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Non-Hermitian skin effect and nonreciprocity induced by dissipative couplings
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We study the mechanism for realizing the non-Hermitian skin effect (NHSE) via dissipative couplings, in
which the left-right couplings have equal strengths but the phases do not satisfy the complex conjugation.
Previous realizations of NHSE typically require unequal left-right couplings or on-site gain and loss. In this
Letter we find that when combined with the multichannel interference provided by a periodic dissipative-coherent
coupling structure, the dissipative couplings can lead to unequal left-right couplings, inducing NHSE. Moreover,
we show that the non-Hermiticity induced by dissipative couplings can be fully transformed into nonreciprocity-
type non-Hermiticity without bringing extra gain-loss-type non-Hermiticity. Thus, this mechanism enables
unidirectional energy transmission without introducing additional insertion loss. Our work opens a different
avenue for the study of non-Hermitian topological effects and the design of directional optical networks.

DOI: 10.1103/PhysRevA.109.L021503

Introduction. Non-Hermitian systems bring unprecedented
features induced by non-Hermiticity [1–4]. For instance,
non-Hermitian systems with parity-time (PT ) symmetry can
possess real spectra [5–11]. The PT phase transition occurs
at the non-Hermitian exceptional point [12], which describes
the coalescence of the eigenstates and the degeneracy of the
eigenvalues [10,13–15]. As a most peculiar example, the non-
Hermitian skin effect (NHSE) driven by non-Hermiticity has
drawn much attention in recent years [16–28]. It describes that
the majority of eigenstates are localized at the boundaries,
implying the breakdown of the conventional bulk-boundary
correspondence (BBC) in Hermitian systems [29–33]. To
date, NHSE has been proposed in various setups such as
optical [31,34] and acoustic systems [35,36], cold atoms [37],
circuits [32,38], and bosonic systems governed by quadratic
Hamiltonians [39–43]. In general, the realization of NHSE
is mainly based on two origins of non-Hermiticities: unequal
left-right couplings [16,21] and on-site gain and loss (or un-
equal on-site losses) [44,45].

As a different origin of non-Hermiticity, dissipative cou-
plings connect the systems indirectly via a non-Hermitian
reservoir, indicating the irreversible energy flow in the
coupling channel [46–50]. Up to now, dissipative cou-
plings have been realized in various setups, such as optical
cavities [51,52], thermal atomic ensembles [46,53], mi-
cromechanical oscillators [54], and optical fibers [55]. In
addition to being a different class of coupled networks, the
non-Hermitian properties exhibited by dissipatively coupled
systems make them promising platforms for studying un-
conventional topological properties [56–58]. However, the
relationship between dissipative couplings and NHSE remains
unknown.
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Here, we show that the presence of dissipative couplings
can induce NHSE as well as nonreciprocal energy trans-
mission. Taking a chain of resonance modes with intracell
dissipative couplings and intercell coherent couplings as an
example, we find that NHSE can be realized by combining
dissipative couplings with multichannel interference provided
by the chain. The system can be transformed into the non-
Hermitian Su-Schrieffer-Heeger (SSH) model with unequal
left-right couplings, and enables nonreciprocal energy trans-
mission. Distinct from the non-Hermitian Hamiltonians of
the systems with unequal left-right couplings and systems
with on-site gain and loss, we find that the non-Hermitian
Hamiltonians including dissipative couplings preserve local
anti-PT symmetry [52,53,59]. From the aspect of nonre-
ciprocity generation, the mechanism proposed here is also
different from the schemes based on tuning the interfer-
ence between different lossy coupling channels that connect
two modes [60–62]. Nonreciprocal transmission is realized
by combining dissipative couplings with a periodic struc-
ture, and the nonreciprocity ratio is exponentially enhanced
by increasing the chain length. Furthermore, this mech-
anism enables unidirectional energy transmission without
introducing additional insertion loss, as the non-Hermiticity
induced by dissipative couplings can be fully transformed into
nonreciprocity-type non-Hermiticity without bringing extra
gain-loss-type non-Hermiticity.

Model. As illustrated in Fig. 1(a), we consider a chain
of resonance modes that linearly interact with each other.
The couplings can be divided into two types, i.e., the in-
tercell coherent couplings and the dissipative couplings in
each unit cell. One typical example of dissipative coupling
implementation is depicted in Fig. 1(b), where modes a j and
b j are indirectly coupled via an intermediate lossy mode oj .
By adiabatically eliminating the lossy mode oj , the dissipa-
tive coupling term has the form iv(a†

j b j + a jb
†
j ), and v can

be a real number under the condition that the decay rate
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FIG. 1. (a) System composed of a chain of resonance modes with
dissipative couplings (iv, dotted lines) in each unit cell (illustrated by
dashed lines) and intercell coherent couplings (solid lines). The input
and output fields are illustrated by the red arrows. (b) One typical
example of dissipative coupling implementation by interacting the
mode aj and bj with an auxiliary mode oj with a large dissipation rate
κ . (c) Non-Hermitian SSH model with intracell unequal left-right
couplings (δ ± v) and intercell coherent couplings. (d) The equiva-
lence of the two models depicted in (a) and (c) can be understood by
interfering the two modes aj and bj using a beam splitter with the
phase shift being −π/2.

of o j is large enough [59,63]. It is non-Hermitian due to
the irreversible energy flow in the coupling process, which
is different from the coherent couplings that the energy is
conserved. The total Hamiltonian of the system demonstrated
in Fig. 1(a) is

H =
n∑

j=1

[δ(a†
j a j − b†

jb j ) + iv(a†
j b j + a jb

†
j )]

+
n−1∑
j=1

(w1b†
ja j+1 + w2a†

j b j+1 + H.c.)

+
n−1∑
j=1

(u1a†
j a j+1 + u2b†

jb j+1 + H.c.), (1)

where δ is the difference of the mode resonance frequen-
cies. The intercell coherent couplings contain the coupling
between aj and a j+1 (b j and b j+1) with the rate being u1

(u2), and the coupling between b j and a j+1 (a j and b j+1)
with the coefficient being w1 (w2). Since the on-site loss term
comes from the adiabatic elimination of the intermediate lossy
modes o j only shifts the imaginary part of the all eigenfre-
quencies to the value iv, we have ignored the global on-site
loss term in Eq. (1) for the analysis of the energy spectrum
given below. However, we have considered the effect of the
global on-site loss term on the dynamical evolution of the
modes for calculating the transmission efficiencies (the details
can be found in the Supplemental Material [63]).

We show that under a unitary transformation, our model
is equivalent to the non-Hermitian SSH model with unequal
left-right couplings. Applying the Fourier transformation aj =

1√
n

∑
k akeik j , a†

j = 1√
n

∑
k a†

ke−ik j , the system Hamiltonian H
[Eq. (1)] in momentum (k) space can be written as Hk = d0I +
dxσx + dyσy + dzσz, where I is the identity matrix and σx,y,z

are Pauli matrices. The parameters d0,x,y,z in Hk are written as

d0 = Re(u1 + u2) cos k − Im(u1 + u2) sin k,

dz = δ + Re(u1 − u2) cos k − Im(u1 − u2) sin k,

dx = iv + Re(w1 + w2) cos k − Im(w1 + w2) sin k,

dy = Re(w1 − w2) cos k + Im(w1 − w2) sin k. (2)

Considering the case where the coherent coupling coefficients
satisfy w1 = w2 = w being real and u1 = −u2 = iw, we can
simplify the parameters as d0 = 0, dx = iv + 2w cos k, dy =
0, and dz = δ − 2w sin k. Employing the unitary transforma-
tion Uk = [1, 1; i,−i]/

√
2, Hk can be transformed as

H ′
k = U −1

k HkUk =
(

0 δ + v − 2iwe−ik

δ − v + 2iweik 0

)
.

(3)
The off-diagonal terms become non-Hermitian due to the
presence of the dissipative couplings (|v| �= 0). To find the
model whose momentum-space Hamiltonian is given by H ′

k ,
we transform H ′

k back to the real space and get

H ′ =
n∑

j=1

[
(δ + v)c†

j d j + (δ − v)c jd
†
j

]

+
n−1∑
j=1

2iw(d†
j c j+1 − c†

j+1d j ), (4)

where the site modes are labeled by c j and d j . H ′ describes
a one-dimensional non-Hermitian SSH model with unequal
left-right coupling strengths δ ± v in each unit cell [Fig. 1(c)].
To establish its connection with our model, we can find that
they are equivalent by performing the unitary transformation
H ′ = U −1HU = U †HU , where the transformation matrix in
real space is the direct sum of that in momentum space,
i.e., U = ⊕n

i=1Uk . The equivalence between the two models
can be understood as the multichannel interference provided
by the periodic dissipative-coherent coupling structure can
lead to unequal left-right coupling between modes c j = (a j −
ib j )/

√
2 and d j = (a j + ib j )

√
2. The resulting asymmetri-

cally coupled modes c j and d j are equivalent to interfere the
modes a j and b j using a beam splitter with the phase factor
being −π/2 [Fig. 1(d)].

However, different from the non-Hermiticity induced by
unequal left-right couplings, our system with dissipative
couplings preserves anti-PT symmetry. By defining the
parity operation as P = ⊕n

i=1σx with n being the number
of the unit cells in the chain, we find that the system
Hamiltonian H [Eq. (1)] preserves anti-PT symmetry, i.e.,
(PT )H (PT )−1 = −H , where T is the time-reversal opera-
tor. Different from the global parity operation, P defined here
is a local operation that exchanges the locations of modes
in each unit cell, allowing the skin effect along the edges.
Note that our model is also distinct from the PT -symmetric
systems with on-site gain and loss. Anti-PT symmetry repre-
sents a generalization of PT symmetry that can exist in purely
lossy systems. From this point, dissipative couplings provide a
distinct origin of non-Hermiticity compared with that induced
by unequal left-right couplings and gain-loss systems.
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FIG. 2. The energy spectra under PBC (blue lines) and OBC (black dots) are illustrated when (a) δ/v = 1, (c) δ/v = 0, and (e) δ/v = −1.
The open-boundary spectrum is degenerate at E = ±2 and E = 0 in (a) and (c). The corresponding spatial profiles of all eigenmodes under
OBC are shown in (b), (d), and (f), respectively. The results obtained from the equivalent model with unequal left-right couplings are depicted
by blue dots. The red lines illustrate the zero-energy edge modes. (g) The real and (h) imaginary parts of the energy spectrum under OBC as
functions of δ/v are also plotted. Other parameters are fixed as n = 10, u1 = −u2 = iw, |w/v| = 1, and v = −1.

Non-Hermitian skin effect. The energy spectra under
a periodic-boundary condition (PBC, blue lines) and an
open-boundary condition (OBC, black dots) as δ/v = 1 are
illustrated in Fig. 2(a). The periodic spectrum forms two
close loops on the complex plane, which is distinct from the
open-boundary counterpart that is degenerate at E = ±2 and
E = 0. The real and imaginary parts of the open-boundary
spectrum as functions of δ/v are plotted in Figs. 2(g) and 2(h),
respectively. The eigenvalues are purely real and the bands
become degenerate at the exceptional points δ/v = ±1. The
nonzero winding number of energy under PBC indicates
the emergence of NHSE under OBC [4,23,33]. For any
base point Eb, the winding number of energy is given by
W = 1

2π i

∫ π

−π
∂k ln det[H (k) − Eb]dk. This can be seen from

Fig. 2(b), where the sum of the eigenmode population in each
unit cell is localized at the boundary. The direction of NHSE
can also be found from the winding direction. As shown in
Fig. 2(a), the anticlockwise circling corresponds to W = 1,
resulting in the left localization of the eigenmodes [curves
in Fig. 2(b)]. It agrees with the results obtained from the
equivalent model with unequal left-right couplings [dots in
Fig. 2(b)], as δ/v = 1 corresponds to unidirectional backward
coupling.

The localization direction of the eigenmodes can be re-
versed by changing the sign of δ/v. As shown in Fig. 2(e),
the spectra under PBC and OBC for δ/v = −1 are similar to
the results when δ/v = 1 [Fig. 2(a)]. However, the winding di-
rection is changed to be clockwise (W = −1), indicating that
the eigenmodes are localized at the right edge, as depicted in
Fig. 2(f). The results are in accord with that obtained from the
equivalent model, as δ/v = −1 corresponds to unidirectional
forward coupling. Figure 2(c) plots the spectra under PBC and
OBC when tuning δ/v = 0. Since the spectra coincide and be-
come open arcs, no base point Eb can be found to be encircled
on the complex plane, indicating that W = 0 and NHSE will
not exist. It can also be seen from the equivalent model, where
δ/v = 0 corresponds to equal left-right couplings. Therefore,

all the eigenmodes are distributed throughout the chain as
illustrated in Fig. 2(d).

Nonreciprocity. Nonreciprocity can be realized by com-
bining dissipative couplings with multichannel interference
provided by the nonzero synthetic magnetic flux in the pe-
riodic structure. In Figs. 3(a) and 3(b), we plot the time
evolution of the energy transmission in the case of unidirec-
tional forward coupling (δ/v = −1). When considering the
energy is initially occupied in the leftmost unit, i.e., |a1(t =
0)|2 = |b1(t = 0)|2 = 1/2, the energy can transmit in the for-
ward direction and the energy occupations of the modes in
each unit [inset of Fig. 3(a)] are the same, i.e., |ai(t )|2 =
|bi(t )|2. However, when the energy is initially occupied in
the rightmost unit, i.e., |an(t = 0)|2 = |bn(t = 0)|2 = 1/2, the
energy transmission in the backward direction becomes for-
bidden [Fig. 3(b)]. Similarly, unidirectional backward energy
transmission can be obtained by tuning δ/v = 1. We can also
find that the energy occupation for the modes will decay with
time evolving due to the presence of on-site loss.

The property of nonreciprocity can also be reflected on
the asymmetric scattering matrix of the system [64–66]. The
corresponding steady-state transmission when considering the
continuous input field will not be affected by the on-site loss
and determined by the parameter matching condition. At the
resonance point, the off-diagonal elements of the scattering
matrix S are given as Si, j = i

√
γiγ j (H + Mγ )−1

i, j , where γi

(γ j) is the damping rate associated with the output (input)
field. Based on the knowledge that the modes in each unit
have the same energy occupation [the insets of Figs. 3(a)
and 3(b)], we choose the leftmost and rightmost units to
connect the input and output field. Assuming the system
dissipation matrix associated with the input/output field as
Mγ = Diag[−iγ /2,−iγ /2, 0, . . . ,−iγ /2,−iγ /2] for sim-
plicity, we can define the energy of the output field as
Pout = |(aout

n + bout
n eiθ )|2/2, where θ is the relative phase of

the two input (output) fields for forward transmission. The
elements of the scattering matrix can be solved analytically
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FIG. 3. Time evolution of the energy occupation for the modes
in the leftmost unit (blue) and the rightmost unit (red) in the case
of unidirectional forward coupling (δ/v = −1) when the field is
initially populated in (a) the leftmost unit and (b) the rightmost
unit. The energy occupations of a1 (a5) and b1 (b5) are plotted by
dots and lines, respectively. For backward transmission, the energy
occupation of a1 and b1 is 0 [not shown in (b)] when the initial
energy is populated in the rightmost unit. The insets demonstrate the
field distribution in the chain at time t = 60κ−1 when the field is
transmitted in the (a) forward and (b) backward direction. The field
amplitudes of the modes in the unit (illustrated by the blue region)
are the same. (c), (d) Normalized energy transmission efficiency
T↔/T↔,max and the corresponding nonreciprocity ratio T→/T← as
functions of the ratio δ/v. The analytical and numerical solutions
are presented by curves and dots, respectively. The left parameters
are fixed as v/γ = −1, |w/v| = 0.5, γ /κ = 0.1, and n = 5.

by applying the relation H + Mγ = Ur (Hns + Mγ )U −1
r . We

can maximize the forward energy transmission efficiency as
T→ = Pout/Pin = 4|S2n,1|2 by optimizing the phase factor θ .
A similar procedure can be performed to maximize the back-
ward energy transmission efficiency as T→ = 4|S1,2n|2. The
off-diagonal elements (S2n,1, S1,2n) of the scattering matrix
are proportional to the unequal left-right coupling coefficients
(δ ∓ v), which leads to asymmetric forward and backward
transmission coefficients (the detailed calculation can be
found in the Supplemental Material [63]).

The normalized forward and backward energy transmis-
sion efficiencies (T↔/T↔,max) are illustrated in Fig. 3(c). The
dots and curves represent the numerical and analytical solu-
tions of the scattering matrix S, respectively. Unidirectional
forward or backward energy transmission can be achieved
by tuning δ/v and the efficiency reaches its maximum when
choosing δ/v = ∓1, i.e., unidirectional coupling. The cor-
responding nonreciprocity ratio T→/T← is also shown in
Fig. 3(d). It agrees well with its analytical solution, that is
derived as

T→
T←

=
(

δ − v

δ + v

)2n−4( (v − γ /2)2 + (δ − v)2

(v − γ /2)2 + (δ + v)2

)2

. (5)

Apparently, the nonreciprocity ratio T→/T← is exponentially
enhanced by increasing the unit number n of the chain.

FIG. 4. (a) Unidirectional forward transmission efficiency T→ as
a function of the unit number n for optimized coupling strength ratio
|w/v| and coupling-loss ratio |v/γ |. T→,max ≈ 0.84 with infinite N .
(b) The corresponding insertion loss L (dB) and contrast (%) for
unidirectional forward energy transmission. The minimized insertion
loss L ≈ 0.76 dB with infinite n. (c), (d) Optimal coupling strength
ratio |w/v| and coupling-loss ratio |v/γ | required to achieve the
maximal unidirectional transmission efficiency T→,max. The insets
illustrate the transmission efficiencies T→ (blue) and T← (black) as
functions of the ratio w/v and v/γ when optimizing the left parame-
ters for n = 5. The analytical and numerical results are presented by
curves and dots, respectively.

Unidirectional coupling, i.e., δ/v = ±1, corresponds to tun-
ing the nonreciprocity ratio to be 0/infinity.

As shown in Fig. 4(a), we maximize the forward trans-
mission efficiency T→ as a function of the unit number n
of the chain in the case of unidirectional forward coupling
δ/v = −1. The optimal conditions required for maximizing
T→ are demonstrated in Figs. 4(c) and 4(d). Remarkably, we
find that with increasing the unit number n, T→,max reaches its
limit T→,max ≈ 0.84. It can be understood as in the limit of
large unit number n, complete unidirectional energy transfer
between the neighbor units can be realized by optimizing
the ratio of the coherent and dissipative coupling strength
|w/v| to be 1/2. Plugging this condition into the expression
of T→, we can find T→ becomes independent of the unit
number n and reach its maximum by further optimizing the
coupling-damping rate ratio |v/γ | ≈ 0.71. The corresponding
insertion loss (L) is depicted in Fig. 4(b), which is below
0.76 dB for large unit number n. We thus conclude that
the non-Hermiticity induced by dissipative couplings can be
fully transformed into nonreciprocity-type non-Hermiticity
without bringing extra gain-loss-type non-Hermiticity. Thus,
this mechanism will not introduce extra insertion loss for the
unidirectional transmission, enabling the achievement of non-
reciprocal transmission with high efficiency and high contrast
simultaneously.

Conclusion. In conclusion, we show that NHSE as well
as nonreciprocity can be induced by combining dissipa-
tive couplings with a periodic structure. By investigating
a chain of resonant modes with intracell dissipative cou-
plings and intercell coherent couplings, we find that under a
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basis change, it can be transformed into a non-Hermitian
SSH model with unequal left-right couplings. However, dif-
ferent from the non-Hermiticity induced by unequal left-right
couplings and on-site gain and loss, the systems with dis-
sipative couplings preserve local anti-PT symmetry. When
optimizing the unidirectional transmission efficiency, we find
that the non-Hermiticity induced by dissipative couplings can
be fully transformed into nonreciprocity-type non-Hermiticity
without bringing extra gain-loss-type non-Hermiticity. It en-
ables unidirectional energy transmission without introducing

additional insertion loss. Our work provide a protocol for
exploring non-Hermitian topological properties and designing
high-performance nonreciprocal devices for one-way optical
networks in systems with dissipative couplings.
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