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local quantum field theories
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We present an efficient approach for preparing ground states in the context of strongly interacting local
quantum field theories on quantum computers. The approach produces the vacuum state in a time proportional to
the square root of the volume, which is a square-root improvement in speed compared to traditional approaches.
The approach exploits a method for traversing the path in parameter space in which the resources scale linearly
with a path length suitably defined in parameter space. Errors due to practical limitations are controlled and do
not exhibit secular growth along the path. The final accuracy can be arbitrarily improved with an additive cost,
which is independent of the volume and grows slower than logarithmically with the overlap between the state
produced and the exact ground state. We expect that the method could potentially hold practical value not only
within the realm of quantum field theories but also in addressing other challenges involving long path lengths.
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Simulating aspects of quantum field theories (QFTs) on
classical computers is often hindered by the notorious sign
problem [1,2]; quantum computing is a candidate to evade the
sign problem and simulate QFTs [3–11]. Studying QFTs on
quantum computers requires the preparation of initial states
and various state preparation methods have been suggested
[12–30]. This Letter focuses on the preparation of vacuum
states of lattice field theories (with local interactions) aimed
at future quantum computations. The classes of theories con-
sidered are ones with finite correlation lengths and gapped
spectra. The principal purpose of this Letter is to show that the
exact vacuum state of the (lattice) theories can be computed
with an arbitrarily high probability with a computational time
that scales as the square root of the volume; an explicit algo-
rithm doing this is developed.

In contrast to some problems in quantum information
[31,32], in many physics applications it is essential to prepare
a physical state a very large number of times: Numerous
properties of the state will be studied and the calculation
of any of these requires a large number of runs. For these
problems, it can be efficient to expend substantial resources
the first time(s) the state is prepared in order to subsequently
prepare the state more efficiently. The algorithm considered
here is of this sort.

One general approach to state preparation is to begin with
a system whose vacuum state can be explicitly constructed
and then evolve the system (by varying a parameter λ spec-
ifying the Hamiltonian) in such a manner that—to a good
approximation—the system remains in |g(λ)〉, the ground
state of Ĥ (λ). Adiabatic state preparation (ASP) [18,33–39]
and methods based on the quantum Zeno effect (QZE) exploit-
ing projection [40–44] are in this category. One can always
choose parametrizations where λ is dimensionless.

*cohen@umd.edu
†hyunwooh@umd.edu

There are two key issues in optimizing such algorithms. An
obvious one is the choice of path through parameter space,
since clearly this affects how efficiently a ground state can be
produced. The other is finding an efficient manner to traverse
the path to find the ground state of interest. This Letter ad-
dresses the second issue.

There are important technical restrictions when using the
approach outlined here: For the algorithm to be efficient the
theory must remain local for all values of λ along the path and
that no phase transitions (in the infinite volume theory) are
encountered. We recognize that the restriction that no phase
transitions are encountered along the path may reduce the
applicability of this approach, but also note that this restriction
applies generally to all methods based on traversing paths in
parameter space including ASP and methods based on the
QZE.

Even in the absence of phase transitions, there is a chal-
lenge faced by such methods for field theories with large
volumes: The natural path through the various ground states
is necessarily long—with path lengths scaling with the square
root of the volume. It is important to note that while the size
of the minimum spectral gap has received significant attention
particularly in the context of adiabatic quantum computing
[45–49], the total cost of traversing a path in parameter space
is also quite sensitive to the path length. This should be clear if
one imagines a Hamiltonian trajectory that has been rescaled
so the spectral gap is constant along the trajectory. Clearly,
longer paths are more expensive to traverse. The approach
developed here is designed to be efficient for long paths and
should be useful for a variety of problems with long paths, but
it is particularly useful for QFTs with large volumes.

We follow a standard approach to define the path length.
Denote |g′(λ)〉 ≡ d|g(λ)〉

dλ
, where |g(λ)〉 is a differentiable func-

tion of λ. Phases are chosen conventionally so that

∀λa, λb, Im[〈g(λa)|g(λb〉] = 0. (1a)
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Lλa,λb , the path length from a to b (where b is a point further
along the path than a), and total path length L are then defined
[40–42] as

Lλa,λb ≡
∫ λb

λa

dλ‖|g′(λ)〉‖, L = Lλ0,λ f ; (1b)

λ0 and λ f are the initial and final values of λ for the full
path. Lλa,λb has a property of the path and is invariant under
reparametrization of the path.

One needs to model the computational cost so that com-
parisons between different methods are straightforward. One
important cost is the relative time needed by various schemes
to complete the calculation on the same equipment; this cost
is denoted as C. C depends on how the calculation is realized.
A useful and concrete way to envision it is to consider a
hybrid between analog and digital quantum computers; the
system undergoes continuous time evolution according to a
Hamiltonian but quantum gates can control the circumstance
for which this time evolution occurs and gated operations on a
state are allowable. This avoids issues associated with the cost
to achieve the desired accuracy using Trotterization while still
allowing algorithms which require quantum control. Since
rescaling the Hamiltonian by A reduces the time by 1/A, to
make predictions of the relative cost concrete, we assume
that H (λ) has always been scaled to the maximum that the
equipment can accommodate.

Schemes directly based on the QZE [50] generically have

C ∼ T � L2

�
, (2)

where � is the typical spectral gap along the path. Theorems
for an upper bound on the time needed for ASP with fixed
error [45–47] are consistent with Eq. (2).

As will be shown, the path length is proportional to the
square root of the volume of the system,

LV2

LV1

=
√

V2

V1
. (3)

The costs of schemes based on QZE or ASP then scale linearly
with the volume. In this Letter, a scheme with C ∼ √

V is
developed.

Let us derive Eq. (3). The locality of the interactions and
the finiteness of the correlation lengths imply that at large
volumes

〈g′(λ0)|g′(λ0)〉 = − ∂2〈g(λ1)|g(λ0)〉
∂ (λ1)2

∣∣∣∣
λ1=λ0

=
(

V

ξ d

)
h(λ0) ×

[
1 + O

(
ξ d

V

)]
, (4a)

where h is independent of the volume at large V , ξ is the
correlation length, and d is the dimension of space. More
generally,

∂n〈g(λ0 + �λ/2)|g(λ0 − �λ/2)〉
∂ (�λ)n

∣∣∣∣
�λ=0

= −1 + (−1)n

2

〈g′(λ0)|g′(λ0)〉 n
2 n!

2n/2(n/2)!

[
1 + O

(
ξ d

V

)]
, (4b)

implying

〈g(λ1)|g(λ0)〉 = e−L2
λ0 ,λ1

/2
[

1 + O

(
ξ d

V

)]
and

‖|g′(λ0 + �λ)〉‖ = ‖|g′(λ0)〉‖ ×
⎡
⎣1 + O

(
ξ d

V

) 1
2

⎤
⎦, (4c)

which in turn implies that L ∼ ( V
ξ d )

1
2 .

The scheme proposed here differs fundamentally from
ASP [where the system passes through every ground state
from the initial one, |g(λ0)〉, to the final one, |g(λ f )〉]. It
also differs fundamentally from conventional QZE schemes
where only discrete points along the path, specified by λi,
are considered, but adjacent points on the path are close:
|〈g(λi+1)|g(λi)〉|2 ≈ 1.

As QZE-based schemes, our approach uses discrete points
along the path. However, instead of large overlaps between
neighboring points on the path, ideally the points are chosen
so that

|〈g(λi+1)|gi(λi )〉|2 = 1/2, Lλi,λi+1 =
√

log(2); (5)

the second form is valid for large volumes. We assume that
in initial studies, the set of points satisfying Eq. (5) has been
found (to a good approximation).

An idealized version of the algorithm invokes an oracle
Û (λ)γ , parametrized by λ and γ , where γ can take the value
of a or b. Û (λ)γ acts on a state combining |ψ〉, the state
describing the system of interest, with two ancillary qubits
|χ〉a and |χ〉b. The action of Û (λ)γ is given by

Û (λ)a = |g(λ)〉〈g(λ)| ⊗ Îa ⊗ Îb

+ [Îψ − |g(λ)〉〈g(λ)|] ⊗ σ̂ x
a ⊗ Îb,

Û (λ)b = |g(λ)〉〈g(λ)| ⊗ Îa ⊗ Îb

+ [Îψ − |g(λ)〉〈g(λ)|] ⊗ Îa ⊗ σ̂ x
b , (6)

where σ̂ x
a and σ̂ x

b are Pauli operators acting on the ancillas, Îa

and Îb are identity operators acting on the ancillas, while Îψ is
the identity acting on the state of the system.

Ûa(λ) flips |χ〉a, if the system is in an excited state and
leaves it if the system is in the ground state; Ûb(λ) does the
same for |χ〉b. Highly accurate approximations of the oracle
can be constructed using, for example, Kitaev’s phase esti-
mation scheme [51] or a variant of the rodeo algorithm or
similar approaches [19,20,52,53]. It is straightforward to show
that when |e〉 is a superposition of excited states of H (λ) and
|α|2 + |β|2 = 1,

Û (λ)b{[α|g(λ)〉 + β|e〉] ⊗ |χ〉a ⊗ Ĥ ad|↓〉b}
= [α|g(λ)〉 − β|e〉] ⊗ |χ〉a ⊗ Ĥ ad|↓〉b, (7)

where Ĥ ad is the Hadamard operator; the effect of Û (λ)b is to
reflect any state in the physical Hilbert space around |g(λ)〉.

Consider an idealized case: The oracle is implemented
exactly and the points λi are known exactly. Then a simple
scheme acts to move a system in the ground state at point λi

to the ground state at point λi+1. The scheme requires that |χ〉a

begins as |↑〉a while |χ〉b begins as Ĥ ad|↓〉b; the full state is
|ψi〉 = |g(λi)〉 ⊗ |↑〉a ⊗ Ĥ ad|↓〉b .
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FIG. 1. A flowchart for one cycle in the idealized algorithm, which assumes no errors (left), and a realistic version that can handle errors
(right).

A flowchart for the idealized algorithm is on the left in
Fig. 1. The first step is to act on |ψi〉 with Û (λi+1)a. Next,
|χ〉a is measured. Half of the measurements will yield |↑〉a,
indicating that the system is in the ground state of Ĥ (λi+1);
nothing more needs to be done: The system has advanced
to the next point along the path. If the measurement yields
|↓〉a, the system is in an excited state of Ĥ (λi+1); this ex-
cited state is in the two-dimensional vector space spanned
by |g(λi )〉 and |g(λi+1)〉; the state is

√
2|g(λi )〉 − |g(λi+1)〉,

as seen Fig. 2. When |χ〉a is measured to be |↓〉a, the third
step is implemented: Û (λi )bσ

x
a acts on the state. As seen in

Fig. 2, this reflection yields |g(λi+1)〉. Regardless of whether
|χ〉a is measured to be |↑〉a or |↓〉a, after the cycle the system
is in the ground state of Ĥ (λi+1), having called the oracle at
most two times. In this idealized scenario, a path of length L
would be traversed by calling the oracle 3L/

√
4 log(2) times

(up to a small statistical correction) when L � 1. If each call
of the oracle took a fixed time, then the total time would scale
linearly with L, and the cost of state preparation scales as

√
V .

This ideal case is unrealistic: There will always be errors
arising from imperfect information, imperfect devices, or the
inability to construct a perfect oracle that runs in finite time
(even with perfect devices and perfect information). There
have been previous schemes [40–42] proposed for the traver-
sal of long paths that mitigate the effects of such imperfections
by increasing the resources at each stage so that the errors
could be kept below the final desired value at all points along
the path; such schemes lead to additional costs and they scaled
asymptotically with L no better than L log L. A key insight in

FIG. 2. The two-dimensional space spanned by |g(λi )〉 and
|g(λi+1)〉.

this work is that it is sufficient that there is no secular growth
in the error with increasing L; at the end of the path, all one
needs is admixtures of excited states that are either strictly
bounded independent of L or given in terms of a sufficiently
narrow distribution whose width does not grow with L. If
so, one can then use an “afterburner” to produce the ground
state with whatever accuracy is needed: Vacuum states are
calculable with a cost that scales as V 1/2 without a logarithmic
correction.

The flow chart on the right in Fig. 1 is a variant of the
algorithm that is useful for nonideal conditions and allows
long paths to be traversed without a secular growth of errors.
The scheme makes a single change from the ideal case: After
step three, the algorithm returns to step one rather than com-
pleting the cycle. If everything were ideal, this change would
be redundant: The system would be in the ground state of λi+1

and steps one and two would simply go on to the next cycle.
However, under nonideal conditions it suppresses the secular
growth of errors with only a modest multiplicative increase in
cost relative to the ideal case.

There are several causes of errors. A key one is that one
cannot project perfectly in finite time. Imperfect projections
lead to “false positives” where an excited state component of a
wave function is identified as the ground state. A second factor
is the inability to prepare points that satisfy Eq. (5) exactly.
Additionally, there can be “false negatives” in projection:
Uncertainty in knowledge of the ground-state energy can lead
to the projection indicating that the system is not in the ground
state even when it is.

One might anticipate that these errors could accumulate
along the path, causing the amplitudes of ground states to
diminish along the path. However, a simple heuristic argument
suggests that the error does not grow in a secular manner as
the path is traversed.

Denote the maximum error introduced in any stage of the
algorithm as ε; it represents the maximum amplitude intro-
duced for non-ground-state components at any stage of the
algorithm (assuming it had started in the ground state). Given
that each stage concludes with the oracle Û (λ)a, the error in-
troduced in the nth iteration will be mitigated by the (n + 1)th
iteration. Of course, the (n + 1)th iteration will also introduce
an error (which will be less than or equal to ε). The same
situation happens for the next iterations and consequently the
error converges with a geometric series: The error will not
grow secularly.

L020402-3
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FIG. 3. A numerical simulation of the algorithm given for the
algorithm in Fig. 1 using the toy model discussed in the text. Pg rep-
resents the ground-state probability (the square of the inner product
of the true intermediate ground state with the one produced by the
algorithm). The dots represent the ground-state probabilities at each
step, while the rectangles represent averages taken over every 1000
steps (with the standard deviations indicated by the error bars). The
dashed line is the average of all steps. Note that the scale of Pg is
highly compressed, ranging from 0.94 to 1.00.

To test this heuristic reasoning, we implemented the al-
gorithm numerically in a “toy model.” In constructing this
model, we exploited the fact that what matters is the ground
state itself (along with excited states) rather than the Hamil-
tonian that leads to the states. Therefore, for simplicity, the
model consists of “ground” and “excited” states constructed
(essentially randomly) directly as linear combinations of an
orthogonal basis of 1024 levels (this number was chosen
to be large enough to represent a generic system but small
enough to keep the calculation tractable). The inner product
between the ith and (i + 1)th ground state was chosen to be
close to 1/

√
2 for each step. To simulate false positive errors

we assumed that the projection was allowed through excited
states with a probability of 0.1 or less (randomly chosen with a
uniform distribution); this is extremely conservative (a single
“superiteration” of the rodeo projection has a maximum rate
of less than 0.05 and is typically much less [52]). We also
chose a 0.05 probability of a false negative (which is also
quite conservative if one has reasonable knowledge of the
ground-state energies) and assumed that cos−1 of the inner
product between the ith and (i + 1)th ground states was within
10% of π

4 (which again should be quite achievable).
The results of a simulation using this toy model are shown

in Fig. 3: In that figure, Pg, the ground-state probabilities
(the square of the intermediate ground-state component of
the state produced at a given step along the path) are nearly
unity for all steps (with a minimum Pg of greater than 0.947).
Although errors fluctuate as additional steps along the path
are taken, the errors do not grow in a secular manner: The
characteristic distribution of Pg for the steps 9000–10 000 is
qualitatively the same as steps 1–1000, with both the average
and standard deviations nearly identical. This numerical check
strongly suggests that the conclusion of the heuristic argument
is sound.

There is strong evidence that the errors do not grow as the
path is traversed. Assuming that this is true, the inner product

of the state produced at the end of the long path, and the true
ground state will be close to unity. If one wishes the final state
to be extremely close to the true ground state, one can use
an “afterburner.” It involves the last step of the traversal—
which is likely not very close to satisfying Eq. (5)—and thus
may require several rounds of projection and reflection but
is guaranteed to converge. It simply uses a projector with a
false positive rate which is exponentially smaller than the one
used to traverse the path. This ensures that when the last step
converges one has the true ground state with exponential accu-
racy. As was shown in Ref. [52], the cost in time grows more
slowly than logarithmically with the false positive rate when
using the rodeo algorithm. Thus, for long paths the total cost
is dominated by traversing the path and not the afterburner.

The total cost for long paths depends on the cost of each
projection as well as the number of projections needed. Since
typical projection methods require a time proportional to the
inverse of the spectral gap, �, the total cost is given by C ∼
V

1
2 〈 1

�
〉, where 〈�−1〉 is the average of the inverse spectral gap

along the path.
Properties of the path need to be determined in the initial

traversals of the path so that subsequent traversals can be
efficient: Reasonable knowledge of the values of �λ to reach
the next point approximately satisfying Eq. (5), the ground-
state energy (to suppress the false negative rate), and the
spectral gap (to efficiently project) are needed at each point
on the path. The algorithm outlined above is applicable to all
problems with long path lengths. However, if determining the
properties of the system along the path during initial studies
is too expensive, the algorithm may be impractical.

Fortunately, for local field theories with large volumes rel-
evant quantities change very slowly from λi to λi+1; one can
extract the values at relatively few points and then smoothly
interpolate. To see this, recall that �λi = λi+1 − λi ∝ V − 1

2

from Eq. (5). Moreover, at a large volume, the spectral gap
�(λ) depends only on λ and not the volume. Therefore,
�λi+N can be approximated as �λi up to N ∝ V

1
2 . Similarly,

Eqs. (4a)–(4c) imply that �(λi+N ) is well approximated as
�(λi) until N ∝ V

1
2 . However, since the ground-state energy

E0(λ) is proportional to the volume, E0(λ) must be approx-
imated as a Taylor series; an nth-order Taylor series at λi

provides an accurate estimate of E0(λi+N ) until N ∝ V
1
2 − 1

n .
In this Letter, a highly efficient state preparation method

on quantum computers was presented, particularly tailored for
use with QFTs with large volumes. It was demonstrated that
errors do not accumulate secularly. The results here are of
interest from a theoretical quantum information perspective
as they indicate that the cost of preparing the ground state
of QFTs scales as the V

1
2 . The approach may also prove

to be valuable practically both in the context of QFTs and
perhaps in other problems with long path lengths. However,
practical implementations of the approach are unlikely in the
short term; the approach relies on controlling the buildup of
errors and is unlikely to be viable without the development of
fault-tolerant quantum computers.
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