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Realizing efficient resonant coupling between spins of different energy scales has significant applications
in spin-based quantum technologies, such as quantum sensing. We find that spins with disparate energies can
exhibit efficient resonant coupling through the introduction of uneven energy modulation. In this study we
apply our proposed method to a nitrogen-vacancy center in close proximity to nuclei. Computational simulations
demonstrate that a specific dynamical switching of the electron-spin Rabi frequency enables efficient electron-
nuclear coupling, yielding a substantially stronger quantum sensing signal and dynamic nuclear polarization
compared to existing methods. This approach holds promise for applications in high-field nanoscale nuclear
magnetic resonances as well as for low-power quantum control of nuclear spins.
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Introduction. Resonant coupling of spins is a common
requirement in spin-based quantum technologies. A notable
platform is the nitrogen-vacancy (NV) center in diamond
[1–3], where the NV electron spin is used to detect, polarize,
and control spins in its vicinity [4–10]. Flip-flop dynamics
occurs when the coupled spins have the same energy, e.g., due
to the same gyromagnetic ratio of the spins [see Fig. 1(a)].

Coupling of nuclear and electron spins is of particular in-
terest. Electron and nuclear spins usually have quite different
energies, which prohibits their exchange of spin polariza-
tion. A dynamical decoupling (DD) π pulse sequence [6,11–
18] can induce electron-nuclear resonance for quantum in-
formation processing [4,19–21], nanoscale nuclear magnetic
resonance (NMR) [17], quantum sensing [5,22], and dynamic
nuclear polarization (DNP) [23–27]. These DD sequences in
the ideal case require unbounded bang-bang control, but in
realistic situations the amplitude of control is bounded, which
can lead to spurious resonances between electron and nuclear
spins [28–33]. An alternative scheme is a continuous driving
of the electron spin using a bounded control amplitude, which
results in a dressed electron spin where the energy splitting
in the dressed basis equals the Rabi frequency of the driv-
ing [8,34,35]. When this Rabi frequency matches the Larmor
frequency of the nuclear spin, i.e., under the Hartmann-Hahn
condition [36] similar to the case in Fig. 1(a), the electron and
nuclear spins have resonant coupling.

However, due to the properties of the systems we choose
or some technical limits, sometimes the frequencies between
the electron and nuclear spins have a large mismatch such
that the Hartmann-Hahn condition cannot be reached by the
Rabi frequency [see Fig. 1(b)]. For instance, under a high
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magnetic field which would be favorable to enhance nuclear-
spin polarization, prolong spin coherence times, or induce
large chemical shifts for nanoscale NMR, the nuclear-spin
Larmor frequencies can be much higher than the available
Rabi frequency of the electron spin. In some applications,
such as those in biological environments [37], the maximal
control field is restricted to avoid strong microwave heating
effects that could destroy the samples [38].

In this work we show that uneven dynamical modulation of
the energies can lead to resonant coupling even when the val-
ues of the energies of the spins have large mismatched values.
Computational simulations demonstrate that our dynamical
control switching (DCS) scheme provides more efficient
electron-nuclear coupling than recent low-power control pro-
tocols [39,40]. We demonstrate the superior performance of
our protocol in quantum control and sensing of single nuclear
spins.

Dynamical switching of energies. Our theory can be gen-
eralized to selectively couple quantum systems of different
energy scales. To demonstrate the principle of our protocol,
for simplicity, consider two interacting spins with the Hamil-
tonian (h̄ = 1)

H0 = HS + HI , (1)

where HS = ωeSz + ωnIz is the Hamiltonian for the two spins,
with Iz and Sz their spin operators. For the sake of generality,
we do not specify the specific physical origins of the energies
ωe and ωn. These energies could potentially arise from various
sources, such as Zeeman terms or the energy of dressed states
due to a control field. The interaction HI = aS−I+ + H.c.,
where S± = Sx ± iSy and I± = Ix ± iIy, describes the flip-flop
dynamics of the spins. Here a is the coupling constant. In the
interaction picture of HS , the Hamiltonian becomes

H̃I (t ) = aS−I+ei(ωn−ωe )t + H.c. (2)
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FIG. 1. (a) Spin polarization can exchange when the energies
of two spins (orange and blue arrows) are the same ωe = ωn.
(b) Exchange of spin polarization is prohibited when ωe �= ωn.
(c) Dynamical switching of one spin’s energy as ωe = F (t )�, with
F (t ) ∈ {±1}, can induce resonant exchange of the spin polarization,
even through |ωe| � ωn. (d) Periodic modulation function F (t ) in
one period τ = τ− + τ+ in which the positive control starts at t = tI .
(e) Corresponding real (red solid line) and imaginary (blue dashed
line) parts of eiφ(t ) under the resonance condition (12) with kD = 1.
The time integral of eiφ(t ) in one period is nonzero. (f) Coupling factor
g as a function of ωn/ν for a total time T = 50τ . Here �/ν = 0.3 in
all the plots and τs = 0 and tI = − 1

2 τ+ in (e) and (f).

if we assume that both energies ωe and ωn are time indepen-
dent. When ωe = ωn, the two spins have resonant flip-flop
dynamics with H̃I = HI [see Fig. 1(a)]. On the other hand,
when the energy mismatch |ωn − ωe| � |a|, the effect of
H̃I (t ) is negligible by the rotating-wave approximation, which
corresponds to the case of Fig. 1(b).

We aim to modulate the energy mismatch in time to pre-
serve the effect of the interaction H̃I even though the energy
difference is large. For simplicity, here we only introduce
a time dependence on ωe = ωe(t ). To see the effect of the
modulation of ωe, we calculate the leading-order effective
Hamiltonian of H̃I (t ) by using the Magnus expansion [41,42]
for a time T ; it reads

H̄ = 1

T

∫ T

0
H̃I (t )dt (3)

= gaS−I+ + H.c.. (4)

The coupling factor

g ≡ 1

T

∫ T

0
eiφ(t )dt (5)

and the difference of the dynamic phase

φ(t ) =
∫ t

0
[ωn − ωe(t ′)]dt ′ (6)

can be controlled by ωe(t ). When ωe is a constant, the
amplitude g = e−ix sin x

x decays with x = (ωe − ωn)T/2 in
a power-law decay manner [43]. For the resonant case
ωe = ωn, g = 1.

In this work we consider the situation that ωe is bounded
with its maximal value �, with |ωe| � � � ωn and ωn −
ωe � |a|. Because ωn − ωe is large, the integrand in Eq. (6) is
a fast oscillating factor, which tends to average out the inter-
action. To overcome the obstacle, we modulate the dynamic
phase φ(t ) with uneven speed to enhance the value of g in
Eq. (5). The intuition comes from the idea of uneven modula-
tion of dynamic phases in quantum adiabatic control, which
has been used to accelerate the quantum adiabatic process
[44–47]. We assume a periodic function ωe(t ) = ωe(t + τ )
[see Fig. 1(d) for an example]. Let the increase of φ(t ) in one
period τ of ωe(t ) be different from 2kDπ (with kD an integer)
by an amount

δφ = φ(τ ) − 2kDπ. (7)

Using the periodicity of ωe(t ), we calculate Eq. (5) for T =
Nτ ,

g = 1

Nτ

∫ Nτ

0
eiφ(t )dt = ηJ, (8)

where the functional J[φ(t )] is defined as

J[φ(t )] = 1

τ

∫ τ

0
eiφ(t )dt (9)

and the factor

η = 1

N

N∑
m=1

ei(m−1)δφ = ei[(N−1)/2]δφ
sin(Nδφ/2)

N sin(δφ/2)
(10)

has a peak centered at δφ = 0 with a width approximately
equal to 2π/N [see Fig. 1(f)], that is, when δφ = 0 the dy-
namic phase factors in Eq. (10) coherently add up, while for
other δφ < π , η ≈ 0 for a large averaging time T .

We want to maximize the functional J[φ(t )] by using in-
homogeneous changes of φ(t ). To have a higher degree of
inhomogeneity, we choose

ωe(t ) = F (t )�, (11)

with the periodic modulation function F (t ) = F (t + τ ). In
particular, we periodically switch the value of ωe between
the maximal value +� and the minimal value −�. This
can be achieved either by switching the phase of the mi-
crowave field, as we will explain in the next section, or by
switching the magnetic field. We would like to have F (t ) = 1
when t ∈ [tI , tI + τ+) and F (t ) = −1 when t ∈ [tI + τ+, tI +
τ+ + τ−], with τ = τ+ + τ−. Our protocols starts at t = 0
and therefore tI defines the initial waveform of the control
field. Here tI = − 1

2τ+ (tI = 0) corresponds to a symmetric
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(asymmetric) control protocol. To take into account that in-
stantaneous switching of the control field could be difficult
in experiments, F (t ) can have a transition time τs during the
switching [see Fig. 1(d)]. However, as we will demonstrate
in the simulations of this work, as long as τs is not too large,
the effect of nonzero τs is negligible. For this reason, in the
following theoretical analysis, we assume τs = 0. We will
see that using uneven durations of the positive and negative
drives, i.e., τ+ �= τ−, can lead to stronger coupling and signal
responses.

The condition for the resonance δφ = 0 gives

ωn = kDν + rD(1 − kD)�, (12)

where the ratio rD = (τ+ − τ−)/τ and the frequency ν =
2π/τ + rD�. Note that the resonance frequencies are dif-
ferent from the frequency 2π/τ of the periodic driving.
Under the resonance condition (12), there is coherent cou-
pling of spins [see Fig. 1(e)]. Equation (12) for kD = 0
corresponds to the resonance to a spin with |ωn| = |rD�| <

�, which is not our target of control. When kD = 1 we
achieve a spin-spin resonance at ωn = ν, which can be much
larger than �.

Under the resonance condition (12) the strength |J| has a
large value, which is invariant with respect to tI because tI
only changes the phase factor of J . For the case of symmetric
control which has tI = − 1

2τ+, we obtain

J = 4(−1)kD� sin
[

1
4 (1 + rD)(ωn − �)τ

]
/
(
ω2

n − �2
)
τ.

(13)

One can maximize the signal for kD �= 0 by maximization of
J . In this regard we choose rD = �/ν, which implies τ± =
π/(ν ∓ �) and g = 2�/πν when kD = 1.

On the other hand, when the resonance condition (12) is not
satisfied, the coupling between the spins is small, as shown
in Fig. 1(f). This property can be utilized to enhance the
coherence time of the spin under dynamical control, similar
to the process of DD [6,11–18]. Specifically, when the typical
frequency ωn of the environmental noise (e.g., spins) does
not match the resonance condition (12), the effect of noise is
suppressed by a small factor g � 1. Therefore, in our scheme,
the factor g acts as a spectral filter, allowing for the simulta-
neous enhancement of the desired signal and the removal of
unwanted noise.

Low-power quantum sensing of nuclear spins and DNP.
We apply our method to an NV center with its surround-
ing nuclear spins, which is relevant to quantum informa-
tion processing, quantum sensing, and nanoscale NMR,
and nuclear hyperpolarization. The Hamiltonian of an NV
center electronic spin and its nearby nuclear spins un-
der a strong magnetic field −Bz along the NV symmetry
axis reads H ′ = DS2

z + γeBzSz + ∑
j γ jBzIz + Sz

∑
j (A

x
jI

x
j +

Az
jI

z
j ) + H ′

c, where D = 2π × 2.87 GHz is the NV zero-field
splitting, Sz = |1〉〈1| − | − 1〉〈−1| + 0|0〉〈0| for the NV elec-
tron spin, Iα

j (α = x, y, z) are the spin operators for the jth
nucleus, and γe and γ j are the gyromagnetic ratios for the NV
electron and the nuclear spins, respectively. The components
of the hyperfine coupling Ax

j and Az
j are much smaller than

γ jBz because of the strong magnetic field Bz. Due to the
significant difference in magnitudes between γe and γ j (on the

order of 1000), the Zeeman energies of the NV electron and
nuclear spins differ significantly, leading to the suppression
of spin-polarization exchange between them. To address this,
we apply a microwave control field and utilize the resulting
dressed state of the NV electron spin. A microwave control
field with a frequency ωmw applied on the NV center re-
alizes the control Hamiltonian Hc = √

2�F (t ) cos(ωmwt )Sx,
where �F (t ) is the Rabi frequency of the control field, with
F (t ) the modulation illustrated in Fig. 1(d). The sign change
of F (t ) is achieved by introducing a π phase shift to the
microwave field.

To select two NV electron-spin levels ms = 0 and, say,
ms = 1 to form an NV qubit, we set the microwave fre-
quency to the energy splitting between the qubit levels. In
this manner, we neglect the state | − 1〉 because there is no
transition to it. Moving to a rotating frame with respect to
H0 = DS2

z + γeBzSz, we get the new Hamiltonian

H =
∑

j

γ jBzIz + |1〉〈1|
∑

j

(
Ax

jI
x
j + Az

jI
z
j

) + Hc, (14)

where Hc = F (t )�
2 (|1〉〈0| + H.c. Then, with |+〉 = 1√

2
(|1〉 +

|0〉, |−〉 = 1√
2
(|1〉 − |0〉, the Pauli operators σz = |1〉〈0| +

|0〉〈1| = |+〉〈+| − |−〉〈−| and σx = |+〉〈−| + |−〉〈+|, and
the identity operator I = |1〉〈1| + |0〉〈0| for the NV electron
qubit, Eq. (14) can be written as

H = ωe(t )
σz

2
+

∑
j

ωn, j I
z
j + HI , (15)

where the qubit energy splitting ωe(t ) = �F (t ) is bounded
with the maximal absolute value � because of experimen-
tal limitation and the nuclear-spin frequency ωn, j = γ jBz +
1
2 Az, j for the jth spin is shifted by the hyperfine component
Az, j , which is different for different nuclear spins because
the electron-nuclear coupling is position dependent. Here
the electron-nuclear interaction HI = 1

2σx
∑

j (A
x
jI

x
j + Az

jI
z
j )

in the rotating frame of ωe(t ) σz

2 + ∑
j ωn, j I

z
j becomes

H̃I (t ) =
∑

j

1

4
Az

jI
z
j

[
σ+ exp

(
i
∫ t

0
ωedt ′

)
+ H.c.

]

+
∑

j

1

4
Ax

j

[
σ+I−

j exp

(
i
∫ t

0
(ωe−ωn, j )dt ′

)
+ H.c.

]

+
∑

j

1

4
Ax

j

[
σ+I+

j exp

(
i
∫ t

0
(ωe + ωn, j )dt ′

)
+ H.c.

]
,

(16)

where σ± = 1
2 (σx ± iσy) and I±

j = Ix
j ± iIy

j .
We consider the regime in which the nuclear Zeeman en-

ergy γ jBz is much higher than the Rabi frequency � reachable
in experiments, e.g., due to the low power of the microwave
field at the NV center and the strong magnetic field Bz. For
this situation, the Hartmann-Hahn condition cannot be met for
electron-nuclear coupling [see Fig. 1(b)]. However, according
to the resonance condition (12) for the dynamic phase (6),
the coupling is preserved if the frequencies of the nuclear
spin meet the resonance condition. For example, if only one
nuclear spin (say, j = 1) meets the resonance condition, we
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FIG. 2. Polarization signals 〈σz〉 obtained by using our DCS (blue solid line) and those obtained by the phase modulation (PM) protocol
proposed in Refs. [39,40] (orange dashed line). (a) Spectral response of the signal. The Rabi frequency of our protocol is � = 2π × 1 MHz.
The Rabi frequency for the PM protocol is �0 + eiθ ′

�1, where θ ′ is periodically modulated with the values 0 and π with an interval of τ/2,
and we choose the typical values of �0 = �1 = 2π × 0.5 MHz as in Ref. [39]. Both protocols have the same maximal Rabi frequency. For
comparison, the sensing time T = 0.308 ms is also the same for both protocols. (b) Signal as a function of the total sensing time T when
the frequency ν is set to the resonance point in (a). (c) and (d) Same as (a) and (b), respectively, but with �0 = �1 ≈ (1/

√
2)� for the PM

protocol such that its average power [39] is the same as our protocol. Here tI = − 1
2 τ+ and τs = 0 for all plots. The protocol proposed in this

work provides stronger sensing signals than previous methods.

can approximate the interaction by the effective Hamiltonian
in the leading order (say, by using the Magnus expansion)

H̃I ≈ �

2πν
Ax

1σ+I−
1 + H.c. (17)

when ωn,1 = ν or

H̃I ≈ �

2πν
Ax

1σ+I+
1 + H.c. (18)

when ωn,1 = ν − 2�2/ν. Equation (17) or (18) can be used
to detect and control single nuclear spins, e.g., for two-qubit
gates between the NV and only one nucleus.

To demonstrate the superior performance of our DCS
method in low-power control, we perform numerical simu-
lations for an NV center and a weakly coupled 13C nucleus
with Ax

1 = 2π × 13.42 kHz and Az
1 = 2π × 17.09 kHz. A

strong magnetic field Bz = 1 T gives a strong Zeeman energy
approximately equal to 2π × 11 MHz for the 13C nuclear
spin, which is much higher than the Rabi frequency of the
NV electron spin in our simulations. In the simulations, we
assume that before the protocol the initial state of 13C nu-
clear spin is in a thermal state ρn ≈ I/2 and the NV electron
spin is initially prepared in the eigenstate |+〉 of σz. After
a time T of the control, the density matrix of the electron
and nuclear spins becomes ρ(T ). We consider the evolution
time T to be shorter than the NV spin relaxation time because
dynamical control does not inhibit spin-lattice relaxation. As

shown in Fig. 2, the polarization 〈σz〉 = Tr[ρ(T )σz] of the NV
electron spin changes significantly at the resonance peak of
ν = ωn ≈ 2π × 10.713 MHz, transferring the electron-spin
polarization to the nuclear spin. At ν = ωn the signal 〈σz〉 =
cos2( �

2πν
Ax

1T ). The realized electron-nuclear coupling is more
stronger than the previous protocol proposed in Refs. [39,40],
as shown in Fig. 2.

We note that our DCS protocol also provides a significant
enhancement for DNP. To demonstrate its superior perfor-
mance, we compare DCS with the time-optimized pulsed
dynamic nuclear polarization (TOP-DNP) protocol recently
developed in [26], which was shown to perform much better
than the traditional nuclear-spin orientation via electron-spin
locking [26]. A TOP-DNP sequence is composed of a train
of microwave pulses of a length τp separated by a delay d
between the pulses [26]. In Fig. 3 we consider the polarization
of a 1H spin using an electron spin. The 1H spin with Ax

1 =
2π × 0.5 kHz and Az

1 = 2π × 0.5 kHz under a magnetic field
0.35 T has a Larmor frequency ωn/2π ≈ 14.9 MHz much
higher than the Rabi frequency. We use the optimized parame-
ters of the TOP-DNP protocol in [26]. As shown in Fig. 3 our
DCS still gives a much higher nuclear-spin polarization than
the high-performance TOP-DNP protocol.

We further compare DCS, PM, and TOP-DNP protocols in
Fig. 4, where we can see that the DCS protocol gives the same
signal response for different values of tI and when τs is not too
large. The signal strengths of the PM and TOP-DNP protocols
are similar and much weaker than that of DCS. We compare
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FIG. 3. Application to DNP. (a) The blue solid line is the nuclear polarization after the control of our DCS protocol for a total time T ≈ 1
ms, when the nuclear spin is in a high-temperature thermal state. The green dash-dotted (brown dashed) line is the result when one uses the
TOP-DNP protocol with the initial electron-spin state initialized to be parallel (perpendicular) to the direction of the magnetic field of 0.35 T
along the z axis, using the optimized parameters such that the microwave pulses have a length τp = 56 ns and a tunable frequency detuning
and are separated by a delay d = 28 ns (see [26]). Both protocols have the same maximal value of the Rabi frequency 2π × 2 MHz. (b) Signal
as a function of the total polarization time T when the frequency mismatch vanishes in (a), that is, when ν = ωn for the DCS protocol and
ωm + ωeff = ωn, where ωm = 2π/(τp + d ) and ωeff is the effective field [26] for the TOP-DNP protocol. (c) and (d) Same as (a) and (b),
respectively, but with a reduced Rabi frequency of the DCS protocol, ensuring both DCS and TOP-DNP have the same average power. The
DCS provides much higher nuclear polarization. Here τs = 0 and tI = − 1

2 τ+ for DCS.

the protocols when the control field has an error such that the
Rabi frequency is changed from the ideal one �(t ) to (1 +
δ)�(t ). A comparison of Figs. 4(a) and 4(b) shows that DCS
is less sensitive to this error. This robustness is a consequence
of the resonance condition (12), which implies that an error
δ� of the Rabi frequency only shifts the resonance frequency
by a smaller amount rDδ� because rD < 1. The factor rD � 1
for low-power driving � � ωn.

Conclusion. We have shown that uneven modulation of
the dynamic phases via dynamical switching of the energy
of a quantum system, e.g., in a dressed-state picture, can
induce a resonant response with its surrounding quantum
system even though their energy scales are different. We
have applied this idea to achieve low-power quantum sens-
ing of single nuclear spins and DNP by an electron spin,
even though the available electron-spin Rabi frequency of the

FIG. 4. Robustness of the DCS, PM, and TOP-DNP protocols. (a) Nuclear polarization obtained by the protocols without control
errors, using the same parameters in Fig. 3(c). The PM protocol has the same average power as other protocols. The result of DCS with
noninstantaneous switching (τs = 0.14τ−) and a different tI is also shown by a red dashed line. (b) Same as (a) but with a relative error δ = 1%
added to the amplitude of the control field.
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control field is much weaker than the frequencies of nuclear
spins. Our numerical results show that our protocol provides
much better power efficiency and stronger sensing signals and
DNP than previous power-efficient methods [26,39,40]. Our
protocol would have useful applications in nanoscale NMR
for samples that are sensitive to heating by the control field
and in quantum information processing with high-frequency

nuclear spins, as well as other applications not specific to
NV centers.
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