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Driving and dissipation can stabilize Bose-Einstein condensates. Using Keldysh field theory, we analyze this
phenomenon for Markovian systems that can comprise on-site two-particle driving, on-site single-particle and
two-particle loss, as well as edge-correlated pumping. Above the upper critical dimension, mean-field theory
shows that pumping and two-particle driving induce condensation right at the boundary between the stable and
unstable regions of the noninteracting theory. With nonzero two-particle driving, the condensate is gapped. This
picture is consistent with the recent observation that, without symmetry constraints beyond invariance under
single-particle basis transformations, all gapped quadratic bosonic Liouvillians belong to the same phase. For
systems below the upper critical dimension, the edge-correlated pumping penalizes high-momentum fluctua-
tions, rendering the theory renormalizable. We perform the one-loop renormalization group analysis, finding a
condensation transition inside the unstable region of the noninteracting theory. Interestingly, its critical behavior
is determined by a Wilson-Fisher-like fixed point with universal correlation-length exponent ν = 0.6 in three
dimensions.
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Introduction. Quantum phase transitions [1–3] in driven-
dissipative systems have recently received a surge of attention.
Instead of nonanalytic changes in zero-temperature states,
phase transitions in open many-body systems are character-
ized by nonanalyticities in the nonequilibrium steady state
which can arise due to a competition between Hamiltonian
terms and environment couplings.

Promising experimental platforms to study such phenom-
ena are cold atoms in optical cavities [4,5], lattices and
tweezers [6–8], trapped ions [9–11], Rydberg atoms [12–16],
superconducting circuits [17–19], and polaritons in circuit-
QED or semiconductor-microcavity systems [20–29].

Markovian open quantum systems evolve according to a
Lindblad master equation ∂t �̂ = L(�̂) for the density operator
�̂ with the Liouvillian

L(�̂) = −i[Ĥ , �̂] +
∑

α

(
L̂α�̂L̂†

α − 1

2
{L̂†

αL̂α, �̂}
)

, (1)

where Lindblad operators L̂α capture the coupling to the en-
vironment [30–33]. While exact solutions are rare [34–46],
the long-distance physics of typical Markovian many-body
systems can be analyzed with Keldysh field theory and renor-
malization group (RG) techniques [47–49]. Some examples
can be found in Refs. [50–55].

This work provides a field-theoretical analysis of driven-
dissipative Bose-Einstein condensation (BEC) [24,50,51,56–
64] above and below the upper critical dimension. Specifi-
cally, we consider bosons on a d-dimensional cubic lattice,
comprising the kinetic energy and an on-site two-particle driv-
ing term in the Hamiltonian as well as dissipators for on-site

single-particle and two-particle loss and an edge-correlated
pumping process,

L = −i[Ĥ, ·] + γp

2

∑
〈i, j〉

D[â†
i + â†

j ]

+ 2dγl

∑
i

D[âi] + ũ
∑

i

D
[
â2

i

]
, with (2a)

Ĥ = −J̃
∑
〈i, j〉

â†
i â j +

∑
i

(
dJ̃ â†

i âi + G â2
i

) + H.c.. (2b)

Here, D[L̂α](�̂) := L̂α�̂L̂†
α − 1

2 {L̂†
αL̂α, �̂} is the dissipator for

Lindblad operator L̂α , âi is the bosonic annihilation operator
on site i such that [âi, â†

j ] = δi, j and [âi, â j] = 0, and the
sum

∑
〈i, j〉 runs over all lattice edges. The chemical potential

has been set to the minimum of the free-boson band. We
could add additional on-site particle pumping terms as well as
edge-correlated loss. As long as the latter is weaker than the
edge-correlated pumping, these would not change the physics
qualitatively.

In this Letter, we first derive the Keldysh action in the
continuum limit. According to the subsequent mean-field
treatment, above the upper critical dimension, the condensa-
tion transition, as induced by pumping γp and/or two-particle
driving G, occurs right at the boundary between the stable
and unstable regions of the noninteracting theory [65]. The
tree-level scaling analysis yields the upper critical dimen-
sion dc = 4. Next, we discuss the Gaussian approximation
for d > dc, finding that with nonzero two-particle driving G
the condensate is gapped, and gapless otherwise. In fact, a
transition between two gapped phases inside the stable re-
gion of the noninteracting theory can be excluded on general
grounds by Proposition 5 of Ref. [66]. Lastly, we carry out
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the one-loop RG analysis with an ε expansion for d < dc,
finding a condensation transition inside the unstable region of
the noninteracting theory. The nonequilibrium phase diagram
is then determined by a Wilson-Fisher-like fixed point [59,67–
69]. The results are summarized and compared to BEC in
closed systems. The appendices in the Supplemental Material
discuss the experimental realization and provide details for the
analytical investigations [70].

Keldysh action. Similar to procedures for closed systems
[71,72], we can use a Trotter decomposition of the time
evolution operator to write the evolved density operator as
�̂(t ) = eLt �̂(0) = (eLt/Nt )Nt �̂(0). Then, inserting resolutions
of the identity in terms of coherent states between all factors
and taking the trace gives the partition function Z as a product
of coherent-state matrix elements 〈ψ′

+|eLδt [|ψ+〉〈ψ−|]|ψ′
−〉

with âi|ψ±〉 = ψ±,i|ψ±〉. Taking the continuous-time limit
Nt → ∞, one arrives at [47,49]

Z =
∫

D[ψ±, ψ∗
±]e−S with Keldysh action (3a)

S =
∫

t
[ψ†

+∂tψ+ − ψ†
−∂tψ− − L (ψ±,ψ∗

±)], (3b)

where L (ψ±,ψ∗
±) are Liouvillian matrix elements. Staring

with lattice spacing a, we can take the spatial continuum limit
by replacing the variables ψ±,i with fields ad/2ψ±(xi ) and
sums

∑
i by integrals a−d

∫
x ≡ a−d

∫
dd x. For terms that act

on lattice edges 〈i, j〉, we express ψ±(x j ) in terms of ψ±(xi )
and its derivatives up to second order. This step assumes that
relevant field configurations are sufficiently smooth, and we
will indeed find the gap to close at quasi-momentum k = 0,
such that long-range fluctuations dominate. We arrive at the
Keldysh action

S =
∫

x,t

[
ψ∗

+∂tψ+ − ψ∗
−∂tψ− − 2d (γlψ+ψ∗

− + γpψ
∗
+ψ−)

+ d (γl + γp)(ψ∗
+ψ+ + ψ∗

−ψ−)

− a2γp

4
(2ψ−∇2ψ∗

+ − ψ∗
+∇2ψ+ − ψ∗

−∇2ψ−)

− ia2J̃ (ψ∗
+∇2ψ+ − ψ∗

−∇2ψ−) + iG(ψ2
+ − ψ2

− + c.c.)

− ad ũ

2
(2ψ2

+ψ∗2
− − |ψ+|4 − |ψ−|4)

]
. (4)

Note that the two-particle driving term in the Hamilto-
nian breaks the superparticle number conservation such that
[�̂,

∑
i â†

i âi] 
= 0. Hence, for nonzero G, the system only has
the discrete PT symmetry [73], while it has a continuous
U(1) symmetry under

âi �→ eiα âi when G = 0. (5)

For further analysis, it is useful to perform the Keldysh
rotation [49] from fields ψ± to

ψc := (ψ+ + ψ−)/
√

2, ψq := (ψ+ − ψ−)/
√

2, (6)

which leads to the action

S =
∫

x,t

[
ψ∗

c ∂tψq + ψ∗
q ∂tψc − t1(ψ∗

c ψq − ψ∗
q ψc )

+ t2ψ
∗
q ψq + K1

(
ψ∗

c ∇2ψq − ψ∗
q ∇2ψc

) + 2K2ψ
∗
q ∇2ψq

− iJ
(
ψ∗

c ∇2ψq + ψ∗
q ∇2ψc

) + 2iG(ψcψq + ψ∗
c ψ∗

q )

+ u

2

(
ψ2

c ψ∗
c ψ∗

q + ψ2
q ψ∗

c ψ∗
q − c.c.

) + 2uψc ψ∗
c ψq ψ∗

q

]
,

(7)

where we have reparametrized the model with

t1 := d (γl − γp), t2 := 2d (γl + γp) � 0, J := a2J̃,

K1 = K2 := a2γp/4 � 0, and u := ad ũ � 0. (8)

We have introduced two separate parameters K1 and K2 which,
while they are identical in the original model, will turn out to
scale differently in the RG analysis.

Mean-field theory. Let us denote the solution of the saddle-
point equations

δS

δψ∗
c

= 0,
δS

δψ∗
q

= 0 (9)

by ψ̄c, ψ̄q. Due the conservation of probability, all terms in
the action (7) are at least linear in ψq or ψ∗

q [47,49]. Hence,
the first equation leads to ψ̄q = 0. Then, the second equa-
tion yields

t1ψ̄c + 2iGψ̄∗
c + u

2
ρψ̄c = 0 with ρ ≡ |ψ̄c|2. (10)

Multiplying this by ψ̄c and ψ̄∗
c , respectively, we find

ψ̄2
c = −2iGρ

t1 + u
2 ρ

and ψ̄∗2
c = i

2G

(
t1 + u

2
ρ
)
ρ. (11)

Now, using that these are complex conjugates of each other
leads to the equation[

4G2 −
(

t1 + u

2
ρ
)2

]
ρ = 0. (12)

Solving for ρ, we arrive at the mean-field solution

ψ̄q = 0, ρ =
{

0 for t1 > 2|G|,
2
u (2|G| − t1) for t1 < 2|G|. (13)

To obtain ψ̄c, one simply substitutes ρ into Eq. (11).
Now, recalling that [47,49]

〈ψ∗
c,i(t )ψc, j (t

′)〉 ≡ 1

Z

∫
D[ψ±, ψ∗

±] ψ∗
c,i(t )ψc, j (t

′) e−S

= Tr({âi (t ), â†
j (t

′)} �̂ss), (14)

where �̂ss denotes the steady state of the system, the onset of
the mean-field value (13) of ρ = |ψ̄c|2 signals a macroscopic
occupation of the zero-momentum mode.

So, the pumping and/or two-particle driving induce a tran-
sition to a Bose condensate phase at t1 = 2|G|. In fact, this
point also marks the boundary between the stable and unstable
regions of the noninteracting part of the model (u = 0); see
Appendix C of the Supplemental Material [70] and Ref. [39].
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The two-particle loss (u > 0) in the interacting model will
stabilize the condensate.

Tree-level scaling analysis. The mean-field theory only
describes the system correctly if the quartic terms in the ac-
tion are irrelevant, i.e., above the upper critical dimension dc.
Let us perform the tree-level RG analysis to determine the
engineering dimensions (a.k.a. canonical scaling dimensions)
of the fields and coupling parameters such that we can assess
the relevance of the (quartic) interaction terms and deduce
dc. To this purpose, one considers the quadratic part of the
action and examines how quantities scale under a lowering
of the ultraviolet cutoff � �→ �/b, a corresponding rescal-
ing of space/momenta k �→ bk, and renormalization ψc/q �→
b[ψc/q]ψc/q, gi �→ b[gi]gi of the field variables and coupling
parameters. The engineering dimensions [ψc], [ψq], and {[gi]}
are determined such that the action and low-momentum fea-
tures of all Green’s functions are invariant under this tree-level
RG transformation.

With the Fourier transformation

φc/q(k, ω) :=
∫

x,t
ei (ωt−k·x)ψc/q(x, t ), (15)

the quadratic part of the action can be easily diagonalized. The
resulting free Green’s function is calculated in Appendix B of
the Supplemental Material [70], and the dispersion relation for
single-particle excitations from the steady state is found to be

ω(k) = −i(t1 + Kk2) ± i
√

4G2 − J2k4. (16)

The many-body spectrum of quasi-free systems is fully de-
termined by the single-particle dispersion [36,39] and the
dissipative gap is

� := − sup
λ 
=0∈spectrum(L)

Re λ = − sup
k

Im ω(k). (17)

So, the noninteracting system becomes gapless at the transi-
tion point t1 = 2|G|, where the dissipative gap closes at k = 0
with dispersion ω ∼ −iKk2. Working with scaling dimension
1 for momenta, we hence have [k] = 1 and [ω] = 2.

Let us now perform the tree-level scaling analysis for the
critical point t1 = 2|G|. Due to the invariance of the partition
function (3), we have [S] = 0. Using [dd x] = −d and [dt] =
−2, it follows that

0 = [
∫

x,t ψ∗
c ∂tψq ] = −d − 2 + [ψc] + 2 + [ψq]. (18)

From this and the requirement that the terms with coefficients
t1, K1, K2, J , and G in the action (7) are also scale invariant, it
follows immediately that

[t1] = [G] = 2 and [K1] = [J] = 0. (19)

Now, on physical grounds it can be argued that t2 should
not scale, i.e., that we have a constant noise vertex in the action
[47] with

[t2] = 0 ⇒ 0 =
[∫

x,t
t2ψ

∗
q ψq

]
= −d − 2 + 2[ψq]. (20)

From this, Eq. (18), and 0 = [
∫

x,t K2ψ
∗
q ∇2ψq ] we, finally

conclude that

[ψc] = d − 2

2
, [ψq] = d + 2

2
, and [K2] = −2. (21)

This is consistent with the long-range and slow-frequency
asymptotic behavior

〈φc φ∗
c 〉 ∼ t2

K2
1

k−d−6 and 〈φc φ∗
q 〉 ∼ 1

K1
k−d−4 (22)

of the free Green’s function at the mean-field transition point
as determined in Appendix B of the Supplemental Material
[70].

With the canonical dimensions (21) of the fields and the
condition [S] = 0, we can determine the RG relevance of all
terms in the action (7) of the interacting model. According
to Eqs. (19)–(21), the t1 and G terms are RG relevant, the
t2, K1, and J are marginal, and the K2 term is irrelevant. For
the quartic (interaction) terms, Eq. (21) implies[∫

x,t
ψ2

c ψ∗
c ψ∗

q

]
= d − 4,

[∫
x,t

ψ2
q ψ∗

c ψ∗
q

]
= d,

and

[∫
x,t

ψcψ
∗
c ψqψ

∗
q

]
= d − 2. (23)

Although these terms have the same coefficient u in the bare
action, they scale differently under RG due to the different
scaling dimensions of ψc and ψq. The upper critical dimension
dc is defined such that all quartic terms are irrelevant for d >

dc. So, in this model, we have dc = 4, and the Gaussian fixed
point

t̃1 = 2|G|, ũ = 0 (24)

with dynamical critical exponent z = 2 [Eq. (16)] is stable for
d > dc.

Gaussian approximation above the upper critical dimen-
sion. For d > dc, let us now consider the Gaussian fluctu-
ations around the mean-field solution (13). Specifically, we
substitute

ψc = ψ̄c + δψc and ψq = δψq, (25)

and expand the action (7) to second order in the fluctuations
δψc, δψq. The resulting Green’s function is computed in Ap-
pendix D, and we find the single-particle dispersion relation

ω± = −i(t1+ Kk2+ uρ) ± i
√∣∣2iG − uψ̄2

c /2
∣∣2− J2k4. (26)

For k = 0, one has ω± = −i(t1 + uρ ∓ |2iG − uψ̄2
c /2|). So,

the symmetric phase with t1 > 2|G| and ρ = |ψ̄c|2 = 0 is
gapped. For the symmetry-broken Bose condensate phase
with t1 < 2|G| and ρ > 0, let us first consider the case
G = 0, i.e., systems without two-particle driving. Then, the
condensate has a gapless excitation with ω+ = 0 at k = 0,
corresponding to the Goldstone mode arising due to the
spontaneous breaking of the continuous U(1) symmetry (5).
In contrast, with two-particle driving G 
= 0, both ω+ and ω−
are nonzero at k = 0, meaning that this PT -symmetry-broken
Bose condensate is gapped. In summary, the symmetry broken
phase is gapped for G 
= 0 but gapless for G = 0, and the
symmetric phase is always gapped.

There is a connection of these properties to general
limitations on driven-dissipative phase transitions [74] in
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quasi-free and quadratic open systems [75]: In their stable
region, the steady states of such systems cannot undergo
transitions between gapped phases unless one imposes sym-
metry constraints beyond invariance under single-particle
basis transformations [66]. In fact, one can connect any two
gapped quadratic Liouvillians through a continuous path of
gapped Liouvillians by tuning single-particle loss terms.

The model that describes the order-parameter fluctuations
around the mean-field solution for d > dc is Gaussian, i.e.,
quasi-free. As the fluctuations δψc/q are just linear in the (orig-
inal) microscopic field variables ψ±, we can also establish a
direct connection between the gap-opening terms in the Gaus-
sian model and corresponding terms in the quasi-free part
of the original Liouvillian L. So, a phase transition between
gapped phases could only occur inside or at the boundary to
the unstable region of the noninteracting theory (u = 0) and,
indeed, the Bose condensation transition was found to occur
at that boundary.

RG analysis below the upper critical dimension. Just below
the upper critical dimension, the quartic term

∫
x,t

u

2

(
ψ2

c ψ∗
c ψ∗

q − c.c.
)

(27)

becomes relevant and can alter the phase diagram. We ana-
lyze this using an ε expansion [67–69,76,77] to perform the
one-loop RG in d = 4 − ε dimensions. For simplicity, we
set the two-particle driving G = 0, which restores the U(1)
symmetry (5). We can drop all terms that have been identified
as RG irrelevant in the tree-level scaling analysis, i.e., we only
retain the interaction term (27) and also discard the K2 term.
For brevity, we use K ≡ K1 in the following. Splitting the
resulting action SR of all nonirrelevant terms into its Gaussian
and quartic parts, we have

SR = SG + Su with

SG =
∫

x,t
[ψ∗

c ∂tψq + ψ∗
q ∂tψc + (t1ψ

∗
q ψc − t∗

1 ψ∗
c ψq )

+ (K − iJ )ψ∗
c ∇2ψq − (K + iJ )ψ∗

q ∇2ψc + t2ψ
∗
q ψq ],

Su = 1

2

∫
x,t

[
uψ2

c ψ∗
c ψ∗

q − u∗ψ∗2
c ψc ψq

]
. (28)

In the RG process, two additional terms are generated. The
first corresponds to a detuning ∼â†â and the second to a
Bose-Hubbard interaction ∼â†2â2 in the Hamiltonian. We
have included them in the action SG and Su, with coupling
coefficients i Im t1 and i Im u, respectively. So, while t1 and u
are real in the initial model (7), they generally flow to complex
values during the RG.

As deduced in Appendix E of the Supplemental Material
[70], the one-loop RG flow equations for SR read

dt1
d�

= 2t1 + Sdt2
2K + t1 + t∗

1

u + O(u2), (29a)

du

d�
= εu − Sdt2

2K2

(
u2 3K + 2iJ

2(K + iJ )
+ uu∗

)
+ O(u3), (29b)

where we consider an infinitesimal momentum rescaling k →
bk with b = 1 + d�, Sd := 2/[(4π )d/2�(d/2)] is a phase-
space factor, and we have set the ultraviolet cutoff to � =
1/a = 1. Here, we see that the edge-correlated pumping ∼γp

(K) is needed to make the theory renormalizable. The field
renormalization has been chosen such that rates t2 and K as
well as the inverse mass J are RG invariant.

The Gaussian fixed point at t1 = u = 0 is stable for d >

dc and the critical physics is described by the Gaussian
field theory with dynamical critical exponent z = 2 and the
correlation-length exponent ν = 1/2 assuming their mean-
field values. For d < dc, the Gaussian fixed point is unstable
and the system now features an additional Wilson-Fisher-like
fixed point at

t̃1 = −ε
K + iJ

5
+ O(ε2), (30a)

ũ = ε
4K (K + iJ )

5Sdt2
+ O(ε2). (30b)

To analyze the flow in its vicinity, we express t1 = t̃1 + δt1 and
u = ũ + δu and expand the flow equations (29) to linear order
in the deviations from the fixed point (30), finding

d

d�

⎛
⎜⎜⎜⎜⎝

Re δt1

Im δt1

Re δu

Im δu

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

2 − 2ε
5 0 ∗ ∗

− 2εJ
5K 2 ∗ ∗

0 0 −ε 0

0 0 − 4Jε
5K − ε

5

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

Re δt1

Im δt1

Re δu

Im δu

⎞
⎟⎟⎟⎟⎠.

The upper-right block is Sdt212×2/2K + O(ε) and does not
affect the eigenvalues of the matrix. The flow of δu is inde-
pendent of δt1 and is characterized by the eigenvalues

λ3 = −ε + O(ε2) and λ4 = −ε/5 + O(ε2) (31)

of the lower-right 2 × 2 submatrix. So, u will always flow to-
wards the fixed-point value (30b). Since the generating matrix
of the linearized RG flow is already in block-triangular form,
the remaining two eigenvalues can be read off as

λ1 = 2 − 2ε/5 + O(ε2) and λ2 = 2 + O(ε2). (32)

These correspond to two relevant directions concerning
the real and imaginary parts of t1. However, as already
pointed out in Ref. [47], the U(1) symmetry (5) of the
model for G = 0 can be used to impose a gauge where t1
is real by going to a suitable rotating frame. In particular,
the transformation φc/q(x, t ) �→ φc/q(x, t )e−iω0t generates the
term −i(ω0ψ

∗
c ψq + ψ∗

q ψc ) in SG, which cancels the term
∝ Im t1 for ω0 = Im t1. With real t1, we are left with only
one physically relevant direction, determining the boundary
between the normal state and the condensate in the remaining
three-dimensional parameter space. The corresponding
eigenvalue λ1 in Eq. (32) yields the correlation-length
exponent [59]

ν = 1

λ1
= 1

2
+ ε

10
+ O(ε2) such that ξ ∼ |δt1|−ν (33)

for the correlation length near the critical point. To see this,
note that, for u = ũ and a rescaling factor b = e�, the RG flow
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FIG. 1. RG flow diagram for d < dc and J = G = 0. The fig-
ure shows the RG flow (29) for d = 3 spatial dimensions which, for
J = 0, remains in the two-dimensional plane spanned by real u and
t1. In addition to the unstable Gaussian fixed point (G), there is now
a Wilson-Fisher-like fixed point (WF) which determines the critical
behavior. The two-particle loss rate always flows to ũ [Eq. (30)],
while the difference of the single-particle loss and pumping t1 =
d (γl − γp) flows to plus or minus infinity. The critical manifold
separates the symmetric phase (upper blue region) from the lower
region with a finite steady-state condensate density. For the figure,
we have chosen K = Sdt2 = 1.

equations imply that two-point correlation functions obey ho-
mogeneity relations of the form [3]

C(e−��x, eλ1�δt1) = e(d−2+η)�C(�x, δt1). (34)

Evaluating this with � chosen such that eλ1�δt1 = ±1 gives the
scaling form

C(�x, δt1) = ξ−(d−2+η)F±
(�x

ξ

)
with ξ = |δt1|−

1
λ1 .

The RG flow is illustrated in Fig. 1. Its structure is very
similar to that of the celebrated Wilson-Fisher phase diagram
[67–69] in the scalar φ4 theory [78]. Depending on its initial
value, t1 will flow to +∞ or −∞, separating the symmetric
and Bose condensate phases. The critical manifold lies in the
unstable region of the noninteracting theory (cf. Appendix C
of the Supplemental Material [70]).

Discussion. We have seen how incoherent pumping
and/or coherent two-particle driving in competition with
single-particle and two-particle loss can stabilize a Bose-
Einstein condensate as a nonequilibrium steady state. Above
the upper critical dimension dc = 4 of the associated driven-
dissipative phase transition, the fluctuations around the
mean-field solution are captured by a Gaussian theory. Ac-
cording to a general result discussed in Ref. [66], transitions
between two gapped phases can never occur inside the stable
region of a noninteracting Markovian theory. For d > dc, our
bosonic system is a specific example. The transition then

occurs right at the boundary between the stable and unsta-
ble regions of the noninteracting theory. With two-particle
driving, the condensate is gapped, i.e., we have a transition
between two distinct gapped phases. Without two-particle
driving, the U(1) symmetry results in gapless Goldstone-
mode excitations from the steady-state condensate.

For systems below the upper critical dimension (d < dc),
the Gaussian fixed point becomes unstable, and we have
carried out the one-loop RG analysis using ε expansion. Inter-
estingly, the transition still occurs in the unstable region of the
noninteracting theory, and the physics of the critical point is
described by the universal field theory of a Wilson-Fisher-like
fixed point [59,67–69]. As shown by Eq. (29), coupling coeffi-
cients in the Keldysh action can flow to complex values during
the RG. This is due to the non-Hermiticity of the Liouvillian.
The one-loop analysis yields a correlation-length exponent of
ν = 1/2 + (dc − d )/10 + O((dc − d )2). The value ν = 0.6
for d = 3 dimensions lies between the mean-field value 1/2
and the value νfRG ≈ 0.716 found in a functional-RG analysis
[50,51].

Let us shortly contrast these results with BEC in closed
systems, where we are dealing with a single complex field ψ :
A dilute interacting Bose gas can undergo BEC at low tem-
peratures, where a single-particle state gets macroscopically
occupied [79,80]. The transition to the normal (symmet-
ric) phase is caused by thermal fluctuations. The long-range
physics of nonzero-temperature transitions in d-dimensional
quantum systems are described by classical field theories in
d dimensions [1–3,81]. In the case of BEC with the U(1)
symmetry (5), this is the O(2) model (a.k.a. XY model)
which has upper critical dimension dc = 4 and correlation-
length exponent ν ≈ 0.67 for d = 3 [82–87]. Condensation
can also be driven by quantum fluctuations in closed sys-
tems at zero temperature. Such quantum phase transitions
can be captured by classical (d + 1)-dimensional field the-
ories [1–3]. In the Bose-Hubbard model, the competition
between the coherent kinetic and on-site repulsion terms leads
to a transition between the Mott insulator and a superfluid
(BEC) [3,88]. Coming from a Mott lobe with integer particle
density ρ, one has to distinguish two cases. Generic transi-
tions with continuously changing ρ are in the dilute-Bose-gas
universality class with dynamical exponent z = 2 (quadratic
dispersion for the excess particles), dc = 2, and the mean-
field value 1/2 for ν in d � 2 dimensions. Transitions with
fixed ρ are described by the classical (d + 1)-dimensional
O(2) model with z = 1 due to space-time isotropy (linear
dispersion), dc + 1 = 4, and the mean-field value ν = 1/2 in
d � 3 dimensions [3,88].

It would be valuable to probe the field-theoretical predic-
tions for the driven-dissipative BEC in numerical simulations.
To this purpose it may be useful to consider the limit u → ∞
of infinitely strong two-particle loss, restricting the maximum
number of bosons per site to one. Above the upper critical
dimension, the u term is RG irrelevant and should not affect
the critical behavior.
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nonequilibrium condensation in a parametrically pumped po-
lariton system, Phys. Rev. B 93, 195306 (2016).

[61] A. Zamora, L. M. Sieberer, K. Dunnett, S. Diehl,
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