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Experimental test of the Crooks fluctuation theorem in a single nuclear spin
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We experimentally test the Crooks fluctuation theorem in a quantum spin system. Our results show that the
Crooks fluctuation theorem is valid for different speeds of the nonequilibrium processes and under various effec-
tive temperatures. Work is not an observable in quantum systems, which makes tests of quantum thermodynamic
theorems challenging. In this work, we develop high-fidelity single-shot readouts of a single nuclear spin in
diamond and implement the two-point work measurement protocol, enabling a direct experimental test of the
Crooks fluctuation theorem. Our results provide quantum insight into fluctuations and the methods we develop
can be utilized to study other quantum thermodynamic theorems.
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Introduction. Fluctuations become prominent when the
study of thermodynamics shifts from the macroscopic to
the microscopic scale. These fluctuations can be compara-
ble to ensemble averages of corresponding thermodynamic
quantities [1] and are not mere background noises [2]. The
investigation of these fluctuations has led to the discovery of
various fluctuation theorems [3–7]. One important example
is the Crooks fluctuation theorem (CFT) [8], which reads
PF (W )/PR(−W ) = eβ(W −�F ), with β the inverse tempera-
ture. The CFT relates the probability PF (W ) of performing
some work W during a forward process to the probability
PR(−W ) of extracting the same amount of work during the
time-reversed process via the free-energy difference �F , pro-
viding knowledge of far-from-equilibrium thermodynamics.

The CFT has been verified in several classical systems
[9–12], but a direct test in quantum systems remains elusive.
The difficulty originates from the fact that work is not an
observable in the quantum realm [13]. For isolated quantum
systems, the work done during a process can be measured by
the two-point measurement (TPM) protocol [4,5]. The TPM
protocol requires two high-fidelity nondemolition projective
measurements on the energy basis at the start and the end
of the process to determine work. Projective measurements
with poor readout fidelity may not be able to obtain the
initial and final energies correctly. Measurements that are
not nondemolition will result in the state after measurement
being different from the corresponding eigenstate. Such sit-
uations will lead to incorrect work distribution and unable
to recover the CFT [14]. However, experimental realiza-
tion of high-fidelity nondemolition projective measurement is
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generally challenging. To evade the difficulty, some alterna-
tive but indirect approaches were proposed [15,16] to obtain
the work distribution and were adopted in several experi-
ments. In a liquid-state nuclear magnetic resonance setup,
the work distribution was reconstructed by a characteristic
function which was measured using an auxiliary qubit [17,18].
In addition, a presampling method was utilized to test some
integral fluctuation theorems in the nitrogen-vacancy (NV)
center system [19–21]. To date, an experiment that faithfully
implements the TPM protocol to test the CFT is still absent.

Here we report an experimental test of the CFT in a single
nuclear spin, i.e., the 14N nuclear spin of the NV center in
diamond. To implement the TPM protocol, high-fidelity non-
demolition projective measurements of the 14N nuclear spin
are realized based on the single-shot readout technique [22].
The work statistics in the forward and time-reversed switching
processes are experimentally obtained with the TPM protocol.
Our results demonstrate that the obtained work statistics sat-
isfy the CFT for various speeds of the switching process and
for different effective temperatures of the initial thermal state.

Theory. To test the CFT, work distributions of an isolated
quantum system undergoing the forward and correspond-
ing time-reversed switching processes are measured via the
TPM protocol. The procedure to obtain the work distribu-
tion in the forward switching process is shown in Fig. 1(a).
First, the system is prepared in the thermal state of H (0),
ρ0

thm = e−βH (0)/Z0, with Z0 = Tr(e−βH (0) ) the partition func-
tion. Then the first projective measurement is performed,
projecting the system onto an energy eigenstate of H (0),
such as |n〉, with probability p0

n = Tr(ρ0
thm|n〉〈n|). Next the

system undergoes the forward switching process. During
this process, the Hamiltonian varies from H (0) to H (τ )
in a period of τ . The time-dependent Hamiltonian drives
the system, for example, from |n〉〈n| into ρτ

n . Finally, the
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FIG. 1. The TPM protocol to obtain work distributions. (a) The
forward switching process ρ0

thm is a thermal state of H (0). The
first and second projective measurements were performed at energy
eigenstates of H (0) and H (τ ), respectively. (b) Corresponding time-
reversed switching process. Here ρτ

thm is a thermal state of H (τ ).
The first and second projective measurements were performed at the
energy eigenstates of H (τ ) and H (0), respectively.

second projective measurement is performed, projecting the
system onto an energy eigenstate of H (τ ), such as |m̃〉,
and the corresponding probability is pτ

m̃|n = Tr(ρτ
n |m̃〉〈m̃|).

Then the work done on the system for trajectory |n〉 →
|m̃〉 is obtained as Wm̃|n = E τ

m̃ − E0
n , with E τ

m̃ and E0
n the

eigenenergies of states |m̃〉 and |n〉, respectively. The work dis-
tribution in the forward switching process can be represented
as PF (W ) = ∑

m̃,n p0
n pτ

m̃|nδ(W − Wm̃|n). The corresponding
time-reversed switching process is displayed in Fig. 1(b).
The system is initially prepared in the thermal state of
H (τ ), ρτ

thm = e−βH (τ )/Zτ , with Zτ = Tr(e−βH (τ ) ). The Hamil-
tonian is tuned from H (τ ) to H (0) in the time-reversed
manner HR(t ) = H (τ − t ). The work distribution in the time-
reversed switching process can be represented as PR(W ) =∑

m̃,n q0
m̃qτ

n|m̃δ(W − Wn|m̃). The left-hand side of the CFT,
PF (W )/PR(−W ), can then be calculated from the obtained
work distributions in the forward and time-reversed pro-
cesses. The right-hand side of the CFT, eβ(W −�F ), can be
obtained via the Hamiltonian model H (t ) and the inverse

FIG. 2. Single-shot readout of the nuclear spin and realizing TPM in an NV center. (a) Atomic structure and ground-state energy levels of
the NV center. The two energy levels in the red dotted box are utilized to test the CFT. (b) Single-shot readout. Shown on the left is the pulse
sequence of single-shot readout, here N = 1500, and on right is the photon-counting histogram obtained by repeating single-shot readout.
(c) Experimental pulse sequences to realize TPM to test the CFT.

L020401-2



EXPERIMENTAL TEST OF THE CROOKS FLUCTUATION … PHYSICAL REVIEW A 109, L020401 (2024)

temperature β. The CFT is tested by checking whether the dif-
ference � = PF (W )/PR(−W ) − eβ(W −�F ) equals zero for all
possible W .

Experiments. In our experiment, a single nuclear spin of
the NV center was utilized to test the CFT. The NV center
is a type of defect in diamond consisting of a substitutional
nitrogen atom adjacent to a carbon vacancy. The left-hand side
of Fig. 2(a) shows the atomic structure and ground-state en-
ergy levels of the NV center. When a magnetic field is applied
along the symmetry axis of the NV center, the ground-state
Hamiltonian can be written as

HNV = 2π h̄
(
DS2

z + ωeSz + QI2
z + ωnIz + AzzIzSz

)
, (1)

where Sz and Iz are the spin operators of the NV electron
spin and 14N nuclear spin, respectively. The ground-state
zero-field splitting of the electron spin is D = 2.87 GHz
and the quadrupolar interaction of the nuclear spin is Q =
−4.95 MHz. The longitudinal hyperfine interaction between
nuclear spin and electron spin is Azz = −2.16 MHz. The
Zeeman frequencies of the electron and nuclear spin induced
by the external static magnetic field are denoted by ωe and
ωn, respectively. The electron spin can be polarized into |0〉e

via a spin-selective intersystem crossing process [23]. Due to
the same mechanism, the photoluminescence rate for |0〉e is
higher than that for |−1〉. In the following, we denote by |0〉e

the bright state and by |−1〉e the dark state. Two energy levels
of the 14N nuclear spin, |−1〉n and |0〉n, are chosen to form a
two-level system to test the CFT as shown by the red dotted
box in Fig. 2(a).

High-fidelity nondemolition projective measurement of the
nuclear spin is realized via the single-shot readout technique.
The single-shot readout process is displayed in Fig. 2(b).
The electron spin is optically pumped into the bright state.
Then a selective π−1 pulse flips the electron spin to the dark
state on the condition that the nuclear spin state is |−1〉n.
Next a 532-nm laser pulse is applied to read out the elec-
tron spin and repolarize it to the bright state. By repeating
this procedure, a fluorescence signal can be accumulated to
read out the nuclear spin. In the ideal case, the nuclear spin
can be projectively measured. In practice, the projected state
could be altered during the readout process due to the nuclear
spin relaxation [22]. To suppress the relaxation, we apply a
static magnetic field of approximately 7500 G along the NV
symmetry axis. In addition, the imperfection of the selective
π−1 pulse will also corrupt the fidelity. Thus, a noise-robust
gate is designed via an optimal control method. The repetition
number N is also appropriately chosen to optimize the fidelity.
With these techniques, the optimized fidelity achieves 0.98(1)
(see Appendix A for details). To realize projective measure-
ments along arbitrary energy bases, necessary rotations can
be applied before and after the single-shot readout.

The experimental pulse sequences are depicted in Fig. 2(c).
By performing the single-shot readout and postselecting the
states with fluorescence below the threshold, the nuclear spin
can be initialized into |−1〉n. During the readout process, the
applied 532-nm laser pulse can induce transitions between
two charge states NV0 and NV− of the NV center. A 594-nm
laser pulse is applied to postselect the experiment trials done
with NV− [24]. In this work, the Hamiltonian of the switching

process is chosen as

HF (t ) = 2π h̄[Z (t )S′
z + X (t )S′

x],

HR(t ) = 2π h̄[Z (τ − t )S′
z + X (τ − t )S′

x], (2)

with S′
z = (|1〉〈1| − |0〉〈0|)/2, S′

x = (|1〉〈0| + |0〉〈1|)/2,
Z (t ) = 2 kHz, and X (t ) = 5[1 − cos(πt/τ )]/2 kHz. Here
and in the following, for convenience, the energy levels
|0〉n and |−1〉n are relabeled as |1〉 and |0〉, respectively.
The thermal state of H (0) is generated in two steps.
In the first step, a resonant radio-frequency pulse R1 is
applied to prepare the state

√
P0

thm |0〉 +
√

P1
thm |1〉, where

Pthm is the thermal population. In the second step, two
selective π−1 pulses separated by a waiting time tw = 10 µs
are applied to dissipate the coherence. The coherence
dissipates quickly as the dephasing time of the electron spin
T ∗

2,e < 1.5 µs. After the preparation of the thermal state,
the first projective measurements are performed to project
the system onto energy eigenstates. In the time-reversed
process, the eigenstates of H (0) differ from the computational
basis, so an additional rotation pulse R3 is applied after the
single-shot readout. Then the time-dependent Hamiltonian or
its time-reversed counterpart is applied to change the system
state. Some work is extracted from or performed on the system
during the switching process. Finally, the second projective
measurements are performed to obtain the work trajectories.
In the forward process, the eigenstates of H (τ ) differ from
the computational basis, so an additional rotation pulse R−1

3
is applied before the single-shot readout. To obtain the work
statistics, the pulse sequence is executed 16 000 times for
each experimental data point. The postselection ratios for the
nuclear state initialization and charge state selection are 32%
and 41%, respectively. Since the charge state postselection is
executed twice in our experimental sequence, the total success
ratio is about 5.4%. By analyzing the postselected data, we
can obtain the work statistics of these switching processes.

To test the CFT in switching processes with different
degrees of adiabaticity, we conduct the experimental in-
vestigations with switching time τ ranging from 25 to
300 µs. The adiabaticity can be evaluated by the pa-
rameter [25] 	 = mint∈[0,τ ] |〈n1(t )|∂H (t )/∂t |n2(t )〉|/[E1(t ) −
E2(t )]2. Here |n1(t )〉 and |n2(t )〉 are two instantaneous eigen-
states of H (t ), with E1(t ) and E2(t ) the corresponding
energies. When 	 is much smaller than 1, the switching
process can be considered adiabatic. In our experiment, the
switching process varies from a fast process to a close-to-
adiabatic process with 	 decreasing from 3.6 to 0.3. The
experimental probability distributions of trajectories in the
forward process and corresponding time-reversed process are
displayed in Figs. 3(a) and 3(b), respectively. Here PF

i j̃
refers

to the probability of the trajectory |i〉 → | j̃〉 in the forward
process and PR

j̃i
refers to the probability of the trajectory

| j̃〉 → |i〉 in the time-reversed process. The error bars shown
here represent the 95% confidence interval. As τ increases, the
transition probabilities between different instantaneous eigen-
states decrease, indicating that the process is approaching
the adiabatic regime gradually. To calculate the differences
�i j̃ = PF

i j̃
/PR

j̃i
− eβ(Wi j̃−�F ), the effective inverse temperature

βexpt and free-energy difference �F are obtained from the
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FIG. 3. Experimental verification of the CFT for different
switching times. Probability distributions of trajectories are shown
in (a) the forward processes and (b) the corresponding time-reversed
processes for different switching times. [(c)–(f)] Test of the CFT
utilizing different trajectories. Dots with error bars show �i j̃ =
PF

i j̃
/PR

j̃i
− eβ(Wi j̃−�F ) for different switching times.

measured initial thermal populations (see Appendix B for
details). Experimentally, the same initial thermal state is pre-
pared for each switching time. However, mainly due to the
single-shot noises, the measured populations have nonzero
uncertainties, leading to uncertainty in the value of βexpt. Here
the effective inverse temperature is hβexpt = 0.22(3) kHz−1.
The uncertainties of �i j̃ are obtained utilizing the error trans-
fer formula. As displayed in Fig. 3(d), the uncertainties of �10̃
are considerably larger than those of the other three, mainly
because the denominator PR

1̃0
in �10̃ is considerably smaller.

As shown by Figs. 3(c)–3(f), these experimental points can be
considered equal to zero when error bars are taken into ac-
count, confirming the validity of the CFT for different speeds
of the switching process.

Furthermore, to test the CFT under different temperatures,
we prepare different initial thermal states. Our experiment
fixes the switching time at τ = 25 µs. The inverse
temperatures are preset as hβ = 0, 0.15, 0.25, 0.35 kHz−1,
with hβ = 0 kHz−1 representing an infinitely high
temperature. The effective inverse temperatures are
hβexpt = 0.03(3), 0.15(3), 0.27(3), 0.36(4) kHz−1. For
different effective temperatures, the difference �i j̃ and their
uncertainties are calculated. As shown by Figs. 4(a)–4(d),
these experimental points can be considered as equal to zero
when error bars are taken into account, verifying the CFT
under different temperatures.

Conclusion. We have experimentally tested the CFT
by faithfully implementing the TPM protocol. The work
distributions in the forward and corresponding time-reversed

FIG. 4. Experimental verification of the CFT under different
temperatures. The test of the CFT is shown utilizing different trajec-
tories. Dots with vertical error bars show �i j̃ = PF

i j̃
/PR

j̃i
− eβ(Wi j̃−�F )

for different effective temperatures. The horizontal error bars repre-
sent the errors of hβexpt.

switching processes were measured and the difference be-
tween the left- and right-hand sides of the CFT was obtained.
The experimental results show that the difference is zero for
different speeds of nonequilibrium processes and under var-
ious effective temperatures, providing a rigorous validation
of the CFT. Additionally, our development of high-fidelity
nondemolition projective measurement in the NV center
system can facilitate the investigation of quantum ther-
modynamics, enabling us to study many other important
thermodynamic principles and interesting phenomena. For
example, the fluctuation theorem in the non-Hermitian regime
[26], information-theoretic-based quantum thermodynamics
[27,28], and quantum thermodynamic devices [29–31] can be
explored further. It should be noted that the TPM protocol has
been regarded to destroy quantum features [32]. Recently, in
bipartite systems, fluctuations of heat exchange were studied
beyond the framework of the TPM protocol to consider the in-
fluence of quantum correlation [33,34]. There have also been
other attempts to explore alternative measurement protocols
[35–37] that account for initially coherent states. However, in
our test of the quantum CFT, the system needs to be prepared
in a thermal state with no quantum coherence or quantum
correlation, and therefore the TPM protocol is an appropriate
and standard method.
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TABLE I. Effective inverse temperatures and corresponding ini-
tial populations of forward and time-reversed process. Here hβF

expt

and hβR
expt were obtained from initial populations; hβexpt was obtained

as hβexpt = (hβF
expt + hβR

expt )/2

hβexpt p0 p1 hβF
expt q0 q1 hβR

expt

0.03(3) 0.52(4) 0.48(4) 0.04(4) 0.53(4) 0.47(4) 0.02(2)
0.15(3) 0.58(4) 0.42(4) 0.16(5) 0.69(4) 0.31(4) 0.15(2)
0.27(3) 0.63(4) 0.37(4) 0.27(6) 0.81(3) 0.19(3) 0.27(3)
0.36(4) 0.68(4) 0.32(4) 0.38(6) 0.86(3) 0.14(3) 0.34(4)

Appendix A: High-Fidelity Projective Measurement. To
improve the fidelity, the measurement backaction should be
mitigated and the detection efficiency should be improved. We
applied a static magnetic field of about 7500 G along the NV
symmetry axis to mitigate the measurement backaction. We
created a solid immersion lens [38] in the diamond and used
an oil objective to improve the detection efficiency. Further-
more, the optimal control method [39] was utilized to realize
a noise-robust gate in the single-shot readout.

We studied the optimal quantum control in the Hilbert
space spanned by |1〉n|0〉e, |0〉n|0〉e, |−1〉n|0〉e, |1〉n|−1〉e,
|0〉n|−1〉e, and |−1〉n|−1〉e. Microwave pulses, whose fre-
quency equals the energy difference between |0〉n|0〉e and
|−1〉n|0〉e, were applied to control the NV electron spin. In the
rotational frame, the system Hamiltonian is H0 = 2πAzzIz ⊗
|−1〉e〈−1|. The control Hamiltonian is a piecewise constant.
Defining ti = t0 + i�t , the control Hamiltonian at t ∈ [ti−1, ti )
takes the form

Hc(t ) = 2π [�x(t )Hx + �y(t )Hy] = 2π (�ixHx + �iyHy),

(A1)

where �ix and �iy are parameters to be optimized and
Hx,y = 1n ⊗ S′

x,y. The amplitude noise of the control field
leads to H ′

c(t ) = (1 + α)Hc(t ) and the static dephasing
noise takes the form Hd = 1n ⊗ 2πδS′

z. The total Hamilto-
nian is H (t ) = H0 + (1 + α)Hc(t ) + Hd . The evolution time
is set as T = 4/|Azz| and is divided into M = 10 seg-
ments of equal length. The propagator of these pulses is
U (T ) = 
ie− jHiT/M , where Hi = H0 + (1 + α)[2π (�ixHx +
�iyHy)] + Hd . The target gate is Utarg = |−1〉n〈−1| ⊗
e− jπS′

x + (|1〉n〈1| + |0〉n〈0|) ⊗ 1e. The fidelity between U and
Utarg is defined as F = |Tr(U †

targU )/Tr(U †U )|2. We designed
a noise-robust pulse that can realize a high-fidelity U with
arbitrary α and δ, where α ∈ [αmin, αmax] and δ ∈ [δmin, δmax].
The pulse shape and its robustness are shown in Figs. 5(a) and
5(b), respectively.

Photon-counting histograms and fluorescence time traces
with both an optimized pulse and a naive square-wave pulse
are shown in Figs. 5(c)–5(f). In the fluorescence time trace,
each data point was acquired by the single-shot readout
with repetition number N = 1500 (total time 9 ms). There
is a telegraphlike signal in the fluorescence time trace, and
two plateaus represent that the nuclear spin stays in or
does not stay in |−1〉n. The transition between the two
plateaus comes from either misjudgment or intrinsic flips
of the nuclear spin. The average data point of the nuclear
spin being in |−1〉n is n̄0 and the nuclear spin not being

FIG. 5. Single-shot readout with optimal control. (a) Optimized
pulse and (b) its robustness to noise. The photon-counting histogram
and fluorescence time trace are shown with (c) and (d) an optimized
pulse and (e) and (f) a naive square-wave pulse.

in |−1〉n is n̄1. The fidelity can be defined as (F0,1)2 = 1 −
1/n̄0,1. In our experiment n̄0,1 
 1 and the average fidelity is
approximately

F = 1 − 1

2

(
1

2n̄0
+ 1

2n̄1

)
. (A2)

Fidelities with an optimized pulse and a naive square wave
pulse are Fopt = 0.98(1) and Fsq = 0.96(1), respectively.

Appendix B: Calculation of βexpt and �F. Utilizing a
single two-level system, four potential work trajectories ex-
ist during a switching process in our experiment. The work
distribution and its uncertainty were obtained by counting
these four trajectories. The effective inverse temperature βexpt

and its error were calculated by the work distribution and
its uncertainty. For convenience, we denote PF (W = E τ

j̃
−

E0
i ) by Pi j̃ in the following. To obtain βexpt, we calculated

the initial population pi by summing Pi j̃ over the index
j, pi = ∑

j Pi j̃ . In the forward process, βF
expt is given by

βF
expt = ln(p0/p1)/(E0

1 − E0
0 ) and its error can be calculated

using error transfer formula. In the time-reversed process,
βR

expt and its error were obtained similarly. The average
effective inverse temperature is βexpt = (βF

expt + βR
expt )/2.

Upon obtaining βexpt, the free-energy difference can be cal-
culated as �F = −ln[Tr(e−βexptH (τ ) )/Tr(e−βexptH (0))]/βexpt. In
the test of the CFT for different speeds of switching processes,
the effective inverse temperature was hβexpt = 0.22(3) kHz−1,
with hβF

expt = 0.24(5) kHz−1 and hβR
expt = 0.20(2) kHz−1. In
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the test of the CFT under different temperatures, hβexpt and
corresponding initial populations are listed in Table I. The

errors of hβR
expt are smaller than hβF

expt due to the larger energy
gap of H (τ ) than H (0).
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