the GP
equation surpasses that of the nonlinear term, we found the
anisotropic development of the incompressible kinetic energy
distribution and the average spectrum obtained displays k−2.5

z
near the kz axis. By contrast, the compressible kinetic energy
distribution exhibits an isotropic power law of k−1.5.

Compared to the discovery of the emergent isotropy in
nonrotating quantum turbulence [45,46], this study clearly
demonstrated the manifestation of an anisotropic turbulent
cascade due to the rotation. We leave to future work the
systematic exploration of the anisotropic turbulent cascade in
RQT by varying the angular frequency of the rotation and the
magnitude of the external forcing.
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