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We show that the delocalization-localization transition in quantum many-body (QMB) systems are a com-
pelling quantum resource for achieving quantum-enhanced sensitivity in parameter estimation. We exploit the
vulnerability of a near-transition QMB state against the parameter shift for devising efficient sensing tools.
In this realm the main focus of this work is to identify, propose, and analyze experimentally relevant quantum
observables for precision measurement. Taking a QMB system as a Fermi lattice under quasiperiodic modulation
that supports an energy-independent delocalization-localization transition, we suggest operator-based adiabatic
and dynamical quantum sensors endowed with considerable quantum advantages. In particular, we analyze
single-particle systems and the system at half-filling. While the quantum Fisher information saturates the
Heisenberg limit, we demonstrate the experimentally relevant suitable observables with a spotlight on the
charge-density-wave operator. Demonstrating their efficacy, these observables emerge as promising candidates
for experimentally exploiting quantum advantages, showcasing superior performance compared to the standard
quantum limit in terms of system-size scaling. Taking our exploration further into the dynamical realm, we
discuss observables that yield super-extensive generic scaling in measurement precision. The comprehensive
nature of our study not only sheds light on the intricacies of the delocalization-localization transition, but also
offers practical insights for the development of quantum sensors and their potential applications.
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Introduction and motivation. There are ongoing efforts to
propose and engineer robust physical systems for quantum
sensing. Successful experimental efforts addressing quantum-
enhanced measurement precision in parameter sensing are
atomic clocks [1,2], interferometry [3–5], magnetometry
[6,7], and ultracold spectroscopy [8,9]. The ultimate limit of
precision in parameter estimation is given by the quantum
Cramér-Rao bound [10–13]. The bound relates uncertainty Eq

in the estimation of an unknown parameter with the quantum
Fisher information (QFI) FQ as Eq � (MFQ)−1, where M is
the number of repetition of the sensing protocol. QFI can
reach the Heisenberg limit (HL), i.e., FQ ∼ L2, for certain
nonclassical quantum states with L qubits, whereas it scales
linearly with system size, FQ ∼ L, known as the standard
quantum limit (SQL), for L independent qubits [14,15].

Quantum metrology covers a wide gamut of research
topics, starting from fundamental studies to applications in
quantum technology [16–21]. Recently, a new class of quan-
tum sensing devices, termed adiabatic sensors, have surfaced.
They exploit cooperative quantum phenomena in isolated
quantum many-body systems, such as quantum phase transi-
tions [22–24], for achieving Heisenberg scaling [16,24–45].
The motivation of exploring criticality for sensing stems from
the fact that around the critical point the macroscopic quan-
tum state changes drastically even with a small change in
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the parameter characterizing the external signal. It is worth
mentioning here that such an approach of sensing has been
employed for classical systems [46]. Other kinds of quantum
phase transition beyond the Landau theory of spontaneous
symmetry breaking can also be advantageous, e.g., topolog-
ical transitions [47], for achieving quantum-enhanced sensing
[48]. In this realm, the localization-delocalization transition
also harbors an enormous potential for quantum-enhanced
parameter sensing, which this Letter explores. The self-dual
symmetry of the Aubry-André-Harper (AAH) [49] model
with quasiperiodic modulation leads to a localization transi-
tion as a finite modulation strength, Vc. Further works have
confirmed the existence of a many-body localization transi-
tion in the presence of weak interactions [50,51]. There the
quantum fidelity susceptibility at the transition point scales
as L2/(dν) [52,53], where d denotes spatial dimension and the
scaling exponent ν is associated with the localization length
that scales as ζ ∼ |V − Vc|−ν with ν = 1 [54–56]. It immedi-
ately implies that the sensitivity of the unknown parameter
V scales as L2/(dν) at the transition point. However, as it
is challenging to experimentally access the fidelity between
neighboring quantum states in quantum many-body (QMB)
systems [57–59], the fidelity-based theoretical understanding
does not promise an experimental translation [60]. Moreover,
although a suitably optimized quantum operator, the evalua-
tion of which generally turns out to be nontrivial within the
many-body setting, can, in principle, saturate the maximum
allowed precision governed by the QFI; it often transpires to
be experimentally irrelevant [25]. Instead, we need to focus on
experimentally accessible observables that may overcome the
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shot-noise limit (SNL) by a sizable amount and provide a sub-
stantial quantum advantage. We wish to mention here that a
very recent work on Stark localization [61], which belongs to
a different universality class, has been proposed for quantum-
enhanced sensing, where the work is primarily focused on
single-particle aspects of QFI [62]. Moreover, we resort to
dynamical sensing protocols via sudden quench to encode the
unknown parameter V in the probe state. Here the protocol
duration time t manifests itself as a fundamental resource
for the QFI scaling, along with the system size L. Similar
to the adiabatic considerations, sensing protocols have been
designed via non-equilibrium dynamics [63–66] influenced
by criticality corresponding to a second-order quantum phase
transition [24,27,29,31,67–70]. In particular, under certain as-
sumptions, the dynamical precision quantified via QFI can at
most scale as L2t2, where t represents total interrogation time
[28,44,71]. This is the so-called HL in the dynamical context
[14,15]. The dynamical sensors have certain advantages over
the adiabatic counterparts, e.g., offering the protocol time as
an additional resource for the scaling, overcoming the ob-
stacles of critical slowing down, or designing better sensing
protocols via the sudden quench strategy in comparison to the
finite-time ramp required for implementing adiabatic proto-
cols in reality [70,72]. Moreover, the measurement precision
associated with an observable may attain a super-extensive
growth with respect to the interrogation time, which is beyond
the quadratic scaling of QFI, while perfectly respecting the
allowed Cramér-Rao bounds.

Parameter estimation. Here we provide the essential back-
ground for estimating a single unknown parameter, V . We
consider that the parameter is encoded either in the ground
state or time-evolved state of a QMB system. As the parameter
V changes locally, its fluctuation is captured by the fidelity
susceptibility χQ, defined by

χQ = − lim
δV →0

∂2FQ

∂ (δV )2
, (1)

where FQ = 〈ψ (V )|ψ (V + δV )〉 is the quantum fidelity be-
tween two nearby quantum states |ψ (V )〉 and |ψ (V + δV )〉.
The fidelity susceptibility is related to the QFI as FQ = 4χQ

[25]. In general, one can infer the unknown parameter from
the state |ψ (V )〉 by measuring an observable, Ô. In the asymp-
totic limit, one can associate observable Fisher information
(OFI) FO, which is quantified by the error propagation formula
following from the inverse of signal-to-noise ratio (SNR), as
[24,73]

F−1
O = lim

δV →0

〈Ô2〉 − 〈Ô〉2

(
d〈Ô〉
d (δV )

)2 . (2)

The quantum Cramér-Rao bound [10] provides the bound on
the uncertainty for any observable estimation: FO(V, Ô) �
FQ(V ) [12,13,73]. In the rest of the present Letter, we exploit
the delocalization-localization transition, identify experimen-
tally accessible observables with quantum advantage, and
propose schemes for designing adiabatic and dynamical quan-
tum sensors.

System. We study a one-dimensional fermionic lattice
with an underlying quasiperiodically modulated onsite poten-
tial. The generic form of the Hamiltonian in the context of

single-parameter estimation is Ĥ=Ĥ1 + V Ĥ2. For the system
under consideration, H2 represents a quasiperiodically modu-
lated onsite potential. Let us consider the single-particle limit
first, where H1 has a contribution only from the kinetic energy,
Ĥ1 ≡ Ĥke. In this case the final Hamiltonian is given by

Ĥ = −
∑

i

(ĉ†
i ĉi+1 + H.c.) + V

∑
i

cos(2π iω)ĉ†
i ĉi, (3)

where ω is an irrational number, and ĉ†
i (ĉi ) is a

fermionic creation (annihilation) operator at the ith site. The
Hamiltonian represents the AAH model, which has been
studied in various contexts, such as the Hofstadter butter-
fly [74], transport [75,76], mobility edge [77–79], criticality
[54,80,81], and topological phases [82–84]. The AAH model
has a self-dual symmetry between the Hamiltonians in the
momentum and the position space, which leads to an energy-
independent localization transition at a finite modulation
strength, Vc = 2. For a given V , all the states are either
localized (for V > Vc) or extended (for V < Vc). However,
we restrict our interest to the localization transition in the
ground state and examine its usefulness for adiabatic sensing.
Due to the fractal nature and even-odd dichotomy, the sys-
tem is not typical because all system sizes cannot fit under
the same scaling functions [54,85]. For finite-size systems,
proper scaling emerges at the transition for system sizes Fn

with either odd or even sequences from the Fibonacci series
and for ω to be approximated by ωn = Fn/Fn+1. Here Fn and
Fn+1 are two consecutive Fibonacci numbers with the property
ω = limn→∞(Fn/Fn+1) → (

√
5 − 1)/2, which is the so-called

golden ratio. This work considers periodic boundary condi-
tions (PBCs), odd lattice sizes, and scaling at the transition
point. Experimental observations of localization transition in
the AAH model have been reported, e.g., in the ultracold atom
setup [86–90] and in photonic crystals [91–94].

In addition to the single-particle case, we study the half-
filled case in the presence of interaction. Ĥ1 gets modified
as Ĥ1 = Ĥke + Ĥint, where we choose to keep the interaction
term simple nearest-neighbor type, such that

Ĥint = U
∑

i

n̂in̂i+1, (4)

where n̂i = ĉ†
i ĉi, and U is the interaction strength.

The localization transition persists in the ground state in the
presence of interaction [95,96]. Moreover, further theoretical
works have argued in favor of many-body localization (MBL)
[50,51,97–99], albeit with different universality properties
than the uncorrelated disordered system.

Single-particle case: Adiabatic. The QFI, defined via
Eq. (1), saturates the HL, i.e., it scales quadratically with
the system size: F ∗

Q (V = V ∗) ∼ L2, where V ∗ corresponds
to quasiperiodic potential amplitude for which QFI maxi-
mizes. It reveals the potential of the AAH-type many-body
Hamiltonian to be exploited for building a new class of quan-
tum sensing devices. We now need to identify experimentally
accessible observables endowed with a quantum advantage.

We focus on an observable that measures the occupation
imbalance between the even and odd sites. The correspond-
ing operator is Ôcdw = ∑

i(−1)iĉ†
i ĉi/n f , which reveals the

charge-density-wave (CDW) order in a quantum state. For in-
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FIG. 1. Single-particle case: (a) Modulus of |Ocdw| as a function of V for L = 21 (solid red), 55 (dotted), 89 (dashed), 233 (dashed-dotted),
377 (dashed-dotted-dotted), and 987 (solid black). The inflation points (V ∗) corresponding to different L approach the transition point Vc in the
thermodynamic limit. (b) OFI (Fcdw) corresponding to the operator Ôcdw as a function of V for the same set of system sizes presented in (a).
The localization transition point at Vc = 2 is marked by the gradual prominence of the OFI peaks with increasing lattice sites. The plot styles
are kept consistent. (c) The circles and the squares show the maximum QFI, F ∗

Q , and maximum OFI, F ∗
cdw, at V ∗ as a function of the L. The

straight line show the best fits for F ∗
Q (solid line) and F ∗

cwd (dashed line). QFI admits Heisenberg scaling, i.e., F ∗
Q ∼ L2. The best fit is shown by

the dashed straight line that reveals F ∗
cdw ∼ L1.5.

stance, this operator is directly measurable within the optical
lattice setup loaded with ultracold atoms [86]. We consider
system size up to L = 1597. The computation of OFI, as
followed from Eq. (2), requires evaluation of the expecta-
tion values of 〈Ôcdw〉, 〈Ô2

cdw〉, where Ô2
cdw = ∑

i, j (−1)i+ j n̂in̂ j .
From now on, we switch to a more convenient notation for
the operator expectation value: Oα ≡ 〈Ôα〉. Figure 1(a) shows
the modulus of the charge-density order |Ocdw| as a function
of the amplitude of the potential V . Due to the extended
nature of the quantum state, Ocdw gradually diminishes with
increasing L in the delocalized phase but acquires a finite
value in the localized phase. This feature, as expected, be-
comes sharper with increasing system size and proceeds to
assume a step-function-like structure with vanishing |Ocdw|
in the extended phase in the thermodynamic limit. The in-
flation points corresponding to different system sizes tend to
converge towards the infinite system transition point, Vc = 2.
Figure 1(b) shows the OFI, Fcdw, corresponding to the various
system sizes as a function of V . The Fcdw develops a peak
at finite-size transition points, V ∗. They are characterized
via gradual prominence of the peaks at near Vc. While the
QFI at the transition point, F ∗

Q , admits a scaling of F ∗
Q =

L2.01(1), the OFI at the transition point, F ∗
cdw, scales like F ∗

cdw =
L1.54(4) [see Fig. 1(c)]. The scaling associated with F ∗

cdw is
less than the HL limit but comfortably beats the SNL, hence
offering a genuine quantum advantage in the measurement
precision.

Half-filled case: Adiabatic. We now turn our attention to
the half-filled case, i.e., the number of fermions is (L ± 1)/2
[100], with PBC. We perform density matrix renormalization
group (DMRG) calculations via matrix product state (MPS)
formalism for the interacting systems [101,102]. We probe the
ground state FQ for system sizes up to L = 1597 (n f = 798)
for the noninteracting (NI) cases and up to L = 89 (n f = 45)
in the interacting cases [103]. The influence of interaction re-
mains minimal on the scaling properties for weak to moderate
interaction strengths [103].

Figure 2(a) presents FQ as a function of V for different
interaction strengths U and fixed L. We note two observations:
First, the peak tends to shift towards a higher V ∗ with increas-
ing U . This is expected, as many-body localization transition
is supposed to occur at Vc > 2 in the presence of interaction.

And second, the value of FQ tends to slightly decrease at
V ∗ with increasing U . The scaling of the QFI at V ∗, F ∗

Q , is
presented in Fig. 2(b). F ∗

Q scales as F ∗
Q (U = 0) = L1.98(2) in

the NI limit, i.e., it saturates the HL limit. Despite the lack of
enough data points, it is evident that the effects of interaction
on the scaling exponent remain pretty small in the range of
weak to intermediate range. For the case shown here, QFI also
nearly saturates the HL limit: F ∗

Q (U = 1.2) = L1.95(4).
Proposing an experimentally relevant observable with

quantum advantage for the fractionally filled equilibrium case
turns out to be nontrivial. The operator Ôcdw is not a suitable
operator, as the ground state is devoid of CDW (charge-hole)
ordering in the localized phase [100]. Unlike the single-
particle case, it fails to characterize the transition, and no
proper scaling with L is found. However, a proper scaling
can be found with other suitable observables, such as ÔH2 =∑

i cos(2π iω)ĉ†
i ĉi (which is basically Ĥ2, but a new notation

has been introduced for consistency: ÔH2 ≡ Ĥ2). The corre-
sponding OFI (FH2 ), as followed from Eq. (2), admits a proper
scaling with L, F ∗

H2
= L1.04(1), but it barely beats the SQL. One

may think of a few strategies, one of which is preparing the
system artificially in a highly excited state with high CDW
order and then monitoring the adiabatic evolution of Ôcdw by
tuning V to lower values. This strategy, however, may not be
useful because of closely lying, near-degenerate excited states
or energy crossings. The second way is to adopt a dynamical
strategy for engineering dynamical sensors. The protocol is to
prepare the system in the ground or highly excited state with
high CDW order and then quench to or through Vc to either of
the phases.

Half-filled case: Dynamics. Two specific schemes are con-
sidered: Performing a sudden quench from an initial state,
|ψin〉, which can be (1) the ground state corresponding to a
particular phase, or (2) a state with maximum CDW order
(Ocdw = 1), e.g., |1010 · · · 〉, which is a high excited state of
the system in the limit V → ∞. Such a high CDW state can
be prepared artificially with high fidelity, e.g., in ultracold
atom experiments [86]. A further scheme to construct QFI
runs as follows: (i) Pump a continuous resource for a spe-
cific duration, t , via unitary dynamics provided by a driving
Hamiltonian, Ĥ (Vf ), (ii) back-propagate the evolved state,
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FIG. 2. Half-filled case – Adiabatic: (a) Interaction effects for
particular case at half-filling (L = 89 and nf = 45). The plot shows
FQ as a function of V for varied interaction strengths (up to the inter-
action strength comparable to the kinetic energy). (b) The maximum
QFI, F ∗

Q , and OFI, F ∗
H2

, corresponding to a natural operator Ĥ2 as a
function of L for U = 0. The number of fermions nf for L = 21,
55, 89, 233, 377, 987, and 1597 are 11, 28, 45, 116, 189, 494, and
798, respectively. While F ∗

Q nearly saturates the Heisenberg limit,
i.e., F ∗

Q ∼ L2 for both, the bare system and a system with moderate
interaction (U = 1.2, represented via diamonds), F ∗

H2
scales linearly

with L and hence only saturates the SQL.

|ψ (Vf , t )〉, with the Hamiltonian Ĥf (Vf + δV ), and (iii) the
back-propagated state is projected on the initial state in order
to obtain the fidelity, F (t ) = 〈ψ (V, t )|ψ (V + δV, t )〉. Impor-
tantly, as there may be an experimental limitation on time
due to decoherence, the observables’ short- or transient-time
behavior is of prime interest.

We illustrate the time dependence of the QFIs and OFIs
calculated under the above-mentioned situations in Fig. 3 for
U = 0 and different system sizes L = 55, 89, and 233 at
half-filling. We plot the inverse of the quantities under con-
sideration and rescale them with L. Data sets corresponding
to different L’s collapse quite well, implying a saturation
in the SNL as a function of L. In Fig. 3 we show F−1

Q

FIG. 3. Half-filled case – Dynamics: Time dependence of QFI
and OFI due to a sudden quench in V (U = 0) for L =55 (dot-dot), 89
(dash-dot), and 233 (dash-dot-dot). Collapse plots of the inverse of
the quantities are presented after rescaling them with Lα . Considering
an initial state as the ground state prepared in the localized phase
(case shown is for V = 5), the figure shows scaled QFI (orange
lines). The scaled data set collapses for α = 1, implying FQ ∼ Lt2.
OFI (FH2 ), presented for the same initial state, scales as FH2 ∼ Lt4

(blue lines) at short or transient time. Finally, the OFI, Fcdw, corre-
sponding to an initial state with maximum CDW order is shown to
scale like Fcdw ∼ Lt6 (magenta lines) for t � 1. Data corresponding
to different L merge on top of each other, and the naked eye may be
unable to differentiate them.

and F−1
H2

for the initial state, |ψin(V 
 Vc)〉, as the ground
state prepared in the localized phase and then driven to the
extended phase. While FQ overall scales as ∼Lt2 in the
short and long times [104–107], two characteristic timescales
emerge in OFIs. At short/transient time, roughly up to t ∼ 1,
FH2 assumes a higher scaling in t : FH2 = Lt3.92(1). The observ-
ables exhibit rapid oscillations at t � 1. We find the long-time
average value to have a roughly quadratic scaling in time.
However, Ôcdw holds prime interest, as described in the con-
text of adiabatic sensors. Considering the charge-hole ordered
state |1010 · · · 〉 as the initial state, the dynamics allow us to
circumvent the scaling issues associated with the adiabatic
scenario. It even offers superior scaling in the transient time in
comparison to FH2 : Fcdw = Lt6.003(7). Note that although the FO

exhibits a higher scaling than FQ in transient time, the absolute
value of FO is upper bounded by FQ, as expected. Remarkably,
when the system is not prepared too close to the transition
point, the dynamical scaling laws are quite generic, i.e., they
are independent of the final driving Hamiltonian and the initial
state [100].

Discussion. In this work we perform canonical equilibrium
and dynamical studies of single-parameter quantum sensing
via experimentally accessible natural observables in a
quasiperiodically modulated, single-particle, and half-filled
Fermi lattice. Important findings are the following: Within
the adiabatic scenario, while the QFI can attain the HL limit
in both the single-particle and half-filled cases, an experimen-
tally accessible observable, CDW order (Ôcdw), is proposed
that is endowed with a significant quantum advantage at the
localization transition in the single-particle limit. The same
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observable, however, is not suitable in the half-filled case for
the scaling analysis, as the typical ground-state configuration
needs an important ingredient—the charge-hole ordering.
Instead, the system can be initially prepared in a quantum state
that maintains the required ordering and then can be quenched
across or at the transition point. Remarkably, this provides a
super-extensive generic (i.e., robust against the final driving
Hamiltonian) scaling in the measurement precision. We
also report another natural observable, ÔH2 , experimental
access for which may be comparatively nontrivial, as it
requires measurement of the fermionic occupation number
at individual sites, which provides significant quantum
advantages in precision measurement, even if the system
is initially prepared in the ground state. In conclusion,

we propose the localization-delocalization transition as
a resource that can be exploited for engineering a new
class of quantum sensors. This idea brings the scope for
exercising further exciting investigations, e.g., in the context
of multiparameter sensing, sensing via partial accessibility,
or sensing via localization induced by uncorrelated
disorder.
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