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Cm15+ and Bk16+ ion clocks with enhanced sensitivity to new physics
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We perform calculations of the electronic structure of Cm15+ and Bk16+ ions and demonstrate that they have
transitions which combine the features of atomic optical clocks with the enhanced sensitivity to the variations of
the fine-structure constant α. The high sensitivity is due to large nuclear charge Z , high ionization degree Zi, and
the effect of level crossing, which enables optical transitions between states of different configurations. These are
the 6p1/2-5 f5/2 and 6p1/2-5 f7/2 transitions in the single-valence electron approximation. The variation of α may
be due to the interaction with scalar and pseudoscalar (axion) dark-matter fields. Therefore, Cm15+ and Bk16+

clocks are promising candidates to search for these fields.
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Presently the fractional precision of the frequency mea-
surements in optical clock transitions of Sr, Yb, Al+, Hg,
Hg+, and Yb+ atomic systems has reached an unprecedented
level of 10−18 (see, e.g., Refs. [1–7]). It is natural to use
the advantage of so high accuracy of the measurements in
search for the physics beyond the standard model, for exam-
ple, search for the space-time variation of the fundamental
constants such as the fine-structure constant α (α = e2/h̄c).
The variation of α may be due to the interaction of the
electromagnetic field with scalar and pseudoscalar (axion)
dark-matter fields [8–10]. Therefore, the measurement of α

variation is one of the instruments to use in the search for dark
matter.

The search for the slow drift of α can be performed by
comparing the frequencies of atomic transitions with different
sensitivities to the variation of α over a long period of time.
The laboratory limits on the present-day time variation of α

have already passed 10−18 per year (see, e.g., the measure-
ments in Refs. [11–15] and review [16]).

The sensitivity of the atomic transitions to the variation
of α used in these studies is not very high [17–19]. This is
also true for all working atomic clocks. It was suggested in
Ref. [20] to use optical transitions in highly charged ions
(HCI) to achieve significantly stronger sensitivity to the α

variation. Indeed, effects of α variation in electron energies
are due to the relativistic corrections which increase propor-
tional to Z2(Zi + 1)2 (Zi is the ionization degree) [17,18,20].
Therefore, to have large effects we should consider heavy
highly charged ions. To avoid cancellation between the rel-
ativistic shifts of upper and lower levels in an electronic
transition we should consider transitions between different
electronic configurations. However, frequencies of such tran-
sitions in HCI increase proportional to (Zi + 1)2 and are
usually far outside the laser range. The solution is based on
the fact that ordering of the electron states depends on Zi

and by removing electrons we may achieve so-called level
crossing bringing the frequencies of the transitions between
states of different configurations into the optical region [21].
The biggest effects happen near the crossing between s and

f , or p1/2 and f , orbital energies [17,18,20,21]. The search
for appropriate transitions in HCI is now a popular area of
theoretical [22–30] and experimental [31–33] research (see
also reviews [34,35]).

The highest sensitivity to α variation has been found in
Cf17+ and Cf15+ ions [23,24,27,28]. These ions have all
important factors of enhancement: high Z (Z = 98), high
ionization degree, and optical transitions between states of
different configurations which correspond to the 6p1/2-5 f
transitions. The disadvantage of the use of Cf is its instability.
The most long-lived isotopes of Cf are 249Cf (the half-life is
351 years) and 251Cf (the half-life is 898 years) [36]. Isotope
250Cf with zero nuclear spin lives only 13 years.

In the present work, we study the Cm15+ and Bk16+ ions.
They are very similar to the Cf17+ ion in terms of electronic
spectra and the sensitivity to the variation of α but have much
longer-living isotopes. For example, the half-life of 247Cm is
15.6 million years, 248Cm with zero nuclear spin has a half-life
of 0.348 million years, and the half-life of 247Bk is 1380 years
[36]. In addition, the long-living isotopes of Cm and Bk have
values of atomic number A lower than those of the long-
living isotopes of Cf, which probably means that it is easier
to produce them. The Cm15+, Bk16+, and Cf17+ ions share
another important advantage—a relatively simple electronic
structure. They have only one electron above closed subshells
and only two states above the ground state in the optical
region. This means that the high accuracy of the calculations
is possible and interpretation of the experimental spectra may
be relatively simple.

The energy diagram for the lowest states of Cm15+ and
Bk16+ is presented in Fig. 1. It is based on the results of
our calculations. We perform the calculations with the use
of the combination of the configuration interaction (CI) with
the single-double (SD) coupled-cluster methods [37,38]. The
effects of various external fields (e.g., electromagnetic mul-
tipole fields for calculating transition amplitudes, hyperfine
interaction, etc.) are included within the well-known random-
phase approximation (RPA). The details of the calculations
are presented in the Appendix. The results for the energy
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FIG. 1. Energy level diagram for the Cm15+ and Bk16+ ions
(approximately in scale). Possible clock transitions are shown as red
double arrows.

levels and other parameters for the lowest states of Cm15+

and Bk16+, which are of odd parity, are presented in Table I.
Similar parameters of Cf and Es ions obtained in earlier cal-
culations [23,27] are presented in Table II for the convenience
of comparison. The other states of the odd parity are at very
high excitation energies, E ∼ 500 000 cm−1.

Table III presents the lowest energy levels of even states.
Electric dipole transitions from these states to 6s2 6p and
6s2 5 f may, in principle, help to measure the frequencies of
very weak clock transitions, which can be found as the differ-
ence of frequencies of E1 transitions from one of high even
state to the 6s2 6p1/2 and 6s2 5 f5/2 states. Moreover, the mea-
surement of any energy interval between the states of 6s2 6p
and 6s6p5 f configurations may help to significantly improve
the accuracy of the theoretical prediction of the small energy
interval between the clock states. Indeed, this interval is much
smaller than the removal energy of electrons. For example, the
calculated ionization potential of Cm15+ is 2 168 971 cm−1,
which is 57 times bigger than the energy interval between the
5 f5/2 and 6p1/2 states. This energy interval may be treated

TABLE I. Parameters of the lowest states of Cm15+ and Bk16+

ions: excitation energies (E ), sensitivity coefficients (q), enhance-
ment factors (K), lifetimes (τ ), static dipole polarizabilities (α0),
electric quadrupole moments (Q), and magnetic dipole hyperfine-
structure constants (A); gI = μ/I , where I is nuclear spin.

E q α0 Q A/gI

State (cm−1) (cm−1) K τ (a3
0) (|e|a2

0) (GHz)

Cm15+

6p1/2 0 0 0 1.1998 0 154
5 f5/2 38375 367000 15 576 ms 1.2460 −0.459 1.55
5 f7/2 54730 380000 13 20 ms 1.2433 −0.550 0.689
6p3/2 182359

Bk16+

6p1/2 0 0 0 1.0685 0 174
5 f5/2 8880 403000 91 787 s 1.1091 −0.507 1.74
5 f7/2 27520 419000 30 13 ms 1.1069 −0.604 0.772
6p3/2 202403

TABLE II. Transitions in Cf and Es ions sensitive to variation of
α (from Refs. [23,27]). Notation J p indicates total angular momen-
tum of the state and its parity.

Ground state Clock state E q

Ion Conf. J p Conf. J p (cm−1) (cm−1) K

Cf15+ 5 f 6p2 5/2− 5 f 26p 9/2− 12314 380000 57a

Cf16+ 5 f 6p 3+ 6p2 0+ 5267 −370928 −141b

Cf16+ 5 f 6p 3+ 5 f 2 4+ 9711 414876 85b

Cf17+ 5 f 5/2− 6p 1/2− 18686 −449750 −48b

Es16+ 5 f 26p 9/2− 5 f 26p 5/2− 6994 −184000 −53a

Es17+ 5 f 2 4+ 5 f 6p3 2+ 7445 −46600 −13a

aRef. [27].
bRef. [23].

as the difference of removal energies of 5 f5/2 and 6p1/2.
Therefore, one may expect that the relative theoretical error
for this energy interval is 50 times bigger than the relative
error in the ionization potential. However, energy intervals
within the same configuration (e.g., the fine splitting) have
been calculated very accurately and reliably since there are no
cancellations here. For example, if the energy of optical tran-
sition between 6s2 6p3/2 and any 6s6p5 f states is measured,
we may significantly reduce theoretical error in the energy
interval between the 5 f5/2 and 6p1/2 states.

To calculate the sensitivity of the atomic frequencies to the
variation of α, we present them in the form

ω(x) = ω0 + q

[(
α

α0

)2

− 1

]
≡ ω0 + qx, (1)

where ω0 and α0 are present values for the frequency and
the fine-structure constant, and q is the sensitivity coefficient.
The values of q are found as a numerical derivative of the
calculated values of the frequencies. It is also convenient
to have the so-called enhancement factor K (K = 2q/ω). It
relates the rates of the changing frequencies and α. For the

TABLE III. Lowest even energy levels (cm−1) of Cm15+ and Bk16+.

J J
Conf. Cm15+ E Conf. Bk16+ E

6s6p2 1/2 220159 6s6p5 f 5/2 215399
6s6p5 f 5/2 234517 6s6p5 f 7/2 228430
6s6p5 f 7/2 246936 6s6p5 f 3/2 229257
6s6p5 f 3/2 250537 6s6p2 1/2 229273
6s6p5 f 5/2 253281 6s5 f 2 7/2 232137
6s6p5 f 7/2 255862 6s6p5 f 5/2 233227
6s6p5 f 5/2 274931 6s6p5 f 7/2 238672
6s6p5 f 7/2 275226 6s5 f 2 3/2 245731
6s5 f 2 7/2 281399 6s5 f 2 5/2 249308
6s5 f 2 3/2 290189 6s6p5 f 7/2 256126
6s5 f 2 5/2 294383 6s6p5 f 5/2 257240
6s5 f 2 1/2 314906 6s5 f 2 1/2 270551
6s5 f 2 3/2 319212 6s5 f 2 3/2 274819
6s5 f 2 3/2 325976 6s5 f 2 3/2 282097
6s5 f 2 1/2 339563 6s5 f 2 1/2 295155
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relative variation of the ratio of the frequencies ω1/ω2, we
have

ω̇1

ω1
− ω̇2

ω2
= (K1 − K2)

α̇

α
. (2)

The calculated values of q and K for the lowest states of
Cm15+ and Bk16+ ions are presented in Table I. The values are
given with respect to the ground state. These values indicate
very high sensitivity of the ionic frequencies to the variation
of α. The values of q and K are comparable to those for Cf
and Es ions [23,27] (see Table II) and much bigger than the
values of q and K in existing atomic clocks [19].

Note that all transitions in Table I are the 6p-5 f transitions
and corresponding values of q and K are positive. On the other
hand, some transitions in Cf and Es ions are the 5 f -6p tran-
sitions and corresponding values of q and K are negative (see
Table II). This brings an opportunity for extra enhancement.
For example, if the frequency of the transition in Bk16+ at
E = 8880 cm−1 is compared to the frequency of the transition
in Cf16+ at E = 5267 cm−1, then Eq. (2) becomes

ω̇1

ω1
− ω̇2

ω2
= 232

α̇

α
. (3)

This is the largest enhancement found in actinide ions so far.
Note, however, that larger values of q are more important

than larger values of K . This is because the enhancement
factor K can have a large value due to the small value of the
transition frequency (like the 6p1/2-5 f5/2 transition in Bk16+).
Having a small value of the transition frequency does not al-
ways bring a significant advantage; see Ref. [39] for a detailed
discussion.

The lifetimes of the 5 f5/2 states of the Cm15+ and Bk16+

ions presented in Table I are determined by the electric
quadrupole (E2) transition to the ground state. The lifetimes of
the 5 f7/2 states are strongly dominated by the magnetic dipole
(M1) transition to the 5 f5/2 states. See the Appendix for the
calculation of the amplitudes. The 5 f5/2 state of Bk16+ has
a very long lifetime of ∼800 s due to the small frequency
of the transition to the ground state (transition rate ∝ ω5).
The lifetimes of other states in Table I are also relatively
large. This means that high accuracy of the measurements is
possible.

We consider now some sytematic effects in the frequency
measurements.

Blackbody radiation (BBR) shift. The BBR shift of the
transition frequency (in hertz) is given by (see, e.g., Ref. [40])

δνBBR = −8.611 × 10−3

(
T

300 K

)4

�α0. (4)

Here �α0 is the difference in the static scalar polarizabilities
of two states (in a.u.). We calculate the polarizabilities as de-
scribed in the Appendix. The results are presented in Table I.
Using these numbers, at T = 300 K, we get the values for the
relative frequency shift which are presented in Table IV.

Quadrupole shift. The 5 f states have sufficiently large val-
ues of the total angular momentum J to make them sensitive
to the gradient of electric field ε via quadrupole interaction.

TABLE IV. Relative frequency shift due to BBR in Cm15+ and
Bk16+.

Ion Transition δνBBR/ν

Cm15+ 6s1/2-5 f5/2 −3.4 × 10−19

5 f5/2-5 f7/2 2.2 × 10−20

Bk16+ 6s1/2-5 f5/2 −1.5 × 10−18

5 f5/2-5 f7/2 3.4 × 10−20

The corresponding energy shift is given by

�EQ = J2
z − J (J + 1)

2J (2J − 1)
Q

∂εz

∂z
, (5)

where Q is atomic quadrupole moment defined as the doubled
expectation value of the E2 operator in the stretched state:

Q = 2〈J, Jz = J|E2|J, Jz = J〉. (6)

The calculated values of the quadrupole moment Q for low
states of Cm15+ and Bk16+ are presented in Table I. These
values are close to those calculated for Cf15+ and Cf17+

in Ref. [28]. Therefore, the same estimate is valid: δν/ν ∼
10−16. These shifts can be further suppressed by up to 4
orders of magnitude by averaging over projections of the total
angular momentum J [41].

Hyperfine structure. Hyperfine structure may complicate
the work with the ions. In particular, it leads to enhancement
of the second-order Zeeman shift, since small hyperfine in-
tervals go into denominators of the expression for the shift.
This complication can be easily avoided for Cm15+ ion. The
isotope 248Cm lives 348 000 years and has zero nuclear spin.
Bk has no long lifetime isotopes with zero nuclear spin since
it has an odd number of protons. In any case, it is useful to
know the values of the hyperfine constants for future analysis.
We calculate the magnetic dipole constant A as described in
the Appendix. The results are presented in Table I in the form
of A/gI (gI = μ/I , I is nuclear spin), which is approximately
the same for all isotopes.

Sympathetic cooling. Ion-based optical clocks are suscep-
tible to thermal motion due to the finite ion temperature. This
motion can be reduced by applying sympathetic cooling of
the clock ion via the cotrapped logic ion. The most efficient
sympathetic cooling occurs when the charge-to-mass ratio
of the clock ion is equal to that of the logic ion [42]. The
Zi/A ratio is 0.0605 for 248Cm15+ and 0.0648 for 247Bk16+. A
possible logic ion in both cases is 24Mg+ where the Zi/A ratio
is 0.042.

In summary, we state that the Cm15+ and Bk16+ ions
may serve as optical clocks which are not sensitive to ex-
ternal perturbations (BBR shift, quadrupole shift, etc.), but
are very sensitive to the hypothetical time variation of the
fine-structure constant and dark-matter fields.

Acknowledgment. This work was supported by the Aus-
tralian Research Council under Grants No. DP230101058 and
No. DP200100150.

Appendix: Method of calculations. We treat the Cm15+ and
Bk16+ ions as systems with three valence electrons above the
closed-shell [1s2 . . . 5d10] core. Calculations start from the
relativistic Hartree-Fock (RHF) procedure for the closed-shell
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core. The RHF Hamiltonian has the form

ĤRHF = cα · p + (β − 1)mc2

+ Vnuc + VBreit + VQED + Vcore, (A1)

where c is the speed of light, α and β are Dirac matrices, p is
the electron momentum, Vnuc is the nuclear potential obtained
by integrating the Fermi distribution of nuclear charge, VBreit

is the potential due to the Breit interaction [43], VQED is
the potential describing quantum electrodynamic corrections
[44], and Vcore is the self-consistent RHF potential created by
all core electrons. The single-electron basis states for valence
electrons are calculated in the field of the frozen core using
the B-spline technique [45]. These basis states are used in
all consequent calculations. This corresponds to the so-called
V N−M approximation [46], where M is the number of valence
electrons (M = 3 in our case).

The SD coupled-cluster method is used (we use the version
described in Ref. [38]) to include the correlations between
valence and core electrons. Solving the SD equations involves
iterations for the core and for the valence states until the full
convergence is achieved. As a result, the all-order correla-
tion operators �̂1 and �̂2 are produced. The �̂1 operator is
the single-electron operator which describes the correlation
interaction of a particular valence electron with the core.
The �̂2 operator is the two-electron operator which describes
the screening of the Coulomb interaction between valence
electrons by the core electrons. The resulting effective CI
Hamiltonian has the form

ĤCI =
M∑

i=1

(
ĤRHF + �̂1

)
i +

M∑
i< j

(
e2

ri j
+ �̂2i j

)
. (A2)

The energy and the wave function of the many-electron state
a are found by solving the CI equation

(ĤCI − Ea)Xa = 0, (A3)

where Xa contains coefficients of the expansion of the valence
wave function over single-determinant basis states.

To calculate transition amplitudes or hyperfine structure we
need to include an additional operator of the external field,
such as magnetic dipole or electric quadrupole laser field,
magnetic dipole nuclear field, etc. This is done within the
RPA.

The RPA equations have the form (see, e.g., Ref. [47])

(ĤRHF − εc)δψc = −(F̂ + δVcore )ψc, (A4)

where ĤRHF is given by Eq. (A1), index c numerates single-
electron states in the core, ψc and δψc are corresponding
single-electron functions and corrections due to the operator
of the external field F̂ , and δVcore is the change of the self-
consistent Hartree-Fock potential due to the change in all core
functions. Solving Eqs. (A4) self-consistently allows us to
determine δVcore. Then the transition amplitude is given by

Aab = 〈Xb|
M∑

i=1

(F̂ + δVcore )i|Xa〉, (A5)

where the wave functions for states a and b come from solving
the CI equation (A3). For the energy shift (e.g., in calculating
the hyperfine constant), a = b in Eq. (A5).

Polarizabilities are calculated using the wave functions
found as described above and the techniques of summations
over the complete set of intermediate states as described in
Refs. [48,49].
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