Spectroscopy and topological properties of a Haldane light system

Julian Legendre^{1,2} and Karyn Le Hur²

¹Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg ²CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, F-91128 Palaiseau, France

(Received 8 September 2023; revised 2 January 2024; accepted 23 January 2024; published 20 February 2024)

We introduce a local spectroscopic method in real space to probe the topological properties of a circuit quantum electrodynamics (cQED) array generalizing previous approaches from one to two dimensions in the plane. As an application, we develop the theory of microwave light propagating in the local probe capacitively coupled to the cQED array associated to a bosonic Haldane model. Interestingly, we show that the measured reflection coefficient, resolved in frequency through the resonance, reveals the model's geometrical properties and topological phase transition. We discuss the role of physical parameters such as the lifetime of the light modes and stability towards local disorder related to further realizations.

DOI: 10.1103/PhysRevA.109.L021701

Introduction. Topological systems find various interesting applications in physics, in particular related to the protected mesoscopic transport at the edges. In two dimensions, the quantum Hall effect, induced by a perpendicular uniform magnetic field, has been generalized to situations with no net flux in a unit cell, referring to the Haldane honeycomb lattice model [1], and then generally to the quantum anomalous Hall effect and Chern insulators. The latter are realized in solid-state systems, in cold atom gases, and in photonic systems (coupled waveguides) [2–4]. One elegant way to realize Haldane's seminal model for artificial systems is through Floquet engineering [3–8].

The most common way to probe the topological properties in condensed matter systems is to determine the Hall conductance [9,10]. The topological responses of artificial systems are accessible in several ways [11–14]. In cold atom gases, topological properties are revealed through transport or Hall drift [4,15], interferometry [16-18], the physics of chiral edge states [19,20], or via a measurement of the Berry curvature [21]. For condensed matter systems and cold atom gases, a circular drive on the system also enables to probe the topological information [22-26], even with a local resolution within the Brillouin zone [27,28]. Light systems with topological properties, including gyromagnetic photonic crystals [29-32], arrays of coupled waveguides [3,33,34], optomechanical systems [35,36], and cavity and circuit quantum electrodynamics (cQED) [37-42], have also garnered significant interest.

In Ref. [43], a protocol to probe the topological properties of a one-dimensional *LC* circuit system is proposed. This system is closely connected to the Su-Schrieffer-Heeger (SSH) model which has been implemented recently [44–47]. In Ref. [43], the authors considered a transmission line (capacitively) coupled to a single cell within the chain. From the reflection of an input triggered in the probe, they reconstructed the Zak phase, which is the topological invariant characterizing the studied one-dimensional system. Our quest is to generalize this local probe approach on the lattice in two dimensions, which is *a priori* not so apparent. Previous proposals for light-matter topological probes in twodimensional systems have used the transverse polarization of light to detect the chirality associated with the system's topological nature [22,24]. In striking contrast to these approaches, our study focuses on a local probe in real space, specifically a long transmission line capacitively coupled to a Haldane bosonic model in circuit quantum electrodynamics (cQED). We demonstrate how the Chern number can be measured by analyzing the reflection coefficient, which relates the input and output voltage signals.

Bosonic Haldane model. We introduce a cQED system made of an array of resonators coupled together in such a way [8] that the system is described by a usual Haldane Hamiltonian $H = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} h_{\mathbf{k}} \Psi_{\mathbf{k}}$ [1–7], with

$$h_{\mathbf{k}} = h_0(\mathbf{k}) + \operatorname{Re}[h_1(\mathbf{k})]\sigma_x - \operatorname{Im}[h_1(\mathbf{k})]\sigma_y + h_2(\mathbf{k})\sigma_z, \quad (1)$$

and $h_0(\mathbf{k}) = \hbar\Omega_0 + 2t_2 \cos\phi \sum_{i=1}^3 \cos(\mathbf{k} \cdot \mathbf{b}_i), \quad h_1(\mathbf{k}) = t_1 \sum_{i=1}^3 \exp(-i\mathbf{k} \cdot \mathbf{a}_i), \quad h_2(\mathbf{k}) = M - 2t_2 \sin\phi \sum_{i=1}^3 \sin(\mathbf{k} \cdot \mathbf{b}_i),$ and $\Psi_{\mathbf{k}}^{\dagger} = (a_{1,\mathbf{k}}^{\dagger}, a_{2,\mathbf{k}}^{\dagger}),$ where $a_{j,\mathbf{k}}^{\dagger}$ is the creation operator for a boson with momentum **k** on sublattice j [j = 1(2)corresponds to the sublattice A(B) appearing in Fig. 1(a)]. \mathbf{a}_i and \mathbf{b}_i ($i \in \{1, 2, 3\}$) are defined in Fig. 1(a), the hopping amplitudes t_1 and t_2 and the Semenoff mass M [48] are real numbers, and σ^x , σ^y , σ^z are Pauli matrices acting in sublattice space. Hereafter, we study the case where t_2 is small compared to t_1 , as it is often the situation in physical systems. In Ref. [8], a Haldane Hamiltonian for bosonic systems is derived from Floquet engineering with a high-frequency approximation. For a photonic system, a permanent drive is necessary to compensate for the photon decay processes that happen [14]. In typical photonic systems the on-site energy $\hbar\Omega_0$ is large (usually ~GHz order of magnitude) compared to the effective hopping amplitudes on the lattice (e.g., can be ~ 10 to ~100 MHz) [37,42,49,50].

The Haldane model shows two energy bands in momentum space $E_{i,\mathbf{k}} = h_0(\mathbf{k}) + (-1)^i \epsilon(\mathbf{k})$, where i = 1 or 2 and $\epsilon(\mathbf{k}) = \sqrt{|h_1(\mathbf{k})|^2 + h_2(\mathbf{k})^2}$ [see Fig. 1(c)]. $h_1(\mathbf{k}) = 0$ is reached at both nonequivalent Dirac points $\mathbf{K} = (\mathbf{g}_3 - \mathbf{g}_2)/3$ and

FIG. 1. (a) Definition of the sublattices, real-space vectors, and hopping amplitudes for the Haldane model on the honeycomb lattice. (b) Sketch of the Brillouin zone for the honeycomb lattice. (c) Haldane model energies, in units of t_1 , as a function of the momentum $q_3 = a\mathbf{k} \cdot \mathbf{g}_3$ (*a* is the lattice spacing), with parameters $\phi = \pi/2$, $t_2 =$ $0.15t_1$, and $M = 3\sqrt{3}t_2/2$. Both lowest band energies at the Dirac points, $E_{1,\mathbf{K}}$ and $E_{1,\mathbf{K}'}$, are shown. (d) The quantity $1 - \int d\omega S^{\text{out}}(\omega)$, computed for a disordered 21×20 unit cell Haldane system with open boundary conditions. The color scale of the figure is logarithmic. The precise information on definitions and parameters can be found in the main text, page 4, paragraph "Disorder".

 $\mathbf{K}' = (\mathbf{g}_2 - \mathbf{g}_3)/3$ [see Fig. 1(b)]. Moreover, we have $h_2(\mathbf{K}) = 0$ if $M = +3\sqrt{3}t_2 \sin \phi$ and $h_2(\mathbf{K}') = 0$ if $M = -3\sqrt{3}t_2 \sin \phi$. When the bands cross, the dispersion relation around \mathbf{K} and \mathbf{K}' is linear.

Topological properties. Here, we describe the geometrical properties of the system through Bloch eigenvectors and through a definition of the topological number resolved at the Dirac points in Eq. (2). This definition is generally valid for a model that can be written as a spin- $\frac{1}{2}$ particle in momentum space [51]. We introduce $|u_{i,\mathbf{k}}\rangle$ as the Bloch eigenvectors of the Haldane Hamiltonian, i.e., $e^{-i\mathbf{k}\cdot\hat{\mathbf{r}}}He^{i\mathbf{k}\cdot\hat{\mathbf{r}}} |u_{i,\mathbf{k}}\rangle = E_{i,\mathbf{k}} |u_{i,\mathbf{k}}\rangle$ and we define the coefficients $\alpha_i^1(\mathbf{k})$ and $\alpha_i^2(\mathbf{k})$ such that $|u_{i,\mathbf{k}}\rangle = [\alpha_i^1(\mathbf{k})a_{1,\mathbf{k}}^{\dagger} + \alpha_i^2(\mathbf{k})a_{2,\mathbf{k}}^{\dagger}]|0\rangle$. These coefficients may vanish only at the Dirac points. If the sign of h_2 is opposite at the nonequivalent Dirac points $(|M| < 3\sqrt{3}t_2|\sin\phi|$, see Table I), then $\alpha_i^1(\mathbf{k})$ vanish at one Dirac point and $\alpha_i^2(\mathbf{k})$ vanish at the other Dirac point. It follows that it is impossible to find a unique and smooth phase over all the Brillouin zone

TABLE I. Sign of h_2 at the Dirac points, as a function of M and $sgn(\sin \phi)$.

	$ M < 3\sqrt{3}t_2 \sin\phi $	$ M > 3\sqrt{3}t_2 \sin\phi $
$\operatorname{sgn} h_2(\mathbf{K})$	$-\operatorname{sgn}(\sin \phi)$	sgn M
$\operatorname{sgn} h_2(\mathbf{K}')$	$\operatorname{sgn}(\sin \phi)$	sgn M

(BZ) for the Bloch state $|u_{i,\mathbf{k}}\rangle$. This characteristic feature of Chern insulators [52] forms the basis of the probe proposed in this Letter, rendering it *a priori* relevant for Chern insulators with nondegenerate Dirac points in the energy spectrum (for the Haldane system we consider this imposes $t_2 \leq 0.15t_1$). In this phase, the Chern number C_i (*i* is the band index) reads $C_i = (-1)^{i+1} \operatorname{sgn}(\sin \phi)$. In the Supplemental Material, for completeness, we present a derivation of this formula [53]. Now, we build an alternative definition of the topological number from the Dirac points. If the sign of h_2 is the same at both Dirac points ($|M| > 3\sqrt{3}t_2|\sin \phi|$, see Table I), then $\alpha_i^1(\mathbf{k})$ or $\alpha_i^2(\mathbf{k})$ can be chosen nonzero over all the BZ. In this case, the Chern numbers C_i are vanishing. From this analysis, for $|M| \neq 3\sqrt{3}t_2|\sin \phi|$, we have $C_i =$ $(-1)^{i+1} \operatorname{sgn}(\sin \phi)[1 - \operatorname{sgn}(h_2(\mathbf{K}')]/2, i.e.,$

$$C_{i} = \frac{(-1)^{i}}{2} [\operatorname{sgn} h_{2}(\mathbf{K}) - \operatorname{sgn} h_{2}(\mathbf{K}')].$$
(2)

This formula has indeed a simple physical understanding for a Hamiltonian $h_{\mathbf{k}}$ written as a 2 × 2 matrix. From the Ehrenfest theorem and a Bloch sphere correspondence the topological number is equivalent to $C_i = (-1)^i [\langle \sigma_z(0) \rangle - \langle \sigma_z(\pi) \rangle]/2$ with $\langle \sigma_z \rangle = (-1)^i \cos \theta = (-1)^i \sin h_2(\theta)$ [51]. In the following, we namely rely on Eq. (2) to show how C_i can be probed from the reflected light in a local probe capacitively coupled to a Haldane photonic system. The simple idea behind our proposal is that the topological properties manifest as discernible sublattice weight variations of the wave function, enabling to reveal the topological transition through the coupling of a probe to one of the sublattice sites.

We emphasize here that in Ref. [43], we proposed a capacitively coupled topological probe for a one-dimensional (1D) system. It gives access to a phase whose winding around the BZ is the topological invariant (Zak phase). The probe proposed in the following is substantially different since it measures the information in Eq. (2).

Spectroscopic probe. Here, we introduce the local spectroscopic approach, i.e., a local light probe with weak capacitive coupling to a Haldane boson system at position \mathbf{R}_0 , on the sublattice j_0 . The probe is a resonator with a certain number of (relevant) modes, described by the Hamiltonian $H_{\text{prb}} =$ $\sum_q \hbar \omega_q b_q^{\dagger} b_q$, with b_q^{\dagger} , b_q the creation and annihilation operators for the mode q characterized by the frequency ω_q . The coupling is described by $H_{\text{cpl}} = (a_{\mathbf{R}_0} + a_{\mathbf{R}_0}^{\dagger}) \sum_q g_q (b_q + b_q^{\dagger})$, where $a_{\mathbf{R}_0}^{\dagger}$ is the Fourier transform of $a_{j,\mathbf{k}}^{\dagger}$ at position \mathbf{R}_0 . For simplicity, we initially disregard the dissipation effects induced by the probe in the Haldane system and assume infinitely long lifetimes for the light modes $|u_{i,\mathbf{k}}\rangle$.

To acquire some intuition, let us show that the transition rate Γ from a state $|\psi(t)\rangle$ which, at initial time t_i , is a probe's mode with frequency ω_{q_0} , i.e., $|\psi(t_i)\rangle = |b_{q_0}\rangle$, to the eigenstates $|u_{i,\mathbf{k}}\rangle$ of the Haldane Hamiltonian's bears information about the topological character of the system. At sufficiently long times t, $\Gamma[\hbar\omega_{q_0}] = \frac{2\pi}{\hbar} \sum_{i,\mathbf{k}} |\langle b_{q_0}| H_{cpl} |u_{i,\mathbf{k}}\rangle|^2 \delta(\hbar\omega_{q_0} - E_{i,\mathbf{k}})$. $\langle b_{q_0}| H_{cpl} |u_{i,\mathbf{k}}\rangle$ involves the components of the Bloch state in the basis $(a_{1,\mathbf{k}}^{\dagger}, a_{2,\mathbf{k}}^{\dagger})$ and a factor $e^{i\mathbf{k}\cdot\mathbf{R}_0}$ (transformation to the real-space representation), such that we obtain $\langle b_{q_0}| H_{cpl} |u_{i,\mathbf{k}}\rangle = g_{q_0} \alpha_i^{j_0}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{R}_0}$. As one can see from Table II, which is constructed using Eq. (2) and the related

TABLE II. Coefficients $\alpha_i^{j_0}$ which, at the Dirac points, are directly related to the Chern number, as a function of sgn *M* and sgn(sin ϕ).

	$\operatorname{sgn} M = \operatorname{sgn}(\sin \phi)$	$\operatorname{sgn} M = -\operatorname{sgn}(\sin\phi)$
$\frac{\operatorname{sgn}(\sin\phi)}{(-1)^i} = 1$	$\alpha_i^2(\boldsymbol{K}) = -C_i$	$\alpha_i^1(\boldsymbol{K}') = (-1)^{i+1} C_i$
$\frac{\operatorname{sgn}(\sin\phi)}{(-1)^{i+1}} = 1$	$\alpha_i^1(\boldsymbol{K}) = (-1)^i C_i$	$\alpha_i^2(\mathbf{K}') = C_i$

analysis of the coefficients $\alpha_i^{j_0}(\mathbf{k})$, depending on sgn M and sgn(sin ϕ), it is possible to express the Chern number as a function of the coefficients $\alpha_i^{j_0}(\mathbf{k})$. If sgn $M = \text{sgn}(\sin \phi)$ [sgn $M = -\text{sgn}(\sin \phi)$] we notice that the Chern number is directly related to the coefficients $\alpha_i^{j_0}(\mathbf{k})$ evaluated at $\mathbf{K}(\mathbf{K}')$ and $E_{i,\mathbf{K}}(E_{i,\mathbf{K}'})$, $i \in \{1, 2\}$, is nondegenerate. Therefore, choosing $\hbar \omega_{q_0} = E_{i,\mathbf{k}}$ with i and \mathbf{k} according to Table III, we find a simple relation between Γ and the topological invariant, $\Gamma(E_{i,\mathbf{k}}) = J(E_{i,\mathbf{k}})|C_i|^2 = J(E_{i,\mathbf{k}})|C_i|$, where the spectral function J is $J(\omega) = (2\pi/\hbar) \sum_q g_q^2 [\delta(\omega - \omega_q) - \delta(\omega + \omega_q)]$. In other words,

$$\Gamma(E_{i,\mathbf{k}}) = J(E_{i,\mathbf{k}})|C_i|,\tag{3}$$

where the indices *i* and **k** are functions of sgn *M* and sgn(sin ϕ) as indicated in Table III. The relation appearing in Eq. (3) has been established from Tables II and III. Therefore, it relies on a fundamental property characterizing a Chern insulator: the impossibility of defining smooth Bloch states over the BZ, which translates here into the vanishing of the Bloch eigenvectors' components α_i^1 and α_i^2 at the opposite Dirac points.

Motivated by this, we now investigate the relation between an input voltage $\langle V_{\mathbf{R}_0}^{\mathrm{in}}(\omega) \rangle$ and the resulting output voltage $\langle V_{\mathbf{R}_0}^{\mathrm{out}}(\omega) \rangle$, both at frequency ω in the probe at \mathbf{R}_0 . For ω resolved around one Dirac point, this relation between $\langle V_{\mathbf{R}_0}^{\mathrm{in}}(\omega) \rangle$ and $\langle V_{\mathbf{R}_0}^{\mathrm{out}}(\omega) \rangle$ enables to rebuild the Haldane topological phase diagram. More details on the derivation of Eq. (6) are given in the Supplemental Material [53]. We indeed find

$$\langle V_{\mathbf{R}_0}^{\text{out}}(\omega) \rangle = R(\omega) \langle V_{\mathbf{R}_0}^{\text{in}}(\omega) \rangle,$$
 (4)

with $R(\omega) = 1 + iJ(\omega)\chi_{\mathbf{R}_0,\mathbf{R}_0}$, and

$$\chi_{\mathbf{R}_{0},\mathbf{R}_{0}} = \frac{1}{N} \sum_{i=1}^{2} \sum_{\mathbf{k}} \gamma_{j_{0},\mathbf{k}}^{i} \bigg[\frac{1}{-\hbar\omega - E_{i,\mathbf{k}} + i0^{+}} -\frac{1}{-\hbar\omega + E_{i,\mathbf{k}} + i0^{+}} \bigg],$$
(5)

TABLE III. Choice of the probe's input frequency $\hbar \omega_{q_0} = E_{i,\mathbf{k}}$, given by the indices *i* and **k**, as a function of sgn *M* and sgn(sin ϕ), such that the transition rate depends on the Chern number: $\Gamma = J[E_{i,\mathbf{k}}]|C_i|/\hbar$.

	$\operatorname{sgn} M = \operatorname{sgn}(\sin \phi)$	$\operatorname{sgn} M = -\operatorname{sgn}(\sin \phi)$
$sgn(\sin\phi) = 1$	$i = j_0, \mathbf{k} = \mathbf{K}$	$i = \overline{j_0}, \mathbf{k} = \mathbf{K}'$
$\operatorname{sgn}(\sin\phi) = -1$	$i = \overline{j_0}, \mathbf{k} = \mathbf{K}$	$i = j_0, \mathbf{k} = \mathbf{K}'$

TABLE IV. Value of $\gamma_{j_0,\mathbf{k}}^i$, evaluated at $j_0 = i$ or $j_0 = \overline{i}$ and at $\mathbf{k} = \mathbf{K}$ or $\mathbf{k} = \mathbf{K}'$, as a function of $\operatorname{sgn}(\sin \phi)$ and $\operatorname{sgn} M$. We remind that $\overline{i} = 2(1)$ if i = 1(2).

	$\operatorname{sgn} M = \operatorname{sgn}(\sin \phi)$	$\operatorname{sgn} M = -\operatorname{sgn}(\sin \phi)$
$\operatorname{sgn}(\sin\phi) = 1$	$\gamma_{i,\mathbf{K}}^{i} = (-1)^{\overline{i}} C_{i}$	$\gamma^i_{\bar{i},\mathbf{K}'} = (-1)^{\bar{i}} C_i$
$\operatorname{sgn}(\sin\phi) = -1$	$\gamma_{\bar{i},\boldsymbol{K}}^{i} = (-1)^{i} C_{i}$	$\gamma_{i,\mathbf{K}'}^i = (-1)^i C_i$

where N is the number of lattice sites and

$$\gamma_{j_0,\mathbf{k}}^i = \frac{1}{2} + \frac{(-1)^{j_0+i+1}h_2(\mathbf{k})}{2\epsilon(\mathbf{k})} \in \mathbb{R}.$$
 (6)

The key point within our present approach is to observe that $\gamma_{j_0,\mathbf{k}}^i$ evaluated at the Dirac points, where $h_1 = 0$, depends only on the sign of the function h_2 : We have $2\gamma_{j_0,\mathbf{k}}^i = 1 - (-1)^{j_0+i} \operatorname{sgn} h_2(\mathbf{k})$ for $\mathbf{k} = \{\mathbf{K}, \mathbf{K}'\}$. The response function is then directly related to the topological invariant via Eq. (2) and Table I. As we show in Table IV, depending on the sign of sin ϕ and on the sign of the Semenoff mass, the *i*th band topological invariant is given by the coefficient $\gamma_{j_0,\mathbf{k}}^i$, evaluated at $j_0 = i$ or $j_0 = \overline{i}$ and at $\mathbf{k} = \mathbf{K}$ or $\mathbf{k} = \mathbf{K}'$, with $\overline{i} = 2(1)$ if i = 1(2). Again, this outcome arises from a fundamental characteristic associated to the topological phase: the vanishing of the Bloch eigenvectors' components α_i^1 and α_i^2 at the opposite Dirac points.

We can now understand how measuring the reflected light signal in the probe reveals the topological phase transition of the two-dimensional lattice model. We write $S^{in}(\omega) = |\langle V_{\mathbf{R}_0}^{in}(\omega) \rangle|^2$ and $S^{out}(\omega) = |\langle V_{\mathbf{R}_0}^{out}(\omega) \rangle|^2$ the energy spectral density respectively associated to the input and output voltages. To leading order in the coupling amplitudes, we have $S^{out}(\omega) = |\mathbf{R}(\omega)|^2 S^{in}(\omega)$ and for $\omega > 0$,

$$|R(\pm\omega)|^2 = 1 \mp \frac{2\pi J(\pm\omega)}{N} \sum_{i=1}^2 \sum_{\mathbf{k}} \gamma_{j_0,\mathbf{k}}^i \delta(\hbar\omega - E_{i,\mathbf{k}}).$$
(7)

For sgn $M = \text{sgn}(\sin \phi)$, the energies $E_{i,K}$, $i \in \{1, 2\}$ are nondegenerate, therefore, choosing $\hbar \omega = E_{i,K}$ selects only the $\mathbf{k} = \mathbf{K}$ point in the integral appearing in Eq. (7). Moreover, as indicated in Table IV, $\gamma_{j_0,\mathbf{K}}^i$ is related to the topological invariant if we choose a probe at $j_0 = i$ (\overline{i}) for sgn(sin ϕ) = 1 [sgn(sin ϕ) = -1]. Therefore, for a well-chosen frequency ω , $|R(\omega)|^2$ clearly depends on the topological invariant. This is also true for sgn $M = -\text{sgn}(\sin \phi)$, if, in the previous analysis, we replace \mathbf{K} by \mathbf{K}' and j_0 by $\overline{j_0}$.

Finite lifetimes for the light modes. Eventually, we address the more realistic scenario in which we incorporate finite lifetimes for both the modes in the probe $|b_q\rangle$ and the Chern insulator's modes $|u_{i,\mathbf{k}}\rangle$. For simplicity, we consider the same bandwidth amplitude Δ_{CI} (Δ_{P}) for all the modes $|u_{i,\mathbf{k}}\rangle$ ($|b_q\rangle$). We assume the following ordering of the energies $\max_q(g_q) \ll \{\Delta_{\text{CI}}, \Delta_{\text{P}}\} \ll \{t_1, \hbar \min_{q,q'}(|\omega_q - \omega_{q'}|)\}$. We replace the Dirac delta functions appearing in Eq. (7) by normalized Gaussian spectral distributions denoted $G(\omega; \overline{\omega}, \Delta)$ with mean value $\overline{\omega}$ and standard deviation $\Delta: \delta(\hbar\omega - E_{i,\mathbf{k}})$ is replaced by $G(\omega; E_{i,\mathbf{k}}/\hbar, \Delta_{\text{CI}})$ and $J(\omega)$ is replaced by $\tilde{J}[\omega] = 2\pi \sum_q (g_q/\hbar)^2 [G(\omega, \omega_q, \Delta_{\text{P}}) - G(\omega, -\omega_q, \Delta_{\text{P}})]$. We

also consider an input energy spectral density with Gaussian distribution: $S^{\text{in}}(\omega) = G(\omega; \omega_{q_0}, \Delta_P)$. For a well chosen ω_{q_0} ($E_{i,K}$ or $E_{i,K}$), $|R(\omega)|^2$ still depends on the topological invariant because $\gamma_{j_0,\mathbf{k}}^i$ is directly related to the Chern number. It leads to a decrease of the output peak's weight $\int d\omega S^{\text{out}}(\omega)$ compared to the normalized weight of the input peak. This decrease is given by

$$1 - \int d\omega S^{\text{out}}(\omega) = \frac{2\pi}{N} \sum_{i=1}^{2} \sum_{\mathbf{k}} \gamma_{j_0,\mathbf{k}}^{i} I_{i,\mathbf{k}}, \qquad (8)$$

with $I_{i,\mathbf{k}} = \int d\omega \tilde{J}(\omega) G(\omega; E_{i,\mathbf{k}}/\hbar, \Delta_{\mathrm{CI}}) G(\omega; \omega_{q_0}, \Delta_{\mathrm{P}}),$ which is $(g_{q_0}/\hbar)^2/(\sqrt{2\pi}\Delta_{\mathrm{CI}}\Delta_{\mathrm{P}}^2)$ times the overlap area $\int d\omega \exp{-\frac{(\omega-\omega_{q_0})^2}{\Delta_{\mathrm{P}}^2}} \exp{-\frac{(\omega-E_{i,\mathbf{k}}/\hbar)^2}{2\Delta_{\mathrm{CI}}^2}}.$

Disorder. We expect the general structure of the wave function over space, which is related to the bulk invariant, to be robust against weak disorder. This central feature gives robustness to the probe proposed in this Letter. To illustrate this point, we consider a finite-size system with local disorder on the parameters. We do not have translational symmetry but the expression of $1 - \int d\omega S^{\text{out}}(\omega)$ in Eq. (8) is easily adapted: The sum over *i* and **k** is replaced by a sum over the lattice sites and a numerical diagonalization gives the energies and the decomposition of the eigenvectors over the lattice sites from which we get the analogs of the coefficient $\gamma_{j_0,\mathbf{k}}^i$ and the integral $I_{i,\mathbf{k}}$.

For one disorder configuration, we choose to sample each of the values of t_1, t_2, M , and ϕ over the lattice from a Gaussian distribution law with respectively mean value \bar{t}_1 , \bar{t}_2 , M, and ϕ and standard deviation being 5% of the associated mean value. We choose the experimentally relevant energy scales $\Omega_0 = 10$ GHz, $\overline{t}_1/\hbar = 100$ MHz, $\overline{t}_2/\hbar = 15$ MHz, $\Delta_{CI} =$ $\Delta_{\rm P} = 10$ MHz, and $g_{q_0}/\hbar = 1$ MHz. These scales correspond to a relatively low-quality factor $Q = \Omega_0 / \Delta_{\rm CI} = 10^3$ (here, the same for both the cQED Chern insulator and the probe) and a low-coupling amplitude and should be reachable in a cQED experiment. In Fig. 1(d), we show a numerical evaluation of $1 - \int d\omega S^{\text{out}}(\omega)$ as a function of $\overline{M}/\overline{t}_2$ and $\overline{\phi}$. For this figure, we consider $\overline{M} > 0$, the probe is coupled to a sublattice A site ($j_0 = 1$) and sin $\phi > 0$. Note that if the latter inequality is arbitrarily imposed then our measure can not access the sign of the Chern number, but it still discriminates between a topological and a trivial phase. Moreover, we chose $\hbar \omega_{q_0} = \tilde{E}_{1,\mathbf{K}}$ and we expect $1 - \int d\omega S^{\text{out}}(\omega)$ depends on C_1 (because $\gamma_{1,\mathbf{K}}^1 = C_1$). $\tilde{E}_{1,\mathbf{K}}$ is the highest energy of the lowest band and it can be determined through the energy density of states before the measure of the Chern number. From Eqs. (6) and (7), we observe that the energy density of states is obtained by summing the local responses to an input measured in two distinct probes on sublattices A and B. In our protocol, sgn M also needs to be determined before the measure of the Chern number.

Remarks. Two observations are in order.

(i) The probe is able to measure the topological number based on a real-space local coupling to the system and with a resolution in reciprocal space owing to the energy conservation, similarly to circularly polarized light [28].

(ii) If the input is triggered at a site identified by (\mathbf{r}, j_0) and the output is measured at (\mathbf{r}', j'_0) , the expression in the summation of Eq. (5) becomes

$$\frac{\left[\beta_{j_0}^{i}(\mathbf{k})\alpha_{i}^{j'_{0}}(\mathbf{k})\right]^{*}\mathrm{e}^{i\mathbf{k}(\mathbf{r}-\mathbf{r}')}}{-\hbar\omega-E_{i,\mathbf{k}}+i0^{+}}-\frac{\beta_{j_0}^{i}(\mathbf{k})\alpha_{i}^{j'_{0}}(\mathbf{k})\mathrm{e}^{-i\mathbf{k}(\mathbf{r}-\mathbf{r}')}}{-\hbar\omega+E_{i,\mathbf{k}}+i0^{+}},\qquad(9)$$

with $\beta_{j_0}^i(\mathbf{k})\alpha_i^{j_0}(\mathbf{k}) = \gamma_{j_0,\mathbf{k}}^i$ and for $j'_0 = \overline{j_0} \neq j_0$, $\beta_{j_0}^i(\mathbf{k})\alpha_i^{\overline{j_0}}(\mathbf{k}) \propto h_1(\mathbf{k})/2\epsilon(\mathbf{k})$. At the Dirac points, h_1 is vanishing, therefore, in the case $j'_0 = \overline{j_0}$, the simple protocol we sketched above does not help to rebuild the topological phase diagram. This outcome can be anticipated based on the fact that, at one given Dirac point, one of both Bloch eigenvectors' components vanish, in the topological regime. In the scenario $j'_0 = j_0$, because the coefficients in the numerator of Eq. (9) are complex valued, the Chern number dependency of $1 - \int d\omega S^{\text{out}}(\omega)$ is mitigated. Indeed, the latter contains principal values of integrals over frequency involving $[1/(-\hbar\omega \pm E_{i,\mathbf{k}})]$ terms.

Conclusion. We have introduced a local microwave-light probe with capacitive coupling to a cQED array described by a Haldane bosonic system, in the regime of small coupling amplitudes. We have explained how this probe is relevant for the detection of the topological character of Chern insulators. Using Fermi's golden rule, we established a connection between the Chern number and the transition rate from a probe's eigenstate (with frequency corresponding to one of the Dirac points energy) to the eigenstates of the Haldane Hamiltonian. Second, we developed the input-output theory for the probe, enabling us to compute the reflection coefficient which relates an input voltage and an output voltage. We showed that for an input with frequency resolved at one of the Dirac points, this reflection coefficient is directly related to the system's topological invariant. The fundamental working principle of this probe makes it inherently relevant for Chern insulators with nondegenerate Dirac points in the energy spectrum (for the Haldane system we consider this imposes $t_2 \leq 0.15t_1$). As a future prospect, it appears intriguing to adapt this probe to other systems that may exhibit different particle statistics, such as cold atoms or various material platforms.

Acknowledgments. This work was supported by the French ANR BOCA grant. J.L. acknowledges support from the National Research Fund Luxembourg under Grant No. INTER/QUANTERA21/16447820/MAGMA.

 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett. 61, 2015 (1988). J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang *et al.*, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science **340**, 167 (2013).

- [2] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen,
- [3] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,

Photonic Floquet topological insulators, Nature (London) **496**, 196 (2013).

- [4] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature (London) 515, 237 (2014).
- [5] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79, 081406(R) (2009).
- [6] W. Zheng and H. Zhai, Floquet topological states in shaking optical lattices, Phys. Rev. A 89, 061603(R) (2014).
- [7] A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015).
- [8] K. Plekhanov, G. Roux, and K. Le Hur, Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions, Phys. Rev. B 95, 045102 (2017).
- [9] K. v. Klitzing, G. Dorda, and M. Pepper, New method for highaccuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980).
- [10] C.-Z. Chang, C.-X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95, 011002 (2023).
- [11] N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12, 639 (2016).
- [12] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).
- [13] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photon. 8, 821 (2014).
- [14] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006 (2019).
- [15] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015).
- [16] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys. 9, 795 (2013).
- [17] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U. Schneider, An Aharonov-Bohm interferometer for determining Bloch band topology, Science 347, 288 (2015).
- [18] T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M. Schleier-Smith, I. Bloch, and U. Schneider, Bloch state tomography using Wilson lines, Science 352, 1094 (2016).
- [19] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B. Spielman, Visualizing edge states with an atomic Bose gas in the quantum Hall regime, Science 349, 1514 (2015).
- [20] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science 349, 1510 (2015).
- [21] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sengstock, and C. Weitenberg, Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science 352, 1091 (2016).
- [22] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Control over topological insulator photocurrents with light polarization, Nat. Nanotechnol. 7, 96 (2012).

- [23] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Quantized circular photogalvanic effect in Weyl semimetals, Nat. Commun. 8, 15995 (2017).
- [24] D. T. Tran, A. Dauphin, A. G. Grushin, P. Zoller, and N. Goldman, Probing topology by "heating": Quantized circular dichroism in ultracold atoms, Sci. Adv. 3, e1701207 (2017).
- [25] L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N. Fläschner, K. Sengstock, N. Goldman, and C. Weitenberg, Measuring quantized circular dichroism in ultracold topological matter, Nat. Phys. 15, 449 (2019).
- [26] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann, C. Felser, J. E. Moore, D. H. Torchinsky, and J. Orenstein, Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi, Sci. Adv. 6, eaba0509 (2020).
- [27] P. W. Klein, A. G. Grushin, and K. Le Hur, Interacting stochastic topology and Mott transition from light response, Phys. Rev. B 103, 035114 (2021).
- [28] K. Le Hur, Global and local topological quantized responses from geometry, light, and time, Phys. Rev. B 105, 125106 (2022).
- [29] F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).
- [30] S. Raghu and F. D. M. Haldane, Analogs of quantum-Halleffect edge states in photonic crystals, Phys. Rev. A 78, 033834 (2008).
- [31] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett. 100, 013905 (2008).
- [32] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature (London) 461, 772 (2009).
- [33] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun. 8, 13918 (2017).
- [34] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous Floquet topological insulators, Nat. Commun. 8, 13756 (2017).
- [35] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science 343, 516 (2014).
- [36] S. Kim, X. Xu, J. M. Taylor, and G. Bahl, Dynamically induced robust phonon transport and chiral cooling in an optomechanical system, Nat. Commun. 8, 205 (2017).
- [37] J. Koch, A. A. Houck, K. Le Hur, and S. M. Girvin, Time-reversal-symmetry breaking in circuit-QED-based photon lattices, Phys. Rev. A 82, 043811 (2010).
- [38] B. M. Anderson, R. Ma, C. Owens, D. I. Schuster, and J. Simon, Engineering topological many-body materials in microwave cavity arrays, Phys. Rev. X 6, 041043 (2016).
- [39] C. Owens, A. LaChapelle, B. Saxberg, B. M. Anderson, R. Ma, J. Simon, and D. I. Schuster, Quarter-flux Hofstadter lattice in a qubit-compatible microwave cavity array, Phys. Rev. A 97, 013818 (2018).
- [40] K. Le Hur, L. Henriet, A. Petrescu, K. Plekhanov, G. Roux, and M. Schiró, Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light, C. R. Phys. 17, 808 (2016).

- [41] X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. **718-719**, 1 (2017).
- [42] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth *et al.*, Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys. **13**, 146 (2017).
- [43] T. Goren, K. Plekhanov, F. Appas, and K. Le Hur, Topological Zak phase in strongly coupled *LC* circuits, Phys. Rev. B 97, 041106(R) (2018).
- [44] E. I. Rosenthal, N. K. Ehrlich, M. S. Rudner, A. P. Higginbotham, and K. W. Lehnert, Topological phase transition measured in a dissipative metamaterial, Phys. Rev. B 97, 220301(R) (2018).
- [45] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, Selective enhancement of topologically induced interface states in a dielectric resonator chain, Nat. Commun. 6, 6710 (2015).
- [46] E. J. Meier, F. A. An, and B. Gadway, Observation of the topological soliton state in the Su–Schrieffer–Heeger model, Nat. Commun. 7, 13986 (2016).

- [47] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Lasing in topological edge states of a one-dimensional lattice, Nat. Photon. 11, 651 (2017).
- [48] G. W. Semenoff, Condensed-matter simulation of a threedimensional anomaly, Phys. Rev. Lett. 53, 2449 (1984).
- [49] D. L. Underwood, W. E. Shanks, J. Koch, and A. A. Houck, Low-disorder microwave cavity lattices for quantum simulation with photons, Phys. Rev. A 86, 023837 (2012).
- [50] M. J. Hartmann, Quantum simulation with interacting photons, J. Opt. 18, 104005 (2016).
- [51] K. Le Hur, Topological matter and fractional entangled geometry, arXiv:2209.15381.
- [52] M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys. 160, 343 (1985).
- [53] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevA.109.L021701 for a geometrical derivation of the useful formulas $C_j = (-1)^{j+1} \operatorname{sgn}(\sin \phi)$ and precise definitions on the coupling with the local probe leading to Eq. (6).