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Universal correlations as fingerprints of transverse quantum fluids
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We study universal off-diagonal correlations in transverse quantum fluids (TQF); a new class of quasi-one-
dimensional superfluids featuring long-range-ordered ground states. These exhibit unique self-similar space-time
relations scaling with x>/Dr that serve as fingerprints of the specific states. The results obtained with the effective
field theory are found to be in perfect agreement with ab initio simulations of hard-core bosons on a lattice; a
simple microscopic realization of TQF. This allows an accurate determination—at nonzero temperature and finite
system size—of such key ground-state properties as the condensate and superfluid densities, and characteristic

parameter D.
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Introduction. The concept of a transverse quantum fluid
(TQF) originally emerged in the context of superfluid edge
dislocations in *He [1,2] in an attempt to explain the
observed “flow-through-solid” phenomena [3—10]. It was sub-
sequently realized [11] that there exists a broad class of
quasi-one-dimensional superfluids featuring similar proper-
ties. Examples include a superfluid edge of a self-bound
droplet of hard-core bosons on a two-dimensional (2D) lat-
tice, a Bloch domain wall in an easy-axis ferromagnet, and
a phase separated state of two-component bosonic Mott in-
sulators with the boundary in the counter-superfluid phase
(or in a phase of two-component superfluid) on a 2D lattice.
The TQF state is a striking demonstration of the conditional
character of many dogmas associated with superfluidity and
its order parameter field, such as elementary excitations, in
general, and the ones obeying the Landau criterion in partic-
ular. In sharp contrast with Luttinger liquids—the standard
paradigm for 1D quasi-long-ranged superfluids—TQFs fea-
ture long-range-ordered ground states supporting persistent
currents.

Currently, there are two known classes of TQFs [11]: (i)
systems featuring well-defined elementary excitations with a
quadratic dispersion, w = Dk?, and (ii) so-called incoherent
TQF systems (iTQFs) where the dynamics of phase fluc-
tuations has diffusive character, @ = —iDk?, i.e., they lack
elementary excitations. All the examples mentioned above be-
long to the class (i). A minimal iTQF model, most relevant for
quantum emulation with ultracold atoms and efficient ab initio
numeric simulation, is presented in Fig. 1. The Hamiltonian
of this hard-core boson system contains only hopping terms
between the nearest-neighbor sites with a single 1D path in
the x direction (horizontal links at y = 0), which forms the
iTQF channel. Our analysis equally applies to both geometries
shown in the main panel and in the inset.
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For computational convenience we focus on systems with
particle hole symmetry at half filling and with the same hop-
ping amplitude ¢ between all connected sites. Working in
energy units of ¢ and length scales of the lattice spacing, our
microscopic model is parameter-free. The ground-state con-
densate density, ng, superfluid stiffness, n,, and the diffusion
constant, D, are the key quantities uniquely characterizing the
universal iTQF properties of the system.

In this Letter, we show—based on ab initio worm algorithm
quantum Monte Carlo simulations [12] and predictions of the
effective field theory—that finite-size/finite-temperature be-
havior of the minimal model shown in Fig. 1 [and also that of
physically similar but microscopically different model (23)]
is perfectly and in full detail described by the iTQF effective
field theory. This is so even for relatively small system sizes,
L, and with temperatures T~! = 8 < L, providing a powerful
tool to clearly reveal the unique off-diagonal correlations—
the fingerprint of iTQF—experimentally. Our key results are
presented in Figs. 2 and 3.

Effective field theory model: We begin with the iTQF Eu-
clidean low-energy effective action [11] (5 = 1 throughout)

1
Sivar = 5 D Kol + nk1igil ()

w,k

where the parameter K, or, equivalently, the diffusion coef-
ficient D = ny/K,, controls the real-time diffusive dynamics
w = —iDk? of the superfluid phase, ¢(x, 7), for the boson
field ¥ ~ €.

Neglecting topological defects (instantons), the state with
a harmonic action is fully characterized by the Green’s func-
tion G(x, ) = (Y *(x, 7)¥ (0, 0)), straightforwardly obtained
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FIG. 1. Minimal iTQF model: Hard-core bosons at filling factor
n = 0.5 on the square lattice, with all hopping amplitudes between
sites in the x direction suppressed, except along the single row aty =
0. The nonzero hopping amplitudes are marked by solid lines. Inset:
Image of a system of finite length with periodic boundary conditions,
supporting a superflow along the central loop, which we expect to be
implementable experimentally.

from Gaussian integrals:

Gx,T) = muy Bx)e 7, )
where n,y is the ultraviolet-cutoff-dependent quantity,
[o¢]
CD(.X) — 271 Z €7ﬂE’“ ei27‘rmx/L’ (3)
m=—0oQ

=\ . ns (2wm)*
Z= PEn with E, = = : 4
m:z_:ooe wi > 4)

is the statistical sum of contributions from persistent cur-
rent states with phase winding numbers m in the system
with periodic boundary—otherwise ®(x) = 1; for details, see
Refs. [13,14], and

~ 1
Cx, 1) = 3 ([p(x, T) = $(0,0) 1), 4)
— [1 —cos(kx + wt)] c(w, k). (6)
k,w
The intergration fk,w =/ é“;rd)’f is performed with appropriate

UV cutoff. The last expression is valid at zero temperature
in the thermodynamic limit L — oo. (There is no need for a
7 analog of the & factor for TQF because v windings of the
phase are macroscopically expensive.)
The iTQF kernel c(w, k) is given by
D

c(w, k) = —

PRPETE (iTQF). 7)

Similarly, the TQF state is characterized by c(w, k) =
D?k? /[ng(w? + D*k*)], with D = /n,/«, see Ref. [2]. At zero
temperature, both states exhibit off-diagonal long-range order
even in 1D, corresponding to a saturation of the integral (6)
in the limit of ||, |x|] — oo, leading to a finite condensate

fraction ng in the superfluid ground state,
Mo = My € Jro “@0, (8)

This brings us to the UV-cutoff-independent Bogoliubov rela-
tion

G(x, 1) = ng ®(x) ™D, for D|t| + x> > 00, (9)
where C(x, 7) = C(00, 00) — C(x, T).

Simple analysis reveals self-similarity of C(x, t) for TQF
and iTQF in the thermodynamic limit:

Clx,7) = g(D|t|/x%) (10)

nglx|

VD
= ——= f(Ixl/V/DIz). (1n)
ng/17]
Here g(o) and f(¢) are dimensionless scaling functions re-
lated to each other by the identity f(¢) = g(1/¢%)/¢, ¢ =
1/4/o. In the TQF case, straightforward integration over
results in a gaussian integral over k, leading to the transparent
final answer:
VDe™ WZH
dng/mlT]”

For iTQF no-closed form expression for C(x, 7) can be ob-
tained. Using Ref. [15], one finds

) / etier o | (Lt Des ( 1+i)
o) = —_ = rfc
§ ok |0l + k2 2270 2420

Cx,7)= (12)

~n'1-120%+...), for o <«1. (13)
In a complementary limit,
1
N —(1—¢%/44...), for <1 14
f () 2\/%( g7/ ) ¢ 14)

In a system of a finite length L and a finite temperature 7T,
these relations can be used as long as |x| < L and |7| < B.
Otherwise, the finite-temperature and finite-size effects be-
come significant and thus need to be accurately addressed.

Finite temperature and system size. For a finite system of
length L with periodic boundary conditions and at a low but
nonzero temperature, the correlator C(x, t) in Eq. (9) is given
by (measuring x and t in units of L/2 and B/2, respectively,
in all expressions)

oo

Z einnxeinmrcmn’ (15)
m,n=—0o0
(Im| + |n| # 0)

where ¢, = c(wm, k,)/(BL), w, =2nm/B, k, =2nn/L,

and
Coz/ cw. k)= D (16)
w,k

m,n

(Im| + In| # 0)

Clx,t)=Cy+

Here, both the integral and the sum have ultraviolet frequency
and momentum cutoffs, which mutually cancel. The constant
Cy originates from our convention that ng in Eq. (9) be exactly
equal to the ground-state condensate density in an infinitely
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FIG. 2. Left panel: Single-particle Green’s function G(x, t) of the minimal model (Fig. 1) along four representative space-time directions
for Bt = 32. Solid lines are fits to the predictions of the effective iTQF theory using ny and D as the only fitting parameters (n, = 0.446
is computed from statistics of winding number fluctuations). The G(0, 0) = 0.5 point is excluded to focus on the universal low-energy
behavior. Central panel: Green’s function for gt = 64 with solid lines representing fit-free predictions of the effective iTQF theory using
parameters determined for B¢ = 32. Right panel: Density matrix p(x) for three different temperatures. Solid lines are theoretical predictions
using parameters determined for ¢ = 32. In numeric simulations, temperatures are known and the superfluid stiffness n; is computed, which
leaves only two fitting parameters, ny and D, to describe all three curves. In the experiment, where not only 7, but also temperatures may not be
known, fitting the curves involves six parameters. An accurate fit thereby provides not only quantitative evidence for iTQF state and its ground
state properties, but also a protocol for determining the three temperatures at which p(x) were measured. The dashed line for 8t = 16 shows
how the fit fails when only the state with zero phase winding is taken into account, i.e., when & = 1.

large system. [The m = n = 0 component is absorbed in the
definition of condensate; this will be implied in what follows.]
In the iTQF case, we have

L/B 1

C = _—
mn 4-7_[2’/1‘Y n2 + 72‘;’4 )
b g

_\/EL TOF
y = 2 JDB (iTQF).

Performing standard summation over n, we obtain

Clx,7) = Zf [“"4_ 2) Rl ):(x’ T)], (17)
0.21 : *
R} } Gx,T=0)
0204 \!
i b Gx, T=p/2)
0191 i } Gix=0,1)
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FIG. 3. Green’s functions for the model Eq. (23). The dashed
lines are the fits by the iTQF theory. The fit parameters have been
optimized for G(x, T = 0) and are then reused for the other cases.
The superfluid stiffness n, = 0.5279(4) is obtained from the fluctua-
tions in winding numbers along the x axis, n, = (L/8)(W?). The fit
results are ny = 0.1481(4) and y = 8.86(9) (or D =~ 1.28).

where
B >, cos(rmt) cosh( |1 — x|y/m)
M) = m; Jm sinh(y/m) (1%
=1
Ao =co — —=[coth(y+/m) — 1], (19)
2

c lim |:2 my +1/2 i: ! ] ~ 1.460. (20)
O = * - R— ~ . .
My —00 P Jm

(The term 1/2 under the square root dramatically enhances the
convergence.)

Of particular experimental interest is the single-particle
density matrix p(x) = G(x, 0) at nonzero temperature and
finite system size given by

B _Lx(2 —x)  Dlco+ Ap(X)]
p(x) = nod(x)exp { $n.f Por }
21
w1 cosh(y y/m) — cosh(|1 — x|y /m)
Ao(0) = m; ﬁ[l B sinh(y /) }
(22)

The dependence of p on 8 and L cannot be reduced to a
single scaling combination of these parameters, meaning that
both can be used independently for probing and verifying the
universal off-diagonal correlations. The divergence of A (x, )
and A,(x) at x, 7 — O signals their sensitivity to UV cut-
off [formally taken to infinity in Egs. (18) and (22)]; this
divergence is eliminated inside C(x, ) by the UV-cutoft-
dependent condensate density, as is clear from Eq. (5).

In Fig. 2, we show the result of worm-algorithm quantum
Monte Carlo simulations [12] of the minimal model with
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relatively large system size L, in the y direction, but smaller
length L in the iTQF direction (with both lengths measured
in units of the lattice spacing). The temperature 7 ~ L~! >
t/L? should be considered high given that the low-frequency
iTQF dynamics is characterized by w ~ Dk?. The choice of L,
in our simulations corresponds to the thermodynamic limit,
that is, L, > Bt. Since n, is computed with high accuracy
from statistics of path-integral winding number fluctuations,
two parameters, ny and D, describe all Green’s function data
in the space-time domain. Clearly, ng is responsible only for
the overall signal amplitude at large x and 7. Thus D is solely
responsible for the shape of the curves. Apart from providing
perfect description of all data in the asymptotic limit, the
theory works remarkably well down to the lattice constant
distance and t¢ < 1, see left panel in Fig. 2.

The central panel in Fig. 2 demonstrates that non-zero
temperature effects are under precise theoretical control. In
this case, simulation data for lower temperature (larger B)
are reproduced by simply taking parameters deduced from
the higher temperature fits. The right panel in Fig. 2 is more
relevant to the possible experimental observation of the iTQF
state: while it is relatively standard to recover the density
matrix from the measured momentum distribution, there is
no easy direct access to the Green’s function in imaginary
time. However, if several density matrices at different tem-
peratures are measured, their joint fit will provide access not
only to the iTQF ground state parameters, but also constitute
an accurate thermometry protocol. Moreover, the difference
between the solid and dashed lines for the 8¢ = 16 case indi-
cates that the density matrix data at elevated temperature are
sensitive enough to resolve the persistent currents contribution
and, in particular, can be used to estimate n; directly from
®(x) — 1 ~ —2¢PE[1 — cos2mx/L)].

In order to further show the universality of the theory, we
have also simulated the microscopic model of Ref. [16],

H=— Za; ajiy1 — Z szbi,j#] —1 Z ajbi,o + H.c.,
i ij i

(23)
where the a; bosons are moving along the x axis as in Fig. 1,
and the b bosons, along the y axis, with the hopping amplitude

t; between the a and b bosons. Despite microscopic differ-
ences from the model in Fig. 1, model (23) exhibits the same
low-energy universal iTQF phenomenology. We have demon-
strated this for the system with L = 8 = 64, L, = 128, and
t; = 1. The correlation functions and the corresponding fits
are presented in Fig. 3: Although the fit has been performed
for the equal time single-particle density matrix, the two fit pa-
rameters fully specify the other Green functions as well [17].

Summary and conclusion. Motivated by a number of re-
cently proposed physical realizations, we demonstrated how
an effective field theory can be used to make detailed pre-
dictions for space-time correlations for finite-size systems at
nonzero-temperatures for two types of transverse quantum
fluids, which constitute a new class of quasi-one-dimensional
quantum fluids that even in 1D exhibit an off-diagonal (su-
perfluid) long-range-ordered ground states. Perfect agreement
with quantum Monte Carlo simulations allows us to state that
all effective field theory parameters, and even system temper-
ature, can be reliably extracted from the one-particle density
matrix measurements in finite-size systems, e.g.. in cold-
atom-engineered TQFs. We propose that such benchmarking
experiments be used for measuring other TQF properties such
as real-time dynamics, entanglement, out-of-time-order cor-
relators, full-counting distribution functions, to name a few,
because computing them is difficult or even impossible by
existing analytical treatments or numerical simulations.
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