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With the advent of digital and analog quantum simulation experiments, it is now possible to experimentally
simulate the dynamics of quantum many-body lattice systems and make site-resolved measurements. These
experiments make it pertinent to consider the probability of getting any specific measurement outcome, which
we call the signal, on placing multiple detectors at various sites while simulating the dynamics of a quantum
many-body lattice system. In this work we formulate and investigate this problem, introducing the concept of
quantum many-body detection probability (QMBDP), which refers to the probability of detecting a chosen signal
at least once in a given time. We show that, on tuning some Hamiltonian parameters, there can be sharp transition
from a regime where the QMBDP is approximately equal to one to a regime where the QMBDP is approximately
equal to zero. Most notably, the effects of such a transition can be observed at a single trajectory level. This is not
a measurement-induced transition, but rather a nonequilibrium transition reflecting opening of a specific type of
gap in the many-body spectrum. We demonstrate this in a single-impurity nonintegrable model, where changing
the many-body interaction strength brings about such a transition. Our findings suggest that instead of measuring
expectation values, single-shot stroboscopic measurements could be used to observe nonequilibrium transitions.
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Introduction. A fundamental question relevant across vari-
ous branches of science is whether a chosen type of signal can
be detected at a given position. One of the oldest mathematical
formulations of the problem concerns a particle undergoing
a random walk. The seminal Pólya’s theorem [1] states that
in one and two dimensions, the particle will eventually be
detected with certainty regardless of the position of the detec-
tor, while in three dimensions there is a finite chance that the
particle is never detected. Similar questions have been exten-
sively studied in complex classical stochastic systems under
the guise of survival and first-passage probabilities [2,3]. In
the realm of quantum systems, these questions have been con-
sidered from the perspective of time-of-arrival and quantum
search problems [4–23]. Most of these studies have primar-
ily focused on single-particle systems with a single detector
placed at a given location. Over the past decade, digital and
analog quantum simulation experiments [24–28] have been
developed to simulate the dynamics of quantum many-body
lattice systems and make site-resolved measurements, for ex-
ample, with quantum gas microscopes [29–45]. The advent of
these experiments makes it pertinent to consider the detection
probability of a signal in the presence of quantum many-body
interactions, with multiple detectors placed at different lattice
sites. In this paper we formulate and investigate this problem,
providing an interesting example.

We define the signal as a particular measurement outcome
of simultaneous stroboscopic projective measurements by the
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detectors. We introduce the notion of quantum many-body
detection probability (QMBDP), by which we refer to the
probability that the signal is detected at least once within a
given time. Choosing a single-impurity nonintegrable model
[46–50], we demonstrate that, depending on initial state, there
can be a sharp transition in QMBDP over a finite but large
regime of time. In our chosen model, such a transition is
brought about by tuning the many-body interaction strength.
This transition is from a regime where the signal is almost
certainly detected (QMBDP approximately equal to one) to
a regime where the signal almost certainly is not detected
(QMBDP approximately equal to zero). This is not a class
of measurement-induced phase transition [51–54]. Instead, as
we show in general, such a transition is related to opening
a specific type of gap in the many-body spectrum of the
system. It can be explained via an unconventional application
of van Vleck perturbation theory (VVPT). It also manifests in
far-from-equilibrium dynamical properties in the absence of
the detectors, for example, in domain-wall dynamics. How-
ever, we find that the transition in QMBDP is much sharper
than that in other dynamical properties. Most interestingly,
since QMBDP takes into account the effects of measurement
backaction, a transition in QMBDP can be captured at a sin-
gle trajectory level. This opens the possibility of observing
nonequilibrium transitions via single-shot stroboscopic mea-
surements, rather than via obtaining dynamics of expectation
values. This fact is both fundamentally interesting and experi-
mentally appealing, with potential technological implications.

Introducing QMBDP and our example. Consider a quan-
tum many-body lattice system with Hilbert space dimension
D in a state far from equilibrium. Suppose that some
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FIG. 1. We consider the Hamiltonian Ĥ = −∑N/2−1
�=−N/2+1[ J

2

(ĉ†
� ĉ�+1 + ĉ†

�+1ĉ�) + �n̂�n̂�+1] + ε0n̂0, where ĉ� is the fermionic an-
nihilation operator at site � and n̂� = ĉ†

� ĉ�. Initially the left half
has only one hole, while the right site has only one particle. Two
detectors are placed making simultaneous stroboscopic projective
measurements of particle numbers at sites p and q (here p = 3 and
q = 5) in intervals of time τ . The signal is simultaneous detection on
both detectors, with the projection operator P̂ = n̂pn̂q.

detectors are placed at some specific sites, which are switched
on in stroboscopic steps of time τ . The detectors make in-
stantaneous projective measurement of some observable, say,
particle number, in those sites. In this situation, one can ask
about the probabilities of making a chosen type of observa-
tion. For example, if there are two particle detectors, one can
ask what the probability is that they click simultaneously. We
can think of the chosen type of observation as the signal. Let
the Hamiltonian for the lattice system be Ĥ , the initial state be
ρ̂(0), the projection operator corresponding to measurement
of the signal be P̂, and the complementary projection operator
be Q̂ = Î − P̂, where Î is the identity operator. Using the Born
rule and a little algebra, the probability of not detecting the
signal in n steps is

Rn(τ ) = Tr{[M̂Q(τ )]nÂ(τ )ρ̂(0)Â†(τ )[M̂†
Q(τ )]n}, (1)

where M̂Q(τ ) = Q̂e−iĤτ Q̂ and Â(τ ) = Q̂e−iĤτ P̂ + M̂Q(τ ).
We call Rn(τ ) no-detection probability. This is the analog of
the survival probability studied in classical stochastic systems
[2,3]. The QMBDP, i.e., the probability that the signal is
detected at least once within time nτ , is given by Tn(τ ) =
1 − Rn(τ ).

As a concrete example, we consider the model Hamiltonian
described and schematically shown in Fig. 1. With ε0 = 0, this
Hamiltonian can be Jordan-Wigner transformed into the inte-
grable XXZ qubit chain. With ε0 > 0, the model becomes the
nonintegrable single-impurity XXZ chain [48,49,55], which
has been of interest recently because, despite being noninte-
grable, it inherits the ballistic transport of the integrable XXZ
chain for � < J at high temperatures [47,49].

We divide the chain into left and right halves, the left half
consisting of sites −N/2 + 1 to 0 and the right half consisting
of the remaining sites. We consider the case where, initially,
there is only one hole (i.e., there are N/2 − 1 particles) on
the left half of the chain, while there is only one particle on
the right half of the chain (see Fig. 1). Note that this does
not correspond to a single configuration. The exact form of
initial state will be discussed later. We put two detectors on
the right half, at sites two arbitrary sites p and q, p, q > 0, at
a finite distance from the middle. They make simultaneous
projective measurements of particle number in intervals of
τ . We take simultaneous detection at the two sites as our

signal. The corresponding projection operator is P̂ = n̂pn̂q, so
Q̂ = Î − n̂pn̂q.

Physics governed by M̂Q(τ ). From Eq. (1) we see that
the physics of QMBDP is governed by spectral properties of
M̂Q(τ ). The no-detection probability Rn(τ ) is bounded from
above by 1. So the spectral radius of M̂Q(τ ), i.e., the highest
magnitude of its eigenvalues, must be less than or equal to 1.
Consequently, in complete generality, we can write the eigen-
values of M̂Q(τ ) as {e−λm (τ )+iθm (τ )}, with λm � 0, θm being
real, m going from 1 to DQ, where DQ < D is the Hilbert space
dimension of the Q̂ subspace.

Let the eigenvalues of M̂Q(τ ) be arranged in ascending
order of λm(τ ). Then we immediately see that for λ1(τ ) > 0,
i.e., when the spectral radius is smaller than unity, if n �
1/λ1(τ ), the signal is almost certainly detected, irrespective
of the initial state. Thus, τ/λ1(τ ) gives the timescale for cer-
tainly detecting the signal. It is crucial to note that this finite
timescale for certainly detecting the signal irrespective of the
initial state arises due to repeated stroboscopic measurements
and has no analog in the absence of such measurements.

An interesting case arises if M̂Q(τ ) has unit spectral radius,
i.e., λ1(τ ) = 0. In this case, depending on whether the initial
state has substantial overlap with the corresponding eigen-
vector of M̂Q(τ ), there is a finite probability that the signal
is never detected. For arbitrary finite τ , this condition can
happen if and only if some eigenvectors of Ĥ belong entirely
to the Q̂ subspace, i.e., are simultaneous eigenvectors of Q̂
with eigenvalue 1 [56]. Let the number of such eigenvectors be
D′

Q, D′
Q � DQ, and the projection operator onto this subspace

be Q̂′. Then Ĥ can be block diagonalized as

Ĥ = Q̂′ĤQ̂′ + P̂′Ĥ P̂′, P̂′ = Î − Q̂′. (2)

If the initial state belongs to Q̂′ subspace, the Hamiltonian
dynamics does not take it outside of this subspace and hence
the signal will never be detected. This is irrespective of the
value of τ . This understanding lets us relate the unit spectral
radius of M̂Q(τ ) to specific spectral gaps in the Hamiltonian.

Relation with spectral gaps of the Hamiltonian. Let Ĥ =
Ĥ0 + Ĥ1, where Ĥ0 is a simpler Hamiltonian, whose spectral
properties are easily accessible, and Ĥ1 acts as a perturbation
on it. In particular, we consider a situation where DQ0 , the
number of eigenvectors of Ĥ0, is known to completely belong
to Q̂ subspace, with DQ0 � DQ. Let Q̂0 be the projection op-
erator for this subspace. We have the block-diagonal structure
Ĥ0 = Q̂0Ĥ0Q̂0 + P̂0Ĥ0P̂0, P̂0 = Î − Q̂0. The Hamiltonian Ĥ1

mixes the two subspaces, but has no component completely
within the Q̂0 subspace. The question is, with above assump-
tions, under what condition a similar block diagonalization
can be approximately preserved in the presence of Ĥ1.

The answer is succinctly provided by VVPT. Let |EQ0
α 〉

be the eigenstate of Ĥ0 in Q̂0 subspace with energy EQ0
α and

|EP0
ν 〉 be the eigenstate of Ĥ0 in P̂0 subspace with energy EP0

ν .
Equation (2) is approximately satisfied if for some range of
α ∈ {αmin, αmax} the eigenstates of Ĥ0 in Q̂0 subspace are
energetically gapped from those of P̂0 subspace in the sense

gα := max
ν

∣∣∣∣∣
〈
EQ0

α

∣∣Ĥ1

∣∣EP0
ν

〉
EQ0

α − EP0
ν

∣∣∣∣∣ � 1, α ∈ {αmin, αmax}. (3)
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Let the number of such eigenstates be D′
Q � DQ0 and Q̂′ be the

projection operator onto this subspace. Under such conditions,
starting with Ĥ written in the eigenbasis of Ĥ0, van Vleck
perturbation theory gives a systematic way to perturbatively
find a unitary operator Ûr to rth order such that Û †

r ĤÛr =
Ĥ (r) is approximately block diagonal, i.e., Ĥ (r) � Q̂′Ĥ (r)Q̂′ +
P̂′Ĥ (r)P̂′, with P̂′ = Î − Q̂′ [57,58]. On further diagonalizing
Ĥ (r) the two subspaces mix only a little. It follows that Eq. (2)
is satisfied to a good approximation.

In our example, we choose Ĥ1 = − J
2 (ĉ†

1ĉ0 + ĉ†
0ĉ1), i.e.,

just the hopping term between the left and right halves. Then
Ĥ0 = Ĥ − Ĥ1 is the Hamiltonian without this hopping term.
Without this hopping, the numbers of particles in the left (NL)
and right (NR) halves are separately conserved. Let us restrict
the discussion to the half-filling case NL + NR = N/2 so that
NR is the only remaining quantum number. We immediately
see that our choice of initial condition belongs to NR = 1
sector of Ĥ0. We take the initial state as an energy filtered
random state in this sector of Ĥ0,

|ψ (0)〉 ∝ exp

⎡
⎣−

(
Ĥ0 − E

σ

)2
⎤
⎦|ψrand〉NR=1, (4)

where the |ψrand〉NR=1 is a randomly chosen state in NR = 1
sector and the prefactor is a Gaussian filter peaked around
energy E with a standard deviation σ .

Since our signal is detecting two particles simultaneously
in the right half, we define Q̂0 as the projector onto NR = 0, 1
sectors. Our choice of initial state belongs to the Q̂0 subspace.
It is also clear that Ĥ1 connects NR and NR + 1 sectors. There-
fore, to evaluate Eq. (3), we only need to diagonalize Ĥ0 in
NR = 1 and NR = 2 subspaces. The Hilbert space dimensions
of NR = 1 and NR = 2 subspaces of Ĥ0 scale as N2 and N4, re-
spectively, which are far smaller than than exponential scaling
of the Hilbert space dimension of the full Ĥ in the half-filling
sector.

In Fig. 2(a) we plot gα as a function of �, for various
values of α. We have arranged the eigenstates in Q̂0 subspace
such that α = 0 corresponds to NR = 0, which is just one
configuration, and α � 1 are the eigenstates in NR = 1 sector
in ascending order of energy. In Fig. 2(a) we see that for
the lowest few eigenstates in NR = 1 sector, gα � 1 when
� > J , while this is not the case for � < J . Contrarily, for a
mid-spectrum state α = αmid = 	DQ0/2
, we find gα > 1 ∀�.
Thus, we see clear evidence that Eq. (3) is satisfied in a
low-energy range when � > J , while for � < J , it is not sat-
isfied. It is interesting to note that, although the Hamiltonian
parameters J , �, and ε0 are of the same order, gα emerges as
a perturbative parameter for VVPT in the low-energy regime
when � > J .

Transition in detection probability. Given that we have a
situation where on changing a parameter in Ĥ0 across some
value an energy gap opens between some eigenstates in Q̂0

subspace and those of P̂0 subspace in the sense of Eq. (3), it
is now clear that this will lead to a sharp decrease in λ1(τ ).
Indeed, such a sharp decrease in λ1(τ ) on tuning �/J across
1 is clearly seen in Fig. 2(b). In terms of the nonunitary matrix
M̂Q(τ ), this change in λ1(τ ) is reminiscent of gap closing in a
quantum transition. Physically, the transition is from a regime

FIG. 2. (a) Plot of gα [see Eq. (3)] with � for various values
of α. Here αmid = 	DQ0/2
 and N = 26. (b) Plot of λ1(τ ) with �,
for various system sizes and τ = 2 J−1. (c) Plot of no-detection
probability Rn(τ ) with � after n = 1000 steps. (d) Plot of NR with
� at time nτ = 2000 J−1 in the absence of any detector. For the
symbols in (c) and (d) the initial state is of the form in Eq. (4) with
E = EQ0

1 . The dots in (c) and (d) are the corresponding plots starting
from a different initial state with E = EQ0

αmid
and system size N = 26.

(e) Number of times the signal C is detected in n = 1000 steps in
individual runs of the experiment starting with the initial state of
the form in Eq. (4) with E = EQ0

1 , plotted as a function of �. The
plot shows results for four different runs (trajectories). The transi-
tion at the single trajectory level is clear. The other parameters are
ε0 = 0.5J , σ = 0.1J , and detector sites p = 3 and q = 5. The numer-
ical techniques used to obtain the data are (a) exact diagonalization
and (b) Arnoldi iteration [59,60] with sparse matrix methods [56],
which was computationally possible up to N = 22 (Hilbert space
dimension D = 705 432). The time evolutions required for (b)–(e)
were done with the Chebyshev polynomial method [61–64] with a
sparse matrix, which was computationally possible up to N = 26
(D = 10 400 600).

where the signal is almost certainly detected in a finite time
irrespective of the initial state (QMBDP approximately equal
to one) to a where, depending on the initial state, it may not be
detected (QMBDP approximately equal to zero), as we show
next.

For large n, no-detection probability goes as Rn(τ ) ∼
e−2λ1n [see Eq. (1)]. So Fig. 2(b) then suggests that, if we start
from an initial state of the form of Eq. (4) with E = EQ0

1 and
fix the number of steps n to be in the range 102 � n � 104,
which is finite but large, we should see a sharp transition in
detection probability on tuning �/J across 1. This is shown
in Fig. 2(c), where we plot the corresponding Rn(τ ), with n =
1000, as a function of �/J . For all values of N , Rn(τ ) shows
an increase of more than 12 orders of magnitude on tuning
�/J from 0.9 to 1.1, reaching Rn(τ ) ≈ 1 for larger values.
On increasing N , the transition becomes sharper, although the
finite-size effect is small because the detectors are placed in
the bulk of the system, at a finite distance from the middle.

It is tempting to explain this transition from the known
fact that transport goes from ballistic to diffusive on going
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across � = J [50], which may cause particles from the left
half to not reach the sites p and q within the chosen time.
However, this would be inconsistent, because the sites p and q
are chosen at a finite distance from the middle and the time
nτ = 2000J−1 should have been large enough to transport
particles diffusively. Instead, our understanding in terms of
VVPT consistently explains the phenomenon.

When we start with an initial state of the form of Eq. (4)
with E = EQ0

αmid
, we still see an exponential rise in Rn(τ ) on go-

ing across �/J = 1, as shown by the dotted line in Fig. 2(c).
This is because such a state also has a small overlap with
the low-energy states of Ĥ0. Nevertheless, since mid-spectrum
states of Ĥ0 do not satisfy Eq. (3), as seen in Fig. 2(a),
Rn(τ ) � 1 even for �/J > 1 in this case, within the range
of parameters considered.

Relation to domain-wall melting. On Jordan-Wigner trans-
forming, our choice of initial state is akin to a domain wall
in the sense that total magnetization of the left half (pro-
portional to NL − N/2) is positive and that of the right half
(proportional to NR − N/2) is negative. Our understanding in
terms of VVPT is that, when starting from an initial state
with E = EQ0

1 , for � > J , the Hamiltonian dynamics hardly
takes the system out of NR = 1 subspace. Thus, in such a
case, the initial domain wall “does not melt” up to a long
time. Contrarily, for � < J , the particles should be evenly
distributed between left and right halves, as expected in a
generic system. So the domain wall should melt.

This is clearly seen in Fig. 2(d), where we show plots of
the number of particles on the right half NR at time nτ in the
absence of any detectors, i.e., for continuous time evolution
with the system Hamiltonian. Thus, even in the absence of
any measurement, there is a transition in nonequilibrium dy-
namics on tuning � across J . However, this transition is not as
sharp as that in Rn(τ ). Nevertheless, since we find NR ∼ 1 for
� > J , Fig. 2(d) establishes that putting detectors at any two
sites on right half and choosing any finite value of τ would
lead to a similar transition in Rn(τ ).

Consistently with VVPT, when starting from the initial
state with E = EQ0

αmid
, we find that NR decreases smoothly with

� with no hint of any transition, as shown by the dotted line
in Fig. 2(d). Thus, in this case, the domain wall melts for all
values of �/J within the observed time. This is interesting
because in terms of magnetization of the left and right halves,
there is no difference between the two initial states with
E = EQ0

αmid
and E = EQ0

1 . The physics of domain wall melting
was previously explored in the single-impurity nonintegrable
system in only one work [46], although it has been extensively
studied for integrable XXZ chains [65–71].

Transition at the single trajectory level. Our understanding
of the transition in terms of M̂Q(τ ) shows that, irrespective
of the initial state, after every approximately 1/λ1(τ ) stro-
boscopic measurements, the signal is detected. Let C be the
number of times the signal is detected in n steps in a single
run of the experiment. Note that C is a stochastic variable, in
general having different values for each run of the experiment.
However, by the above argument, if n � 1/λ1(τ ), which im-
plies Rn(τ ) � 1, we expect a large value of C. Contrarily, if
Rn(τ ) ∼ 1, we expect a small value of C. Therefore, we find
that a transition corresponding to that in Rn(τ ) will be seen

in terms of C at a single trajectory level. This is confirmed in
Fig. 2(e), where we show results for four trajectories obtained
from Monte Carlo simulation [56].

This is remarkable since observing far-from-equilibrium
transitions in quantum systems usually requires measurement
of expectation values as a function of time. To measure ex-
pectation values at a chosen time point for a given set of
system parameters, one requires averaging over measurement
outcomes of several identical runs of the experiment. Each
run includes preparing the initial state, evolving up to the
chosen time point and making the measurement. Then, to
obtain expectation values at the next time point, the entire
process has to be repeated. Finally, the whole set of steps
needs to be repeated for several values of system parameters to
obtain the transition. Fundamentally, the requirement of hav-
ing several such identical runs for each time point stems from
the need to avoid effects of measurement backaction while
obtaining expectation values. Instead, a transition in QMBDP
takes into account the effects of measurement backaction.
Consequently, as shown in Fig. 2(e), the above transition can
be seen by counting the number of simultaneous clicks in the
two detectors in one single run of the experiment for each
value of �/J . This is certainly experimentally more appealing
than observing the transition via the dynamics of expectation
values.

This also has potential technological implications. A tran-
sition in QMBDP might be useful in quantum Hamiltonian
learning and parameter estimation [72–79]. For example, in
our setting, if � is unknown but J is tunable, running the
experiment only once for every value of J over a wide enough
range, � can be estimated, since the transition occurs at
the single trajectory level at � = J . No ensemble averaging
would be required for this. Detailed exploration of such appli-
cations of transitions in QMBDP is beyond the scope of the
present paper and is left for future work.

Conclusion. The physics of QMBDP, which we introduced
and explored in this work, is experimentally relevant and of
both fundamental and technological interest. It brings together
several ideas from seemingly disparate fields, such as statis-
tical physics of stochastic systems, quantum measurements,
and quantum many-body physics, and opens the possibility
of observing nonequilibrium transitions via single-shot stro-
boscopic measurements. Quantum simulation experiments
[24–28] are ideal platforms to test our results. We have nu-
merically explored one interesting example. However, the
general formulation of QMBDP in Eq. (1) and its relation
to many-body spectral gaps in the sense of Eq. (3) are valid
for arbitrary Hamiltonians and projection operators that define
the signal. This provides the framework for future research
exploring possible transitions in QMBDP in other systems and
geometries, as well as for various types of signals.
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