
PHYSICAL REVIEW A 109, L021502 (2024)
Letter

Realization of an all-optical underdamped stochastic Stirling engine
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We experimentally realize a nanoscale stochastic Stirling heat engine operating in the underdamped regime.
The setup involves an optically levitated silica particle that is subjected to a power-varying optical trap and
periodically coupled to a cold or hot reservoir via switching on or off of the active feedback cooling. We conduct
a systematic investigation of the engine’s performance and find that both the output work and efficiency approach
their theoretical limits under quasistatic conditions. Furthermore, we examine the dependence of the output
work fluctuation on the cycle time and the temperature difference between the hot and cold reservoirs. We
observe that the distribution has a Gaussian profile in the quasistatic regime, whereas it becomes asymmetric and
non-Gaussian as the cycle duration time decreases. This non-Gaussianity is qualitatively attributed to the strong
autocorrelation of the particle’s position within a cycle in the nonequilibrium regime. Our experiments provide
valuable insights into stochastic thermodynamics in the underdamped regime and open up possibilities for the
design of future nanomachines.

DOI: 10.1103/PhysRevA.109.L021502

Introduction. Thermodynamics deals with the relations
between heat, work, temperature, entropy, and energy [1]. At
its heart, is the heat engine, which converts heat to usable
energy. Unlike its macroscopic counterpart that the determin-
istic classical thermodynamic laws can very well describe, a
heat engine of micro or nanosize will undergo visible fluc-
tuations [2], which makes it behave in a stochastic manner.
In this regime, the central concepts of thermodynamics such
as the exchanged heat, the applied work, and the entropy
can be meaningfully defined on the level of individual trajec-
tories [3,4]. These fluctuating quantities extend the laws of
macroscopic thermodynamics and give birth to the so-called
stochastic energetics [5]. With the advancement in the fabrica-
tion of microscopic mechanical devices, significant progress
in the study of stochastic heat engines, both theoretical [6,7]
and experimental [8,9], have been witnessed during the past
decade.

A promising candidate for the experimental investigation
of the stochastic thermodynamics [10–14] is the levitated op-
tomechanical system (LOS) [15,16], where optical tweezers
allow us to apply a fast and accurate control to the particle
captured and record its spatial trajectory in real-time [17,18].
After a full description of a colloidal stochastic heat engine
[19] given by Schmiedl and Siefert, Blickle and Bechinger
realized a stochastic Stirling engine experimentally [20] for
the first time. The efficiency of the Stirling engine is fun-
damentally limited by the isochoric steps, which make the
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cycle inherently irreversible. To overcome the limitations of
the Stirling cycle, Martinez et al. implemented a Brownian
Carnot cycle [21] with an optically trapped colloidal particle
by creating an effective hot temperature bath with fluctuating
electromagnetic fields, which allowed precise control over the
bath temperature that is synchronized with the change of the
trap stiffness and therefore a realization of an adiabatic ramp.

So far, the implementations of stochastic heat engines
(SHEs) with a levitated microscopic particle are all in col-
loidal systems where the particle is overdamped [22,23]. The
SHEs in the underdamped regime have been less investigated
experimentally so far. We know that an analytic treatment of
optimal protocols is possible in the overdamped case because
the dynamics can be described by a simplified equation in
terms of the slow position variable [19]. In contrast, this is
not possible in the underdamped case, where the position
and velocity variables cannot be separated. As a result, the
optimization of an underdamped SHE for maximizing its
performance is much more complicated than an overdamped
one. Theoretical analysis showed that the rapid changes in the
trapping frequency were desired to improve the power output
and the efficiency [24]. More importantly, the investigations of
much more isolated systems provide a path toward the future
realization of quantum heat engines [25,26] or quantum refrig-
erators [27] in LOS and it has been shown that super Carnot
efficiencies can be attained by clever reservoir engineering
[28–30].

Inspired by a scheme [6] proposed by Dechant et al., we
present an experimental realization of an all-optical Stirling
engine in the underdamped regime. The experimental setup is
illustrated in Fig. 1(a). A charged silica particle of diameter
154.4 nm is levitated in a single-beam optical trap at the
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FIG. 1. (a) The experimental setup: A laser beam of wavelength 1064 nm passes an acoustooptic modulator (AOM) and is focused by
a microscope objective (OBJ) with numerical aperture NA = 0.8 forming an optical trap, which levitates a charged silica particle inside a
vacuum chamber. The trapping stiffness (or frequency) is dependent on the optical trapping power which can be changed by adjusting the
driving voltage of the AOM. Throughout our work, we solely focus on the motion of the particle along the x axis. The scattered light from
the particle is collected and sent to a quadrant photodetector (QPD) to detect the motion of the particle along the x axis. A feedback cooling
scheme based on electric fields is applied to create the cold bath. In the scheme, the x-motion signal is sent through a bandpass filter (BPF) and
a derivative circuit (d/dt) to provide a feedback signal proportional to velocity. This velocity-dependent feedback signal is sent to an amplifier
(AMP) which modulates a pair of electrodes to cool the x motion electrically. To experimentally realize a stochastic Stirling cycle, we employ
a signal generator (SG) that periodically outputs two synchronized signals. One signal is sent to the AOM to linearly change the optical trap
power and the other one is sent to a switch to periodically turn on or off the feedback cooling. (b) The Stirling cycle consists of two isochoric
and two isothermal strokes. The inset shows the analogy to a classical Stirling engine. (c) The optical trap stiffness k(t ) and the temperature of
COM motion T (t ) as a function of time t during a Stirling cycle.

pressure of p = 1.0 mbar. The damping rate due to the col-
lision with residual gas molecules is experimentally measured
as �th/2π = 1.45 kHz. The optical potential is approximately
harmonic with a power-dependent stiffness which therefore
can be linearly tuned with an acoustooptic modulator (AOM).
The resulting mechanical oscillation frequency of the particle
�/2π ranges from 145.3 to 160.4 kHz. The surrounding gas
environment coupling to the center of mass (COM) motion
of the particle acts as the high-temperature reservoir (hot
bath). The active feedback cooling, using electric fields to
exert a force on the particle’s motion and providing an ad-
ditional feedback damping rate �fb, creates a controllable
low-temperature reservoir (cold bath). A quadrant photode-
tector (QPD) monitors the motion of the particle so that its
position trajectory can be accurately recorded. To realize a
stochastic Stirling cycle consisting of two isothermal and
two isochoric strokes, we employ a signal generator (SG) to

periodically output two synchronized signals, which are in-
putted into the AOM to change the optical trap power and into
the switch to turn on or off the feedback cooling, respectively.
The details of the experimental setup and the protocol can be
found in the caption of Fig. 1 and the Supplemental Material
(SM) [31].

Model. As described above, the particle’s oscillation fre-
quency is much larger than the damping rate. Therefore,
its COM motion is governed by the one-dimensional un-
derdamped Langevin equation [32] (we solely focus on the
particle’s motion along the x axis throughout this work)

v̇ + �v + k(t )

m
x =

√
2kBT �

m
ξ (t ), (1)

where m, x, and v = ẋ respectively denote the mass, position,
and velocity of the particle. k(t ) = m�2 is the stiffness of
the optical trap with the frequency �. � = �th + �fb is the
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total damping rate, T the effective COM temperature, and
kB the Boltzmann constant. The quantity ξ (t ) is a centered
Gaussian white noise with 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). A Stirling
cycle consisting of two isochoric and two isothermal strokes
will be realized in the following steps.

(1) Expansion. Starting from the system in thermal equi-
librium with the hot bath at the temperature Th, it undergoes
an isothermal expansion with stiffness k(t ) decreasing from
kmax to kmin during a time duration τh. The particle keeps the
connection to the hot reservoir via the coupling �th during this
stroke. To make sure that the stroke is isothermal, we require
that the duration τh � 1/�th and the oscillator therefore al-
ways equilibrates with the reservoir.

(2) Isochoric heat emission. The temperature of the reser-
voir is reduced to Tc = �thTh/(�th + �fd ) by switching on the
feedback cooling. In this stroke, the particle is instantaneously
connected to the cold bath while the stiffness retains constant
k(t ) = kmin lasting a time duration of τhc until its effective
temperature of COM equilibrates to Tc.

(3) Compression. The system undergoes an isothermal
compression with the stiffness k(t ) increasing back to kmax

during a time duration τc. In this stage, the oscillator al-
ways keeps the connection to the cold bath at the constant
temperature Tc.

(4) Isochoric heat absorption. The feedback cooling is
switched off so that the particle is connected to the hot reser-
voir again and reaches back to the equilibrium state at the
beginning of the cycle in a period of τch. The stiffness keeps
constant k(t ) = kmax during this stroke.

The total duration period of a cycle is then given by
τcyc = τh + τhc + τc + τch. Here, we set the four strokes with
the equal duration τs, i.e., the cycle time τcyc = 4τs. The
schematic representation for a cyclic process of the Stirling
engine and the changes of the trap stiffness and the effective
COM temperature versus time are shown in Figs. 1(b) and
1(c), respectively.

One can draw an analogy between the particle in an optical
trap and an ideal gas inside a piston, where the trap stiffness,
or equivalently the trapping frequency, is analogous to the in-
verse of an effective volume while the variance of the particle
position is seen as an effective pressure. Under this analogy,
thermodynamic quantities can be extracted from the particle’s
positional fluctuations in the framework of stochastic thermo-
dynamics. The total energy of the particle at time t reads

U (t ) = 1
2 mv(t )2 + 1

2 k(t )x(t )2. (2)

The increment of the energy dU can thus be divided into two
parts where the work is defined as

dW = 1

2

dk

dt
x2dt, (3)

and the heat exchanged with the environment is defined as

dQ = mv
dv

dt
dt + kx

dx

dt
dt . (4)

Integrating Eq. (3) along a stochastic trajectory yields the
time-dependent work during a time duration τ = tf − ti as

W (τ ) = 1

2

∫ tf

ti

dk(t )

dt
x(t )2dt, (5)

FIG. 2. (a) The mean output work W and (b) the mean efficiency
η = −W

Q
as a function of the cycle time τcyc. Here, the cycle time is

chosen as τcyc = 4, 8, 20, 40, 200, 400 ms. The red dashed lines
in (a,b) are the theoretical values of the output work and efficiency
in the quasistatic regime (see SM [31] for details), respectively. The
probability distributions of (c) the output work W and (d) the ab-
sorbed heat Q in the quasistatic regime for the cycle time τcyc = 400
ms. The red dashed line in (c) is a Gaussian distribution with the
same mean and variance of the output work distribution. Throughout
this paper, the work and the heat are all in units of kBT0. The tem-
perature of the hot and the cold baths is experimentally determined
as Th = 320 K and Tc = 65 K, respectively. The number of Stirling
cycles (ensemble number) in each experiment is fixed as N = 10 000.

where ti (tf ) is the initial (final) time. Meanwhile, the work
W , heat Q, and inner energy U satisfy the stochastic first-law-
like energy balance 	U = W + Q for any single stochastic
trajectory.

Experiments. We experimentally studied the performance
of the Stirling engine in the underdamped regime. The op-
tical stiffness linearly change in the range from kmin = 3.21
pN/µm (∼�min/2π = 145.3 kHz) to kmax = 3.92 pN/µm
(∼�max/2π = 160.4 kHz). The effective COM temperature
of the levitated particle is experimentally determined as Th =
320 K and Tc = 65 K, respectively. Here, the temperature
of the hot bath is a little bit larger than the room temper-
ature T0 = 300 K due to the heating effect of the trapping
laser [33]. Figures 2(a) and 2(b) show the mean output work
W and the mean efficiency η = −W

Q
varying with the cy-

cle time τcyc, respectively. The work and heat are both in
units of kBT0 throughout this paper. One can see, both the
mean output work W and the mean efficiency η monotoni-
cally increase with the cycle time and finally converge to the
theoretical limit W qs = − 1

2
Th−Tc

T0
ln kmax

kmin
[34] and ηqs = ηc[1 +

2ηc/ln(kmax/kmin)]−1 ≈ 0.088, respectively, in the quasistatic
regime with an infinite long cycle time. By the numerical
simulations, we also figured out that the mean power P =
− W

τcyc
will reach its maximum value at τcyc ≈ 0.04 ms. It is

not observed since 0.04 ms is much less than the shortest
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FIG. 3. (a)–(c) The probability distributions of the output work
for the cycle time (a) τcyc = 4 ms, (b) τcyc = 40 ms, and (c) τcyc =
400 ms (in the quasistatic regime). (d) The skewness and kurtosis as a
function of the cycle time τcyc. In (a)–(d), the temperature difference
between the hot and cold baths is fixed as 	T = Th − Tc = 255 K.
(e)–(g) The probability distributions of the output work for the
temperature differences (e) 	T = 33 K, (f) 	T = 180 K, and (g)
	T = 283 K. (h) The skewness and kurtosis as a function of the
temperature difference 	T . In (e)–(h), the cycle time is fixed as
τcyc = 4 ms. The red dashed lines in (c) and (e) are the Gaussian
distributions with the same mean and variance of the output work
distribution.

cycle time τcyc = 4 ms that is allowed in our experiments. The
theoretical and simulation results and the detailed discussion
of the power are presented in SM.

Figures 2(c) and 2(d) show the probability distributions of
the output work W and the absorbed heat Q in the quasistatic
regime for τcyc = 400 ms. As expected, strong fluctuations
can be seen in the output work and the absorbed heat. We
compare the measured output work distribution with a Gaus-
sian distribution with the same mean and variance in Fig. 2(c),
which suggests that the output work distribution in the qua-
sistatic regime is Gaussian.

We further explored the output work distribution for differ-
ent cycle times, as shown in Figs. 3(a) to 3(c). Interestingly,
we found that the profile of the work distribution becomes
asymmetric (non-Gaussian) as we decrease the cycle time.
Here, we introduce skewness and kurtosis to characterize
the shapes of the work distributions. Figure 3(d) shows
the skewness and kurtosis of the distributions versus the
cycle time. The changing trends of them with the cycle time
indicate that the output work deviates from the Gaussian

distribution [34,35] when the engine operates under non-
quasi-static conditions. From Fig. 3(a), we find that the output
work distribution for τcyc = 4 ms has an exponential tail. At
the same time, the values of the skewness and kurtosis for
τcyc = 4 ms also indicate that this distribution is exponential.
Likewise, the work distributions during both the expansion
and compression strokes have an exponential tail (see SM),
which is in good agreement with the theoretical prediction in
the underdamped regime [35].

Moreover, we find that the work distribution profile also
depends on the temperature difference 	T = Th − Tc between
the hot and cold baths. Figures 3(e) and 3(g) show how
the work distribution changes with varying the temperature
difference 	T for the short cycle time τcyc = 4 ms, and the
skewness and kurtosis versus the temperature difference is
plotted in Fig. 3(h). The results show that the work distribu-
tion with a short cycle time can change from asymmetric to
symmetric with decreasing temperature differences. However,
the symmetric distribution (skew → 0) is still non-Gaussian
with a nonzero kurtosis. In addition, in the case of a small
temperature difference, our experiment successfully verified
the Jarzynski equality [36,37] and the Crooks equation [38]
(see SM for details).

Discussions and conclusion. The position of an oscillator
driven by a random Brownian force is a random variable.
In the quasistatic regime, the equipartition theorem states
that the stochastic position at different instants should be
a Gaussian-distributed random variable with the variance
〈x2(t )〉 = kBT/k(t ). Figure 4(a) shows the position variance
〈x2(t )〉 (ensemble average) versus time during a cycle in the
quasistatic regime, and the inset shows the measured position
distribution at different instants. They agree well with the
prediction from the equipartition theorem. As a result, the
output work W calculated via Eq. (5) would be the integration
(or sum) of squares of a series of Gaussian-distributed random
variable x(t ). It is well known that, for a large number of
independent random variables with an arbitrary but identical
distribution, the sum of them will tend toward a Gaussian
distribution. However, the distributions of x2(t ) at different
instants are obviously not the same for the varying stiffness
k(t ). To understand the work distribution observed in the
experiments, we numerically investigate the distribution of
the sum of the squares of a sequence of independent Gaus-
sian random variables {X1, X2, . . . , X2N } with zero mean
〈Xi〉 = 0 and varying variance 〈X 2

i 〉 = Ti/ki, where Ti and
ki are two independent parameters, respectively. An anal-
ogy to the isothermal strokes in the Stirling cycle, we set
Ti to be constant while ki scale linearly with i, i.e., Ti =
1, ki = (β−1)i+N−β

N−1 for i � N and Ti = α, ki = 1−β

N i + 2β −
1 for N < i � 2N , where α = Tc

Th
and β = kmin

kmax
denote the tem-

perature ratio and the stiffness ratio, respectively. Figure 4(b)
shows the distribution of the square sum Y = ∑2N

i X 2
i for the

same stiffness and temperature in Fig. 3(c), which indicates
that the sum of the squares of a sequence of independent
Gaussian-distributed random variables with varying variances
is still a Gaussian random variable and explains the experi-
mental results we observed under the quasistatic condition.

As the cycle time decreases, the equipartition theorem is no
longer held due to the fast-varying stiffness. In this situation,
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FIG. 4. (a) The position variance 〈x2(t )〉 (ensemble average) ver-
sus time during a cycle in the quasistatic regime for τcyc = 400 ms,
and the inset shows the measured position distributions at different
instants t = 0, 50, 100 ms. The black dashed lines are the theoretical
prediction of 〈x2(t )〉 according to the equipartition theorem. The
comparison of the position variance varying between the quasistatic
and nonequilibrium cases is shown in SM. (b) The distribution of the
sum of squares of random variables Y = ∑

i X 2
i . Here, the red dashed

line is a Gaussian distribution with the same mean and variance of
the distribution. The skewness and kurtosis are also labeled in (b).
(c) The amplitude of the position correlation function Camp(	t ) in
units of kBTh/kmax for different cycle times.

not only is the consistency of the distribution disrupted, but
so is the independence of the variables. We calculate the auto-
correlation function (ACF) C(t, t + 	t ) = 〈x(t )x(t + 	t )〉 of
the particle displacement during the expansion stroke. For a
given 	t , the ACFs oscillate in the time domain with an am-
plitude Camp(	t ) (see SM for details). As shown in Fig. 4(c),

the amplitudes Camp(	t ) ∝ e− 	t
tcorr decays exponentially with

a characteristic correlation time tcorr 
 0.2 ms for all different
cycle times. Since tcorr is comparable to the duration of the

expansion (compression) stroke which is 1 ms in the case of
rapid stiffness variation, we can expect that the correlation
between the particle’s positions at different instants will play
an important role and lead to the non-Gaussian distributed
output work.

In summary, we experimentally realize a nanosized
stochastic Stirling engine based on a levitated optomechan-
ical system, where a silica particle serving as the working
medium is subjected to the power-varying optical tweezers
and coupled periodically to the cold (hot) reservoir created
by switching on (off) feedback cooling. The experimental
performance of the Stirling cycles including the work, heat,
and efficiency is presented. Our experimental results show that
the output work distribution of the underdamped stochastic
Stirling engine is Gaussian in the quasistatic regime, and it
becomes more and more non-Gaussian as the cycle time de-
creases. This non-Gaussianity is qualitatively attributed to the
strong correlation of the particle’s position within a cycle in
the nonequilibrium regime. Unfortunately, the exact probabil-
ity distribution function of the output work for a fast stiffness
variation in the underdamped regime is yet unknown [14].

The experimental study on the SHE in the underdamped
regime has just begun. There are still a lot of open questions
waiting to be answered. In this sense, the present work can be
regarded as a preliminary exploration in this field. In the fol-
lowing, with an upgraded electronic controlling system, more
complex investigations of the underdamped SHE such as the
optimal efficiency at the max power, or dynamical behaviors
of Otto cycles and Carnot cycles will be further explored.
Integrating with the ground-state cooling [39–41] techniques
demonstrated recently, our system could be directly turned
into the platform for investigating real quantum mechanical
nanomachines.
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