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As a phenomenon encompassing measurement incompatibility and Bell nonlocality, quantum contextuality is
not only central to our understanding of quantum mechanics, but also an essential resource in many quantum
information processing tasks. The dimension-dependent feature of quantum contextuality is known ever since
its discovery, but there is still a lack of systematic methods for characterizing this fundamental feature. In this
work, we propose a systematic and reliable method for certifying the high-dimensional advantages of quantum
contextuality. In theory, our work gives a complete characterization of the dimension-constrained quantum
contextual behavior, and particularly its nonconvex structure is revealed. In application, our method can be
used for dimensionality certification of quantum information processing systems, and also for concentrating the
quantum contextual behavior into lower-dimensional systems.

DOI: 10.1103/PhysRevA.109.L030201

Introduction. Qubits are the basic building blocks in
many quantum information processing protocols. However,
treating a real quantum system as a qubit is not only un-
necessary, but also merely an approximation in practice.
In recent years, experimental progress enabled the control
of high-dimensional quantum systems and theoretical works
demonstrated potential advantages of information process-
ing in the high-dimensional case [1,2]. Consequently, many
efficient methods have been developed to certify the high-
dimensional advantages of various quantum resources, such as
quantum entanglement [3], quantum coherence [4], and Bell
nonlocality [5].

As a phenomenon encompassing measurement incompati-
bility and Bell nonlocality, quantum contextuality is not only
central to our understanding of quantum mechanics [6–8],
but also an essential resource in many quantum information
processing tasks, such as in quantum computation [9–11],
in quantum cryptography [12,13], and in random number
generation [14–16]. The study of quantum contextuality orig-
inates from the work of Kochen and Specker, which is now
referred to as the Kochen-Specker theorem [6]. The modern
theory-independent framework for quantum contextuality was
proposed by Klyachko et al. [17] and further developed to
the state-independent scenario by Cabello et al. [18–20]. In
these works, noncontextuality inequalities are discovered.
These inequalities are obeyed by noncontextual hidden vari-
able (NCHV) models, but can be violated by quantum
mechanics. This experimentally testable framework greatly
promotes both the theoretical and experimental study of
quantum contextuality.
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Ever since the discovery of quantum contextuality, people
have noticed its dimension-dependent feature. For example,
both Kochen and Specker [6] and Bell [21] proved that
quantum contextuality does not exist in two-dimensional
quantum systems. Also, every proof of the Kochen-Specker
theorem, or more generally, every state-independent proof
of quantum contextuality, is dimension dependent [22,23].
For some noncontextuality inequalities, it was discussed
in detail how the largest quantum violation depends on
the dimensionality of the quantum system [24]. Recently,
Ray et al. investigated the problem of calculating finite-
dimensional lower bounds of a family of noncontextuality
inequalities [25].

Despite all these efforts, there is still a lack of systematic
methods for certifying the high-dimensional advantages of
quantum contextuality. On one hand, systematic methods to
calculate the d-dimensional violation of general noncontex-
tuality inequalities are still missing. On the other hand, it is
not known whether using linear inequalities gives a complete
characterization of dimension-constrained quantum contex-
tual behavior.

In this work, we solve both of these problems. We
first propose an efficient and reliable method for certifying
whether or not a quantum contextual behavior can result
from a d-dimensional quantum system. This provides a
complete characterization of dimension-constrained quantum
contextual behaviors. In particular, we prove that not all
dimension-constrained quantum contextual behaviors can be
characterized by the linear inequality method, which reveals
a significant difference between quantum contextual behav-
iors with and without dimension constraints. Then, we show
that the proposed method can also be adapted for calcu-
lating d-dimensional violation of general noncontextuality
inequalities. Finally, we discuss the implications of our re-
sults for certifying the dimensionality of quantum information
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FIG. 1. The nine-vertex graph GKK. In quantum theory, every
vertex represents a projector Pi, and two projectors Pi and Pj are
connected by an edge when PiPj = 0, which means that they are
exclusive events. The independence number of GKK is α(GKK ) = 3,
which can be achieved when b1, b6, b7 in Eq. (1) take the value 1. The
Lovász number of GKK is ϑ (GKK ) = 4.4704, which can be achieved
in a four-dimensional quantum system.

processing systems and concentrating the quantum contextu-
ality into lower-dimensional systems.

Preliminaries. In quantum contextuality theory, a mea-
surement context {s1, s2, . . . , sα} is a set of compatible
measurements, which are jointly measurable. An event e =
(o1, o2, . . . , oα | s1, s2, . . . , sα ) means in a joint measurement
{s1, s2, . . . , sα} the outcome of si is oi for i = 1, 2, . . . , α. Two
events (o1, o2, . . . , oα | s1, s2, . . . , sα ) and (o′

1, o′
2, . . . , o′

β |
s′

1, s′
2, . . . , s′

β ) are called exclusive if there exist a, b such that
sa = s′

b but oa �= o′
b. The events and their exclusive relation

can be depicted by a graph, which is called the exclusivity
graph. Mathematically, a graph G is denoted by (V, E ), where
V is the set of vertices and E is the set of edges, i.e., unordered
pairs {i, j} for some i, j ∈ V and i �= j. In the exclusivity
graph, the vertices represent the set of events {e1, e2, . . . , en}
and edges connect pairs of exclusive events; see Fig. 1 for an
example graph GKK and its connection to quantum contex-
tuality. Notably, GKK can be viewed as a variant of the “bug”
graph from the original Kochen-Specker argument [6] and has
been used for revealing quantum contextuality of almost all
qutrit states [26].

In Ref. [27], an important connection between the graph
theory and quantum contextuality was discovered. Consider
the sum of probabilities

∑n
i=1 p(ei ), where p(ei ) are the prob-

abilities of the corresponding events. In an NCHV model,
determinism and exclusivity imply that this sum is upper
bounded by

α(G) := max
bi

n∑

i=1

bi,

s.t. bi = 0 or 1,

bib j = 0 for {i, j} ∈ E .

(1)

Here, α(G) is the so-called independence number of graph
G, which corresponds to the maximum number of mutually
unconnected vertices in G. In quantum theory, the events ei

are represented by projectors Pi and two events are exclusive if
they are orthogonal, i.e., PiPj = 0. Without loss of generality,
we can always assume that the state is pure and Pi are rank

one for studying noncontextuality inequalities [8]. Thus, the
quantum bound of

∑n
i=1 p(ei ) = ∑n

i=1 Tr(ρPi ) is given by

ϑ (G) := max
|ϕ〉,|ψi〉

n∑

i=1

|〈ϕ|ψi〉|2,

s.t. 〈ψi|ψ j〉 = 0 for {i, j} ∈ E .

(2)

ϑ (G) equals to the so-called Lovász number of graph G [28].
Here and in the following, we assume that |ϕ〉 and |ψi〉 are
always normalized unless otherwise stated. We call the vectors
(|ψ1〉, |ψ2〉, . . . , |ψn〉) satisfying the constraints in Eq. (2) a
(rank-one) projective representation of G [29]. One can easily
see from the definition that α(G) � ϑ (G). If α(G) is strictly
smaller than ϑ (G), it implies that there is a gap between the
classical (NCHV) bound and the maximally achievable quan-
tum value. Consequently, noncontextuality inequalities can be
constructed [30,31]. More generally, the set of all realizable
probabilities in quantum theory

Q(G) = {(p1, p2, . . . , pn) | pi = |〈ϕ|ψi〉|2,
〈ψi|ψ j〉 = 0 for {i, j} ∈ E} (3)

corresponds to the so-called theta body of graph G [32]. If
(p1, p2, . . . , pn) ∈ Q(G), it is then called a quantum contex-
tual behavior or simply a quantum behavior.

The quantum bound ϑ (G) and the quantum behaviors
Q(G) reveal a characteristic feature of quantum mechanics,
namely, quantum contextuality. However, this feature depends
on the dimension of the quantum system. For example, quan-
tum contextuality does not exist in two-dimensional systems,
and the maximization in Eq. (2) also depends on the dimen-
sion of the quantum system. In this work, we give a systematic
study on the dimension-dependent nature of quantum contex-
tuality, and complete methods for characterizing the set of
d-dimensional quantum behaviors

Qd (G) = {(p1, p2, . . . , pn) | |ϕ〉, |ψi〉 ∈ Cd ,

pi = |〈ϕ|ψi〉|2, 〈ψi|ψ j〉 = 0 for {i, j} ∈ E} (4)

are proposed.
Finite-dimensional quantum contextuality. We start with

developing a method for verifying whether a behavior p =
(p1, p2, . . . , pn) can result from a d-dimensional quantum
system. Remarkably, there are two different kinds of veri-
fication. Verifying that p /∈ Qd (G) [p ∈ Qd (G)] is an outer
(inner) approximation problem, which means an affirmative
conclusion would imply that p /∈ Qd (G) [p ∈ Qd (G)], oth-
erwise the verification is inconclusive. In this work we will
consider both cases. The starting point is the following obser-
vation.

Observation 1. The probabilities (p1, p2, . . . , pn) are a
d-dimensional quantum behavior, i.e., (p1, p2, . . . , pn) ∈
Qd (G), if and only if there exists a Hermitian matrix [Xi j]n

i, j=0
satisfying that

X0i = Xi0 = √
pi for i = 1, 2, . . . , n, (5a)

Xii = 1 for i = 0, 1, 2, . . . , n, (5b)

Xi j = 0 for {i, j} ∈ E , (5c)

X � 0, rank(X ) � d. (5d)
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The main idea for proving Observation 1 is that the dimen-
sion of the vector space generated by {|vi〉}n

i=0 equals to the
rank of the corresponding Gram matrix [〈vi|v j〉]n

i, j=0; for the
detailed proof, please see Appendix A in the Supplemental
Material (SM) [33].

With Observation 1, we can construct a convex program
which is necessary and sufficient for (p1, p2, . . . , pn) be-
ing a d-dimensional quantum behavior. Suppose that X ∈
C(n+1)×(n+1) satisfies the constraints (5a)–(5d). As X � 0 and
rank(X ) � d , one can construct a purification of X with a
d-dimensional auxiliary system, i.e., there exists an unnormal-
ized pure state |χ〉 ∈ Cn+1 ⊗ Cd , such that

Tr2(|χ〉〈χ |) = X, (6)

where Tr2(·) is the partial trace operation on the second sub-
system Cd . Following the ideas in Refs. [34,35], we consider
the two-copy extension

	AB = |χ〉〈χ |A ⊗ |χ〉〈χ |B, (7)

then 	AB is an unnormalized state in HA ⊗ HB with HA =
HB = Cn+1 ⊗ Cd . Moreover, 	AB is in the symmetric sub-
space

VAB	AB = 	AB, (8)

where the swap operator VAB is defined to satisfy that
VAB|χ〉A|ξ 〉B = |ξ 〉A|χ〉B for any pair of states |χ〉 and |ξ 〉. By
imposing the other constraints in Eqs. (5a)–(5c), one can eas-
ily see that if (p1, p2, . . . , pn) ∈ Qd (G), the following convex
program is feasible:

find 	AB ∈ SEP

s.t. VAB	AB = 	AB, Tr(	AB) = (n + 1)2,

TrA[(|i〉〈 j| ⊗ 1d ⊗ 1B)	AB] = μi j

n + 1
TrA[	AB],

(9)

where μi j denote all the known elements of Xi j , i.e., μ0i =
μi0 = √

pi for i = 1, 2, . . . , n, μii = 1 for i = 0, 1, 2, . . . , n,
and μi j = 0 for {i, j} ∈ E , and SEP denotes the set of
unnormalized separable states. Moreover, this convex pro-
gram is also sufficient for (p1, p2, . . . , pn) ∈ Qd (G) [35].
From Eq. (9), a complete hierarchy of semidefinite programs
(SDPs) can be constructed for outer approximating Qd (G),
and the lowest order is replacing 	AB ∈ SEP with 	AB ∈
PPT. If any of these SDPs is infeasible, it will imply that
(p1, p2, . . . , pn) /∈ Qd (G).

For the inner approximation, i.e., verifying
(p1, p2, . . . , pn) ∈ Qd (G), we note that Observation 1
can be viewed as a semidefinite variant of the so-called
low-rank matrix recovery, which is a rapidly developing
field in computer science [36]. For our problem, the matrix
size is relatively small and thus efficient methods can be
constructed. The main idea of our method is illustrated in
Fig. 2. Let S and R+

d denote the set of Hermitian matrices
satisfying Eqs. (5a)–(5c) and satisfying Eq. (5d), respectively,
then there exists (p1, p2, . . . , pn) ∈ Qd (G) if and only if the
solution of the following optimization problem is zero:

min
X,Y

‖X − Y ‖F

s.t. X ∈ S, Y ∈ R+
d ,

(10)

FIG. 2. Illustration of the inner approximation method. The
problem is equivalent to finding X ∈ S ∩ R+

d , for which we mini-
mize the distance between points in S and R+

d . We first randomly
choose a point Y0 ∈ R+

d and find X0 ∈ S that minimizes the dis-
tance between Y0 and S, i.e., X0 = arg minX∈S ‖X − Y0‖F . Similarly,
with X0 we can then find Y1 = arg minY ∈R+

d
‖X0 − Y ‖F . Repeating

the above procedure, i.e., Xi = arg minX∈S ‖X − Yi‖F and Yi+1 =
arg minY ∈R+

d
‖Xi − Y ‖F , we get a converging sequence ‖Xi − Yi‖F . If

the limit is zero, we obtain the desired X ∈ S ∩ R+
d and Observation

1 implies that the corresponding (p1, p2, . . . , pn) ∈ Qd (G).

where ‖ · ‖F denotes the Frobenius norm. From Eq. (10)
an alternating optimization algorithm for verifying
(p1, p2, . . . , pn) ∈ Qd (G) can be constructed. More technical
details of the inner and outer approximation algorithms can
be found in Appendixes B and C in the (SM) [33].

To illustrate the power of our methods, we consider the
nine-vertex graph GKK in Fig. 1 and the behaviors

p1 = (
1
3 , 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3

)
, (11a)

p2 = (
1
2 , 1

4 , 1
4 , 1

2 , 0, 0, 1
4 , 1

4 , 1
)
, (11b)

p3 = (
5

12 , 7
24 , 7

24 , 5
12 , 1

6 , 1
6 , 7

24 , 7
24 , 2

3

)
. (11c)

One can prove that p1, p2 ∈ Qd (GKK ) with the inner
approximation methods, and p3 /∈ Qd (GKK ) with the outer
approximation method. Note also that p3 is a mixture of
p1 and p2, i.e., p3 = (p1 + p2)/2. This reveals a remarkable
difference between the quantum behaviors with and without
dimension constraints: the set of general quantum behaviors
Q(G) is convex but the d-dimensional counterpart Qd (G) may
not be. Similar nonconvexity results also exist for other quan-
tum resources; see Refs. [37–40] for some examples and their
applications. Another remarkable property is that although
the quantum bound ϑ (GKK ) can already be achieved when
d = 4, there exist quantum behaviors not in Q4(GKK ). One
such example is

p4 = (
1
3 , 1

3 , 1
3 , 0, 2

3 , 1
3 , 0, 0, 1

3

)
. (12)

Inequality method. The standard method for characterizing
quantum contextuality without dimension constraints relies
on noncontextuality inequalities. These are linear inequalities
closely related to the so-called weighted Lovász number [27].
Similarly, one can also characterize the d-dimensional quan-
tum contextuality with the following quantity, which can be
viewed as the d-dimensional weighted Lovász number:

ϑd (G,w) := max
p

w · p

s.t. p ∈ Qd (G),
(13)
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where the weights w = (w1,w2, . . . ,wn) ∈ Rn and w · p =∑n
i=1 wi pi. Unlike Q(G), this inequality method is no longer

sufficient for characterizing Qd (G) because of the noncon-
vexity property proved above. Furthermore, contrary to Q(G)
[23], there are no longer reasons to assume that all wi are
nonnegative for characterizing Qd (G). What Eq. (13) char-
acterizes is actually the convex hull of Qd (G) and thus the
inequality method is less general than the direct method given
above. Nevertheless, an inequality is sometimes more suit-
able for experimental tests. In the following, we show that
our method can also be adapted for calculating the bound in
Eq. (13).

By taking advantage of Observation 1, we get the following
equivalent form of ϑd (G,w):

max
X

n∑

i=1

wi|X0i|2

s.t. Xii = 1 for i = 0, 1, 2, . . . , n,

Xi j = 0 for {i, j} ∈ E ,

X � 0, rank(X ) � d.

(14)

Similarly, this rank-constrained optimization can be trans-
formed to the convex optimization [35]

max
	AB

Tr[WAB	AB]

s.t. 	AB ∈ SEP, VAB	AB = 	AB, Tr(	AB) = (n + 1)2,

TrA[(|i〉〈 j| ⊗ 1d ⊗ 1B)	AB] = 0 for {i, j} ∈ E ,

TrA[(|i〉〈i| ⊗ 1d ⊗ 1B)	AB] = 1

n + 1
TrA[	AB]

for i = 0, 1, . . . , n, (15)

where WAB = 1
2 (

∑n
i=1 wi|0〉〈i| ⊗ 1d ⊗ |i〉〈0| ⊗ 1d + H.c.),

and H.c. denotes the Hermitian conjugate of the previous
term.

From Eq. (15) a complete SDP hierarchy can be con-
structed for upper bounding ϑd (G,w), but the low-order
relaxations may not give good enough bounds. Thus,
we provide another method, which is not always com-
plete but may result in better bounds when low-order
relaxations are considered. Consider the Gram matrix of
(|ϕ〉, c1|ψ1〉, c2|ψ2〉, . . . , cn|ψn〉), where ci = 〈ψi|ϕ〉. Simi-
larly to Observation 1, one can prove that ϑd (G,w) is upper
bounded by the optimization

max
X

n∑

i=1

wiXii

s.t. Xii = X0i = Xi0 for i = 1, 2, . . . , n,

Xi j = 0 for {i, j} ∈ E ,

X00 = 1, X � 0, rank(X ) � d,

(16)

where the constraints Xii = X0i = Xi0 result from the condi-
tions that 〈ϕ|ci|ψi〉 = 〈ψi|c∗

i ci|ψi〉 = |〈ψi|ϕ〉|2. Let ϑ̃d (G,w)
denote the solution of Eq. (16), then one can easily see
that ϑd (G,w) � ϑ̃d (G,w). In Ref. [25], it was claimed that
ϑ̃d (G,w) = ϑd (G,w) when Qd (G) is not empty. This is,

however, not true. An explicit counterexample is shown
below.

From Eqs. (14) and (16), efficient inner and outer ap-
proximation methods can be similarly constructed for lower
and upper bounding ϑd (G,w) and ϑ̃d (G,w). As an exam-
ple, we still consider graph GKK in Fig. 1 and the case
that w = (1, 1, . . . , 1), for which ϑd (G,w) and ϑ̃d (G,w)
are denoted by ϑd (G) and ϑ̃d (G), respectively. One can
prove that ϑ3(GKK ) = 3.3333 by showing that 3.3333 is
also both a lower bound and an upper bound (up to nu-
merical precision). In addition, graph GKK also provides
an explicit example of ϑ̃d (G) �= ϑd (G). This can be proved
by constructing a matrix X satisfying all the constraints in
Eq. (16) and

∑n
i=1 Xii = 3.3380, which then implies that

ϑ̃3(GKK ) � 3.3380 > ϑ3(GKK ) = 3.3333. See Appendixes D
and E for the technical details of the lower and upper bounding
algorithms in the (SM) [33].

Discussion and conclusion. Given the extensive theoretical
and experimental studies on the high-dimensional advantages
of quantum resources in recent years [41–48], our method can
be used in various ways. First, our results provide a differ-
ent approach for constructing so-called dimension witnesses
[37,49–54]. These are linear or nonlinear inequalities, which
can be used to certify the experimenter’s coherent control
on a certain amount of levels in quantum information pro-
cessing. With our outer approximation method, a violation of
the inequality

∑
i wi pi � ϑd (G,w) can be rigorously proved,

which would in turn certify that the amount of controllable
levels is larger than d . Second, we consider the so-called
contextuality contraction, which aims to achieve the same
degree of contextuality with a lower-dimensional system and
thus make the utilization of quantum contextuality more ex-
perimentally accessible [55]. One can easily see that our inner
approximation method can be directly used for reducing the
dimension and our outer approximation method can be used
for calculating the limit of contextuality contraction. Finally,
on a more abstract level, our results may elucidate the role of
the quantum dimension in information processing. The origi-
nal definition of the Lovász number was motivated by notions
of communication capacity, and for contextuality, connections
to communication tasks have been established [56,57]. Com-
bining these concepts may lead to a deeper understanding of
high-dimensional quantum information processing, as well as
novel applications.

In conclusion, we have provided powerful methods to
characterize quantum contextual behavior under dimen-
sion constraints. Our method gives a complete character-
ization of dimension-constrained quantum contextual be-
haviors, and particularly we show that not all quantum
contextual behaviors can be characterized by the lin-
ear inequality method. As applications, our method can
be used for dimensionality certification of quantum in-
formation processing systems, and also for concentrating
the quantum contextuality behavior into lower-dimensional
systems.

Acknowledgments. We thank Kishor Bharti, Adán
Cabello, and Zhen-Peng Xu for discussions. This
work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation,
Projects No. 447948357 and No. 440958198), the

L030201-4



CHARACTERIZING HIGH-DIMENSIONAL QUANTUM … PHYSICAL REVIEW A 109, L030201 (2024)

Sino-German Center for Research Promotion (Project No.
M-0294), the ERC (Consolidator Grant No.
683107/TempoQ), and the German Ministry of Education and
Research (Project QuKuK, BMBF Grant No. 16KIS1618K).

X.-D.Y. acknowledges support by the National Natural
Science Foundation of China (Grants No. 12205170 and No.
12174224) and the Shandong Provincial Natural Science
Foundation of China (Grant No. ZR2022QA084).

[1] M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-
dimensional quantum entanglement, Nat. Rev. Phys. 2, 444
(2020).

[2] D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, High-
dimensional quantum communication: Benefits, progress, and
future challenges, Adv. Quantum Technol. 2, 1900038 (2019).

[3] J. Bavaresco, N. Herrera Valencia, C. Klöckl, M. Pivoluska, P.
Erker, N. Friis, M. Malik, and M. Huber, Measurements in two
bases are sufficient for certifying high-dimensional entangle-
ment, Nat. Phys. 14, 1032 (2018).

[4] M. Ringbauer, T. R. Bromley, M. Cianciaruso, L. Lami,
W. Y. Sarah Lau, G. Adesso, A. G. White, A. Fedrizzi, and
M. Piani, Certification and quantification of multilevel quantum
coherence, Phys. Rev. X 8, 041007 (2018).

[5] M. Navascués and T. Vértesi, Bounding the set of finite di-
mensional quantum correlations, Phys. Rev. Lett. 115, 020501
(2015).

[6] S. Kochen and E. Specker, The problem of hidden variables in
quantum mechanics, J. Math. Mech. 17, 59 (1967).

[7] A. Peres, Quantum Theory: Concepts and Methods (Kluwer
Academic Publishers, Dordrecht, 1993).

[8] C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J.-A.
Larsson, Kochen-Specker contextuality, Rev. Mod. Phys. 94,
045007 (2022).

[9] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Contex-
tuality supplies the “magic” for quantum computation, Nature
(London) 510, 351 (2014).

[10] S. Bravyi, D. Gosset, and R. König, Quantum advantage with
shallow circuits, Science 362, 308 (2018).

[11] S. Bravyi, D. Gosset, R. König, and M. Tomamichel, Quantum
advantage with noisy shallow circuits, Nat. Phys. 16, 1040
(2020).

[12] H. Bechmann-Pasquinucci and A. Peres, Quantum cryptogra-
phy with 3-state systems, Phys. Rev. Lett. 85, 3313 (2000).

[13] K. Svozil, Bertlmann’s chocolate balls and quantum type cryp-
tography, arXiv:0903.0231.

[14] A. A. Abbott, C. S. Calude, J. Conder, and K. Svozil, Strong
Kochen-Specker theorem and incomputability of quantum ran-
domness, Phys. Rev. A 86, 062109 (2012).

[15] A. Kulikov, M. Jerger, A. Potočnik, A. Wallraff, and A.
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[26] P. Kurzyński and D. Kaszlikowski, Contextuality of almost all
qutrit states can be revealed with nine observables, Phys. Rev.
A 86, 042125 (2012).

[27] A. Cabello, S. Severini, and A. Winter, Graph-theoretic ap-
proach to quantum correlations, Phys. Rev. Lett. 112, 040401
(2014).

[28] L. Lovász, On the Shannon capacity of a graph, IEEE Trans.
Inf. Theory 25, 1 (1979).

[29] In graph theory, (|ψ1〉, |ψ2〉, . . . , |ψn〉) is called an orthonormal
representation of the complement graph G.

[30] X.-D. Yu and D. M. Tong, Coexistence of Kochen-Specker
inequalities and noncontextuality inequalities, Phys. Rev. A 89,
010101(R) (2014).

[31] A. Cabello, Simple method for experimentally testing any form
of quantum contextuality, Phys. Rev. A 93, 032102 (2016).

[32] M. Grötschel, L. Lovász, and A. Schrijver, Relaxations of ver-
tex packing, J. Combin. Theory B 40, 330 (1986).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.109.L030201 for the the appendixes and
computer code, which also contains Refs. [58–61].

[34] X.-D. Yu, T. Simnacher, N. Wyderka, H. C. Nguyen, and O.
Gühne, A complete hierarchy for the pure state marginal prob-
lem in quantum mechanics, Nat. Commun. 12, 1012 (2021).

[35] X.-D. Yu, T. Simnacher, H. C. Nguyen, and O. Gühne,
Quantum-inspired hierarchy for rank-constrained optimization,
PRX Quantum 3, 010340 (2022).

[36] M. A. Davenport and J. Romberg, An overview of low-rank
matrix recovery from incomplete observations, IEEE J. Sel.
Top. Signal Process. 10, 608 (2016).

[37] J. Bowles, M. T. Quintino, and N. Brunner, Certifying the
dimension of classical and quantum systems in a prepare-and-

L030201-5

https://doi.org/10.1038/s42254-020-0220-6
https://doi.org/10.1002/qute.201900038
https://doi.org/10.1038/s41567-018-0203-z
https://doi.org/10.1103/PhysRevX.8.041007
https://doi.org/10.1103/PhysRevLett.115.020501
https://doi.org/10.1103/RevModPhys.94.045007
https://doi.org/10.1038/nature13460
https://doi.org/10.1126/science.aar3106
https://doi.org/10.1038/s41567-020-0948-z
https://doi.org/10.1103/PhysRevLett.85.3313
https://arxiv.org/abs/0903.0231
https://doi.org/10.1103/PhysRevA.86.062109
https://doi.org/10.1103/PhysRevLett.119.240501
https://doi.org/10.1038/srep01627
https://doi.org/10.1103/PhysRevLett.101.020403
https://doi.org/10.1103/PhysRevLett.101.210401
https://doi.org/10.1103/PhysRevLett.103.050401
https://doi.org/10.1103/PhysRevLett.108.030402
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/PhysRevLett.112.040404
https://doi.org/10.1103/PhysRevLett.114.250402
https://doi.org/10.1103/PhysRevA.89.062107
https://doi.org/10.1088/1367-2630/abcacd
https://doi.org/10.1103/PhysRevA.86.042125
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1109/TIT.1979.1055985
https://doi.org/10.1103/PhysRevA.89.010101
https://doi.org/10.1103/PhysRevA.93.032102
https://doi.org/10.1016/0095-8956(86)90087-0
http://link.aps.org/supplemental/10.1103/PhysRevA.109.L030201
https://doi.org/10.1038/s41467-020-20799-5
https://doi.org/10.1103/PRXQuantum.3.010340
https://doi.org/10.1109/JSTSP.2016.2539100


YU, VEEREN, AND GÜHNE PHYSICAL REVIEW A 109, L030201 (2024)

measure scenario with independent devices, Phys. Rev. Lett.
112, 140407 (2014).

[38] J. M. Donohue and E. Wolfe, Identifying nonconvexity in the
sets of limited-dimension quantum correlations, Phys. Rev. A
92, 062120 (2015).

[39] J. Sikora, A. Varvitsiotis, and Z. Wei, Minimum dimension of a
Hilbert space needed to generate a quantum correlation, Phys.
Rev. Lett. 117, 060401 (2016).

[40] Y. Mao, C. Spee, Z.-P. Xu, and O. Gühne, Structure of
dimension-bounded temporal correlations, Phys. Rev. A 105,
L020201 (2022).

[41] I. Ali-Khan, C. J. Broadbent, and J. C. Howell, Large-alphabet
quantum key distribution using energy-time entangled bipartite
states, Phys. Rev. Lett. 98, 060503 (2007).

[42] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E.
Lucero, A. D. O’Connell, D. Sank, H. Wang, J. Wenner, A. N.
Cleland, M. R. Geller, and J. M. Martinis, Emulation of a
quantum spin with a superconducting phase qudit, Science 325,
722 (2009).

[43] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.
Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist,
and A. G. White, Simplifying quantum logic using higher-
dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009).

[44] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E.
Andersson, Experimental high-dimensional two-photon entan-
glement and violations of generalized Bell inequalities, Nat.
Phys. 7, 677 (2011).

[45] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B.
Wetzel, Y. Zhang, A. Cino, S. T. Chu, and B. E. Little, On-chip
generation of high-dimensional entangled quantum states and
their coherent control, Nature (London) 546, 622 (2017).

[46] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A.
Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D.
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