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Spectroscopy and topological properties of a Haldane light system
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We introduce a local spectroscopic method in real space to probe the topological properties of a circuit
quantum electrodynamics (cQED) array generalizing previous approaches from one to two dimensions in the
plane. As an application, we develop the theory of microwave light propagating in the local probe capacitively
coupled to the cQED array associated to a bosonic Haldane model. Interestingly, we show that the measured
reflection coefficient, resolved in frequency through the resonance, reveals the model’s geometrical properties
and topological phase transition. We discuss the role of physical parameters such as the lifetime of the light
modes and stability towards local disorder related to further realizations.
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Introduction. Topological systems find various interesting
applications in physics, in particular related to the protected
mesoscopic transport at the edges. In two dimensions, the
quantum Hall effect, induced by a perpendicular uniform
magnetic field, has been generalized to situations with no net
flux in a unit cell, referring to the Haldane honeycomb lattice
model [1], and then generally to the quantum anomalous Hall
effect and Chern insulators. The latter are realized in solid-
state systems, in cold atom gases, and in photonic systems
(coupled waveguides) [2–4]. One elegant way to realize Hal-
dane’s seminal model for artificial systems is through Floquet
engineering [3–8].

The most common way to probe the topological proper-
ties in condensed matter systems is to determine the Hall
conductance [9,10]. The topological responses of artificial
systems are accessible in several ways [11–14]. In cold atom
gases, topological properties are revealed through transport
or Hall drift [4,15], interferometry [16–18], the physics of
chiral edge states [19,20], or via a measurement of the
Berry curvature [21]. For condensed matter systems and cold
atom gases, a circular drive on the system also enables to
probe the topological information [22–26], even with a local
resolution within the Brillouin zone [27,28]. Light systems
with topological properties, including gyromagnetic photonic
crystals [29–32], arrays of coupled waveguides [3,33,34], op-
tomechanical systems [35,36], and cavity and circuit quantum
electrodynamics (cQED) [37–42], have also garnered signifi-
cant interest.

In Ref. [43], a protocol to probe the topological prop-
erties of a one-dimensional LC circuit system is proposed.
This system is closely connected to the Su-Schrieffer-Heeger
(SSH) model which has been implemented recently [44–47].
In Ref. [43], the authors considered a transmission line (ca-
pacitively) coupled to a single cell within the chain. From
the reflection of an input triggered in the probe, they recon-
structed the Zak phase, which is the topological invariant
characterizing the studied one-dimensional system. Our quest
is to generalize this local probe approach on the lattice in
two dimensions, which is a priori not so apparent. Previous

proposals for light-matter topological probes in two-
dimensional systems have used the transverse polarization of
light to detect the chirality associated with the system’s topo-
logical nature [22,24]. In striking contrast to these approaches,
our study focuses on a local probe in real space, specifically
a long transmission line capacitively coupled to a Haldane
bosonic model in circuit quantum electrodynamics (cQED).
We demonstrate how the Chern number can be measured by
analyzing the reflection coefficient, which relates the input
and output voltage signals.

Bosonic Haldane model. We introduce a cQED system
made of an array of resonators coupled together in such a
way [8] that the system is described by a usual Haldane
Hamiltonian H = ∑

k �
†
khk�k [1–7], with

hk = h0(k) + Re[h1(k)]σx − Im[h1(k)]σy + h2(k)σz, (1)

and h0(k) = h̄�0 + 2t2 cos φ
∑3

i=1 cos(k · bi ), h1(k) =
t1

∑3
i=1 exp(−ik · ai ), h2(k) = M − 2t2 sin φ

∑3
i=1 sin(k ·

bi ), and �
†
k = (a†

1,k, a†
2,k ), where a†

j,k is the creation operator
for a boson with momentum k on sublattice j [ j = 1(2)
corresponds to the sublattice A(B) appearing in Fig. 1(a)].
ai and bi (i ∈ {1, 2, 3}) are defined in Fig. 1(a), the hopping
amplitudes t1 and t2 and the Semenoff mass M [48] are real
numbers, and σ x, σ y, σ z are Pauli matrices acting in sublattice
space. Hereafter, we study the case where t2 is small compared
to t1, as it is often the situation in physical systems. In Ref. [8],
a Haldane Hamiltonian for bosonic systems is derived from
Floquet engineering with a high-frequency approximation.
For a photonic system, a permanent drive is necessary to
compensate for the photon decay processes that happen [14].
In typical photonic systems the on-site energy h̄�0 is large
(usually ∼GHz order of magnitude) compared to the effective
hopping amplitudes on the lattice (e.g., can be ∼10 to
∼100 MHz) [37,42,49,50].

The Haldane model shows two energy bands in momentum
space Ei,k = h0(k) + (−1)iε(k), where i = 1 or 2 and ε(k) =√

|h1(k)|2 + h2(k)2 [see Fig. 1(c)]. h1(k) = 0 is reached
at both nonequivalent Dirac points K = (g3 − g2)/3 and
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FIG. 1. (a) Definition of the sublattices, real-space vectors, and
hopping amplitudes for the Haldane model on the honeycomb lattice.
(b) Sketch of the Brillouin zone for the honeycomb lattice. (c) Hal-
dane model energies, in units of t1, as a function of the momentum
q3 = ak · g3 (a is the lattice spacing), with parameters φ = π/2, t2 =
0.15t1, and M = 3

√
3t2/2. Both lowest band energies at the Dirac

points, E1,K and E1,K′ , are shown. (d) The quantity 1 − ∫
dωSout(ω),

computed for a disordered 21 × 20 unit cell Haldane system with
open boundary conditions. The color scale of the figure is logarith-
mic. The precise information on definitions and parameters can be
found in the main text, page 4, paragraph “Disorder”.

K′ = (g2 − g3)/3 [see Fig. 1(b)]. Moreover, we have h2(K) =
0 if M = +3

√
3t2 sin φ and h2(K′) = 0 if M = −3

√
3t2 sin φ.

When the bands cross, the dispersion relation around K and
K′ is linear.

Topological properties. Here, we describe the geometri-
cal properties of the system through Bloch eigenvectors and
through a definition of the topological number resolved at the
Dirac points in Eq. (2). This definition is generally valid for a
model that can be written as a spin- 1

2 particle in momentum
space [51]. We introduce |ui,k〉 as the Bloch eigenvectors of
the Haldane Hamiltonian, i.e., e−ik·r̂Heik·r̂ |ui,k〉 = Ei,k |ui,k〉
and we define the coefficients α1

i (k) and α2
i (k) such that

|ui,k〉 = [α1
i (k)a†

1,k + α2
i (k)a†

2,k] |0〉. These coefficients may
vanish only at the Dirac points. If the sign of h2 is opposite
at the nonequivalent Dirac points (|M| < 3

√
3t2| sin φ|, see

Table I), then α1
i (k) vanish at one Dirac point and α2

i (k)
vanish at the other Dirac point. It follows that it is impossible
to find a unique and smooth phase over all the Brillouin zone

TABLE I. Sign of h2 at the Dirac points, as a function of M and
sgn(sin φ).

|M| < 3
√

3t2| sin φ| |M| > 3
√

3t2| sin φ|
sgn h2(K) −sgn(sin φ) sgn M
sgn h2(K′) sgn(sin φ) sgn M

(BZ) for the Bloch state |ui,k〉. This characteristic feature
of Chern insulators [52] forms the basis of the probe pro-
posed in this Letter, rendering it a priori relevant for Chern
insulators with nondegenerate Dirac points in the energy
spectrum (for the Haldane system we consider this imposes
t2 � 0.15t1). In this phase, the Chern number Ci (i is the band
index) reads Ci = (−1)i+1 sgn(sin φ). In the Supplemental
Material, for completeness, we present a derivation of this
formula [53]. Now, we build an alternative definition of the
topological number from the Dirac points. If the sign of h2

is the same at both Dirac points (|M| > 3
√

3t2| sin φ|, see
Table I), then α1

i (k) or α2
i (k) can be chosen nonzero over

all the BZ. In this case, the Chern numbers Ci are vanishing.
From this analysis, for |M| �= 3

√
3t2| sin φ|, we have Ci =

(−1)i+1 sgn(sin φ)[1 − sgn(h2(K)h2(K′)]/2, i.e.,

Ci = (−1)i

2
[sgn h2(K) − sgn h2(K′)]. (2)

This formula has indeed a simple physical understanding for a
Hamiltonian hk written as a 2 × 2 matrix. From the Ehrenfest
theorem and a Bloch sphere correspondence the topological
number is equivalent to Ci = (−1)i[〈σz(0)〉 − 〈σz(π )〉]/2 with
〈σz〉 = (−1)i cos θ = (−1)i sgn h2(θ ) [51]. In the following,
we namely rely on Eq. (2) to show how Ci can be probed from
the reflected light in a local probe capacitively coupled to a
Haldane photonic system. The simple idea behind our pro-
posal is that the topological properties manifest as discernible
sublattice weight variations of the wave function, enabling
to reveal the topological transition through the coupling of a
probe to one of the sublattice sites.

We emphasize here that in Ref. [43], we proposed a ca-
pacitively coupled topological probe for a one-dimensional
(1D) system. It gives access to a phase whose winding around
the BZ is the topological invariant (Zak phase). The probe
proposed in the following is substantially different since it
measures the information in Eq. (2).

Spectroscopic probe. Here, we introduce the local spectro-
scopic approach, i.e., a local light probe with weak capacitive
coupling to a Haldane boson system at position R0, on the
sublattice j0. The probe is a resonator with a certain number
of (relevant) modes, described by the Hamiltonian Hprb =∑

q h̄ωqb†
qbq, with b†

q, bq the creation and annihilation oper-
ators for the mode q characterized by the frequency ωq. The
coupling is described by Hcpl = (aR0 + a†

R0
)
∑

q gq(bq + b†
q),

where a†
R0

is the Fourier transform of a†
j,k at position R0.

For simplicity, we initially disregard the dissipation effects
induced by the probe in the Haldane system and assume
infinitely long lifetimes for the light modes |ui,k〉.

To acquire some intuition, let us show that the transition
rate � from a state |ψ (t )〉 which, at initial time ti, is a probe’s
mode with frequency ωq0 , i.e., |ψ (ti )〉 = |bq0〉, to the eigen-
states |ui,k〉 of the Haldane Hamiltonian’s bears information
about the topological character of the system. At sufficiently
long times t , �[h̄ωq0 ] = 2π

h̄

∑
i,k | 〈bq0 | Hcpl |ui,k〉 |2δ(h̄ωq0 −

Ei,k ). 〈bq0 | Hcpl |ui,k〉 involves the components of the Bloch
state in the basis (a†

1,k, a†
2,k ) and a factor eik·R0 (trans-

formation to the real-space representation), such that we
obtain 〈bq0 | Hcpl |ui,k〉 = gq0α

j0
i (k)eik·R0 . As one can see from

Table II, which is constructed using Eq. (2) and the related
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TABLE II. Coefficients α
j0
i which, at the Dirac points, are di-

rectly related to the Chern number, as a function of sgn M and
sgn(sin φ).

sgn M = sgn(sin φ) sgn M = −sgn(sin φ)

sgn(sin φ)
(−1)i = 1 α2

i (K ) = −Ci α1
i (K ′) = (−1)i+1Ci

sgn(sin φ)
(−1)i+1 = 1 α1

i (K ) = (−1)iCi α2
i (K ′) = Ci

analysis of the coefficients α
j0
i (k), depending on sgn M and

sgn(sin φ), it is possible to express the Chern number as
a function of the coefficients α

j0
i (k). If sgn M = sgn(sin φ)

[sgn M = −sgn(sin φ)] we notice that the Chern number is di-
rectly related to the coefficients α

j0
i (k) evaluated at K (K ′) and

Ei,K (Ei,K ′), i ∈ {1, 2}, is nondegenerate. Therefore, choosing
h̄ωq0 = Ei,k with i and k according to Table III, we find
a simple relation between � and the topological invariant,
�(Ei,k ) = J (Ei,k )|Ci|2 = J (Ei,k )|Ci|, where the spectral func-
tion J is J (ω) = (2π/h̄)

∑
q g2

q[δ(ω − ωq) − δ(ω + ωq)]. In
other words,

�(Ei,k ) = J (Ei,k )|Ci|, (3)

where the indices i and k are functions of sgn M and
sgn(sin φ) as indicated in Table III. The relation appearing in
Eq. (3) has been established from Tables II and III. Therefore,
it relies on a fundamental property characterizing a Chern
insulator: the impossibility of defining smooth Bloch states
over the BZ, which translates here into the vanishing of the
Bloch eigenvectors’ components α1

i and α2
i at the opposite

Dirac points.
Motivated by this, we now investigate the relation between

an input voltage 〈V in
R0

(ω)〉 and the resulting output voltage
〈V out

R0
(ω)〉, both at frequency ω in the probe at R0. For ω re-

solved around one Dirac point, this relation between 〈V in
R0

(ω)〉
and 〈V out

R0
(ω)〉 enables to rebuild the Haldane topological

phase diagram. More details on the derivation of Eq. (6) are
given in the Supplemental Material [53]. We indeed find

〈
V out

R0
(ω)

〉 = R(ω)
〈
V in

R0
(ω)

〉
, (4)

with R(ω) = 1 + iJ (ω)χR0,R0 , and

χR0,R0 = 1

N

2∑
i=1

∑
k

γ i
j0,k

[
1

−h̄ω − Ei,k + i0+

− 1

−h̄ω + Ei,k + i0+

]
, (5)

TABLE III. Choice of the probe’s input frequency h̄ωq0 = Ei,k,
given by the indices i and k, as a function of sgn M and sgn(sin φ),
such that the transition rate depends on the Chern number: � =
J[Ei,k]|Ci|/h̄.

sgn M = sgn(sin φ) sgn M = −sgn(sin φ)

sgn(sin φ) = 1 i = j0, k = K i = j0, k = K′

sgn(sin φ) = −1 i = j0, k = K i = j0, k = K′

TABLE IV. Value of γ i
j0,k, evaluated at j0 = i or j0 = i and at

k = K or k = K′, as a function of sgn(sin φ) and sgn M. We remind
that i = 2(1) if i = 1(2).

sgn M = sgn(sin φ) sgn M = −sgn(sin φ)

sgn(sin φ) = 1 γ i
i,K = (−1)iCi γ i

i,K′ = (−1)iCi

sgn(sin φ) = −1 γ i
i,K

= (−1)iCi γ i
i,K′ = (−1)iCi

where N is the number of lattice sites and

γ i
j0,k = 1

2
+ (−1) j0+i+1h2(k)

2ε(k)
∈ R. (6)

The key point within our present approach is to observe that
γ i

j0,k evaluated at the Dirac points, where h1 = 0, depends
only on the sign of the function h2: We have 2γ i

j0,k = 1 −
(−1) j0+i sgn h2(k) for k = {K, K′}. The response function is
then directly related to the topological invariant via Eq. (2)
and Table I. As we show in Table IV, depending on the sign
of sin φ and on the sign of the Semenoff mass, the ith band
topological invariant is given by the coefficient γ i

j0,k, evaluated

at j0 = i or j0 = i and at k = K or k = K′, with i = 2(1) if
i = 1(2). Again, this outcome arises from a fundamental char-
acteristic associated to the topological phase: the vanishing of
the Bloch eigenvectors’ components α1

i and α2
i at the opposite

Dirac points.
We can now understand how measuring the reflected light

signal in the probe reveals the topological phase transition
of the two-dimensional lattice model. We write Sin(ω) =
|〈V in

R0
(ω)〉|2 and Sout(ω) = |〈V out

R0
(ω)〉|2 the energy spectral

density respectively associated to the input and output volt-
ages. To leading order in the coupling amplitudes, we have
Sout(ω) = |R(ω)|2Sin(ω) and for ω > 0,

|R(±ω)|2 = 1 ∓ 2πJ (±ω)

N

2∑
i=1

∑
k

γ i
j0,kδ(h̄ω − Ei,k ). (7)

For sgn M = sgn(sin φ), the energies Ei,K, i ∈ {1, 2} are non-
degenerate, therefore, choosing h̄ω = Ei,K selects only the
k = K point in the integral appearing in Eq. (7). Moreover,
as indicated in Table IV, γ i

j0,K is related to the topological

invariant if we choose a probe at j0 = i (i) for sgn(sin φ) = 1
[sgn(sin φ) = −1]. Therefore, for a well-chosen frequency ω,
|R(ω)|2 clearly depends on the topological invariant. This is
also true for sgn M = −sgn(sin φ), if, in the previous analysis,
we replace K by K′ and j0 by j0.

Finite lifetimes for the light modes. Eventually, we ad-
dress the more realistic scenario in which we incorporate
finite lifetimes for both the modes in the probe |bq〉 and the
Chern insulator’s modes |ui,k〉. For simplicity, we consider
the same bandwidth amplitude �CI (�P) for all the modes
|ui,k〉 (|bq〉). We assume the following ordering of the energies
maxq(gq) 
 {�CI,�P} 
 {t1, h̄ minq,q′ (|ωq − ωq′ |)}. We re-
place the Dirac delta functions appearing in Eq. (7) by nor-
malized Gaussian spectral distributions denoted G(ω; ω,�)
with mean value ω and standard deviation �: δ(h̄ω − Ei,k )
is replaced by G(ω; Ei,k/h̄,�CI) and J (ω) is replaced by
J̃[ω] = 2π

∑
q(gq/h̄)2[G(ω,ωq,�P) − G(ω,−ωq,�P)]. We
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also consider an input energy spectral density with Gaussian
distribution: Sin(ω) = G(ω; ωq0 ,�P). For a well chosen ωq0

(Ei,K or Ei,K), |R(ω)|2 still depends on the topological invari-
ant because γ i

j0,k is directly related to the Chern number. It
leads to a decrease of the output peak’s weight

∫
dωSout(ω)

compared to the normalized weight of the input peak. This
decrease is given by

1 −
∫

dωSout(ω) = 2π

N

2∑
i=1

∑
k

γ i
j0,kIi,k, (8)

with Ii,k = ∫
dωJ̃ (ω)G(ω; Ei,k/h̄,�CI)G(ω; ωq0 ,�P),

which is (gq0/h̄)2/(
√

2π�CI�
2
P) times the overlap area∫

dω exp − (ω−ωq0 )2

�2
P

exp − (ω−Ei,k/h̄)2

2�2
CI

.

Disorder. We expect the general structure of the wave
function over space, which is related to the bulk invariant,
to be robust against weak disorder. This central feature gives
robustness to the probe proposed in this Letter. To illustrate
this point, we consider a finite-size system with local disorder
on the parameters. We do not have translational symmetry but
the expression of 1 − ∫

dωSout(ω) in Eq. (8) is easily adapted:
The sum over i and k is replaced by a sum over the lattice
sites and a numerical diagonalization gives the energies and
the decomposition of the eigenvectors over the lattice sites
from which we get the analogs of the coefficient γ i

j0,k and the
integral Ii,k.

For one disorder configuration, we choose to sample each
of the values of t1, t2, M, and φ over the lattice from a Gaussian
distribution law with respectively mean value t1, t2, M, and
φ and standard deviation being 5% of the associated mean
value. We choose the experimentally relevant energy scales
�0 = 10 GHz, t1/h̄ = 100 MHz, t2/h̄ = 15 MHz, �CI =
�P = 10 MHz, and gq0/h̄ = 1 MHz. These scales correspond
to a relatively low-quality factor Q = �0/�CI = 103 (here,
the same for both the cQED Chern insulator and the probe)
and a low-coupling amplitude and should be reachable in a
cQED experiment. In Fig. 1(d), we show a numerical eval-
uation of 1 − ∫

dωSout(ω) as a function of M/t2 and φ. For
this figure, we consider M > 0, the probe is coupled to a
sublattice A site ( j0 = 1) and sin φ > 0. Note that if the latter
inequality is arbitrarily imposed then our measure can not
access the sign of the Chern number, but it still discriminates
between a topological and a trivial phase. Moreover, we chose
h̄ωq0 = Ẽ1,K and we expect 1 − ∫

dωSout(ω) depends on C1

(because γ 1
1,K = C1). Ẽ1,K is the highest energy of the lowest

band and it can be determined through the energy density of
states before the measure of the Chern number. From Eqs. (6)
and (7), we observe that the energy density of states is ob-
tained by summing the local responses to an input measured
in two distinct probes on sublattices A and B. In our protocol,

sgn M also needs to be determined before the measure of the
Chern number.

Remarks. Two observations are in order.
(i) The probe is able to measure the topological number

based on a real-space local coupling to the system and with a
resolution in reciprocal space owing to the energy conserva-
tion, similarly to circularly polarized light [28].

(ii) If the input is triggered at a site identified by (r, j0)
and the output is measured at (r′, j′0), the expression in the
summation of Eq. (5) becomes[

β i
j0 (k)α j′0

i (k)
]∗

eik(r−r′ )

−h̄ω − Ei,k + i0+ − β i
j0 (k)α j′0

i (k)e−ik(r−r′ )

−h̄ω + Ei,k + i0+ , (9)

with β i
j0 (k)α j0

i (k) = γ i
j0,k and for j′0 = j0 �= j0,

β i
j0 (k)α j0

i (k) ∝ h1(k)/2ε(k). At the Dirac points, h1 is

vanishing, therefore, in the case j′0 = j0, the simple protocol
we sketched above does not help to rebuild the topological
phase diagram. This outcome can be anticipated based on
the fact that, at one given Dirac point, one of both Bloch
eigenvectors’ components vanish, in the topological regime.
In the scenario j′0 = j0, because the coefficients in the
numerator of Eq. (9) are complex valued, the Chern number
dependency of 1 − ∫

dωSout(ω) is mitigated. Indeed, the
latter contains principal values of integrals over frequency
involving [1/(−h̄ω ± Ei,k )] terms.

Conclusion. We have introduced a local microwave-light
probe with capacitive coupling to a cQED array described by
a Haldane bosonic system, in the regime of small coupling
amplitudes. We have explained how this probe is relevant for
the detection of the topological character of Chern insulators.
Using Fermi’s golden rule, we established a connection be-
tween the Chern number and the transition rate from a probe’s
eigenstate (with frequency corresponding to one of the Dirac
points energy) to the eigenstates of the Haldane Hamiltonian.
Second, we developed the input-output theory for the probe,
enabling us to compute the reflection coefficient which relates
an input voltage and an output voltage. We showed that for
an input with frequency resolved at one of the Dirac points,
this reflection coefficient is directly related to the system’s
topological invariant. The fundamental working principle of
this probe makes it inherently relevant for Chern insulators
with nondegenerate Dirac points in the energy spectrum (for
the Haldane system we consider this imposes t2 � 0.15t1).
As a future prospect, it appears intriguing to adapt this probe
to other systems that may exhibit different particle statistics,
such as cold atoms or various material platforms.
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