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Quantum many-body scars in the Bose-Hubbard model with a three-body constraint
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We uncover the exact athermal eigenstates in the Bose-Hubbard (BH) model with a three-body constraint,
motivated by the exact construction of quantum many-body scar (QMBS) states in the S = 1 XY model. These
states are generated by applying an SU(2) ladder operator consisting of a linear combination of two-particle
annihilation operators to the fully occupied state. By using the improved Holstein-Primakoff expansion, we
clarify that the QMBS states in the S = 1 XY model are equivalent to those in the constrained BH model with
additional correlated hopping terms. We also find that, in the strong-coupling limit of the constrained BH model,
the QMBS state exists as the lowest-energy eigenstate of the effective model in the highest-energy sector. This
fact enables us to prepare the QMBS states in a certain adiabatic process and opens up the possibility of observing
them in ultracold-atom experiments.
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Introduction. Recent technological developments in ul-
tracold atoms in optical lattices [1], Rydberg atoms in
optical-tweezer arrays [2], trapped-ion systems [3], and super-
conducting qubit systems [4] allow for simulating dynamics
in isolated quantum many-body systems and enable us to
observe thermalization in sufficiently large systems in experi-
ments. One of the important concepts that partly explains how
isolated quantum many-body systems thermalize is the strong
eigenstate thermalization hypothesis (strong ETH) [5–7]. It
claims that, for all eigenstates of the quantum many-body
Hamiltonian, the expectation value of a local operator coin-
cides with that of the microcanonical ensemble, and would
cause the system to thermalize after a long-time evolu-
tion [8,9]. The strong ETH is often fulfilled in nonintegrable
systems without the extensive number of conserved quan-
tities [10,11], but does not necessarily hold for general
nonintegrable systems [12]. Indeed, such an ETH-breaking
state has been observed in experiments on nonintegrable sys-
tems prepared by Rydberg atoms trapped in optical-tweezer
arrays [13,14].

The discovery of the ETH-breaking state has stimulated
further studies on unconventional phenomena such as the
many-body localization [15–21], the Hilbert-space fragmen-
tation [22–26], and the quantum many-body scar (QMBS)
states [26–37]. Among others, the QMBS states, in which
the thermalization is extremely slow or does not occur in
isolated quantum many-body systems, have gained signifi-
cant attention because of their observation in a wide range
of different models such as the quantum Ising and PXP
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models related to Rydberg-atom systems [27–29,38–50] and
optical-lattice systems [51]. Several theoretical studies have
recently addressed the QMBS states in the Bose-Hubbard
(BH) systems, which are commonly prepared with ultracold
atoms in optical lattices, including those in the classical limit
characterized by a high-dimensional chaotic phase space [52]
and those emerging due to the effects of correlated hop-
pings [53,54]. However, their experimental observation is still
lacking.

Although an emergent SU(2) algebra that is not part of
the symmetry group of the Hamiltonian helps construct the
QMBS state and provides an intuitive understanding of its
origin [41], to the best of our knowledge, the emergent SU(2)
algebra in the BH systems has not been established yet. More-
over, although the S = 1 XY model is commonly treated as a
model for the strong-coupling limit of the BH model [55–57],
the connection between the QMBS states [58,59] [as well as
the hidden SU(2) algebra [60]] in the spin model and those in
the bosonic one has not been thoroughly discussed. If one can
systematically construct the QMBS states of BH systems in a
manner similar to other spin systems, it would be much more
helpful for future ultracold-atom experiments.

In this Letter, we construct the exact QMBS states in the
BH model with a three-body constraint. To clarify the corre-
spondence between the S = 1 XY model and the constrained
BH model, we transform the spin model into the bosonic one
using the improved Holstein-Primakoff expansion [61–65]
and find emergent correlated hopping terms, which also pos-
sess the same QMBS states. Furthermore, by considering the
strong-coupling limit of the constrained BH model, we find
that the QMBS state corresponds to the lowest-energy eigen-
state of the effective model in the highest-energy sector. Based
on this observation, we discuss how to prepare and observe the
QMBS state in ultracold-atom systems.
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Scars in the constrained BH model. We consider the BH
chain, which is defined as

Ĥ∞ = Ĥ∞
0 + Ĥ∞

int , (1)

Ĥ∞
0 = −J

∑
i

(b̂†
i b̂i+1 + H.c.), Ĥ∞

int = U

2

∑
i

ν̂i(ν̂i − 1).

(2)

Here, the operators b̂i and ν̂i = b̂†
i b̂i correspond to the annihi-

lation and particle number operators, respectively. We take the
lattice spacing to be unity and focus on the even system size L.
The strengths of the hopping and interaction are represented as
J and U , respectively. The interaction U can be both attractive
and repulsive. The superscript ∞ indicates that there is no
restriction on the maximum occupation number. We mainly
choose open boundary conditions in Eq. (1) for numerical
calculations although the choice of boundary conditions does
not affect the presence of the QMBS states [66].

Hereafter, we focus on the model with the maximum occu-
pation number nmax = 2 (the occupation number at any site i
is restricted to be ni = 0, 1, and 2). To this end, we apply the
projection P̂nmax=2 on each Hamiltonian and obtain

Ĥ = P̂nmax=2Ĥ∞P̂nmax=2 = Ĥ0 + Ĥint, (3)

Ĥ0 = −J
∑

i

(â†
i âi+1 + H.c.), Ĥint = U

2

∑
i

n̂i(n̂i − 1).

(4)

Here, the operators âi = P̂nmax=2b̂iP̂nmax=2 and n̂i = â†
i âi cor-

respond to the annihilation and particle number operators
after the projection, respectively. When J �= 0, the BH model
(for U �= 0) [67] and that with the constraint nmax = 2 (for
any U ) [66] are nonintegrable in general. The majority of
eigenstates of these nonintegrable models should satisfy the
volume-law scaling of the entanglement entropy (EE), ac-
cording to the ETH. In contrast to these conventional states,
we will demonstrate that the constraint model possesses the
QMBS states for any interaction U .

Inspired by the previous studies on the S = 1 XY
model [58,59], we consider the ladder operators

Ĵ+ =
∑

i

(−1)ri

√
2

â2
i ,

Ĵ− = (Ĵ+)† with â →
⎛
⎝0 1 0

0 0
√

2
0 0 0

⎞
⎠ (5)

for the maximum occupation number nmax = 2. Here, the
matrix representation of the operator â is obtained in the
local Hilbert space spanned by {|0〉, |1〉, |2〉}, and ri is the
distance from the leftmost site (ri = i). The operators sat-
isfy â3 = (â†)3 = 0, while ââ† �= â†â + 1 with a three-body
constraint. From these, we obtain the commutation relation
[â2

i , (â†
j )

2] = (2 − 2â†
i âi )δi j . Using this relation, we define the

operator

Ĵ z = 1

2
[Ĵ+, Ĵ−] = 1

2

∑
i

(1 − â†
i âi ). (6)

The operators Ĵ± and Ĵ z obey an SU(2) algebra
([Ĵ z, Ĵ±] = ±Ĵ±) since [â†

i âi, â2
j ] = −2â2

i δi j and

[â†
i âi, (â†

j )
2] = 2(â†

i )2δi j . It is clear that [Ĵ z, Ĥ ] = 0 from

[Ĵ z, Ĥ0] = 0 and [Ĵ z, Ĥint] = 0, while [Ĵ±, Ĥ ] �= 0 in general.
Note that the SU(2) algebra holds for nmax = 2 by chance and
breaks down for nmax > 2 [66].

Using the properties of these ladder operators, it is easy to
show that the following states,

|Sn〉 ∝ (Ĵ+)n|�〉, |�〉 =
⊗

i

|2i〉, (7)

where |2i〉 stands for |ni = 2〉, correspond to the bosonic coun-
terpart of the QMBS states found in the S = 1 XY model [58],
satisfying Ĥ0|Sn〉 = 0 and Ĥint|Sn〉 ∝ |Sn〉. It is given as

|Sn〉 =
∑

i1 �=···�=in

(−1)ri1 +···+rin(L
n

)1/2

⊗
j

{
|0 j〉, j ∈ {i1, . . . , in},
|2 j〉, otherwise,

(8)

for general n. We will leave the detailed derivation for the
Supplemental Material [66] and discuss in which symmetry
sector the QMBS states appear. Under the space inversion
symmetry operation (Î), the boson creation operators satisfy
Îâ†

i Î = â†
L+1−i. The ladder operator fulfills Î Ĵ+Î = −Ĵ+,

which results in Î|Sn〉 = (−1)n|Sn〉. This relation means
that the QMBS state has even (odd) parity for even (odd)
n(= L − N/2) with N being the total particle number. There-
fore, for even L, we should focus on the sectors with
even parity I = +1 (odd parity I = −1) when N = 4m
(N = 4m + 2) with m being an integer.

Because the QMBS states of the BH model have ex-
actly the same structure as those in the S = 1 XY model,
they exhibit the same EE and the equivalent energy. The
von Neumann EE is defined as SvN

A = −Tr ρ̂A ln ρ̂A with
ρ̂A being the reduced density matrix for a region A of
size LA. When LA = L/2, SvN

A for the state |Sn=L/2〉 would
be SvN

A (n = L/2) → [ln(πL/8) + 1]/2 (L → ∞) [58]. As
for the energy, because the state |Sn〉 is the eigenstate of
both n̂tot = ∑

i n̂i and d̂ tot = ∑
i n̂2

i , i.e., n̂tot|Sn〉 = 2(L −
n)|Sn〉, d̂ tot|Sn〉 = 4(L − n)|Sn〉, the equation Ĥ |Sn〉 = (Ĥ0 +
Ĥint )|Sn〉 = U

2 N |Sn〉 holds with the number of total particles
N = 2(L − n) (=0, 2, 4, . . . , 2L − 2, 2L).

Numerical results on the corresponding EE versus the en-
ergy are presented in Fig. 1. Most of the eigenstates exhibit the
volume-law scaling of EE, whereas the QMBS states show the
area-law scaling (with a logarithmic correction) of EE.

Correspondence between the S = 1 XY model and the
constrained BH model. Let us first present the transformation
that we use to study the correspondence between the two
models. We utilize the improved Holstein-Primakoff expan-
sion [61–65] for S = 1 spin operators

Ŝ+
i =

√
2b̂i + (1 −

√
2)b̂†

i b̂2
i +

(
1√
2

− 1

)
(b̂†

i )2b̂3
i , (9)

with b̂i being the boson annihilation operator before the
Hilbert space truncation. The advantage over the conven-
tional Holstein-Primakoff expansion is that the Hilbert space
on which the operator acts splits into the physical (ni = 0,

1, . . . , nmax = 2) and unphysical (ni = nmax + 1, nmax +
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FIG. 1. EE as a function of energy. The EE of each state (a
blue dot) is given in the unit of ln 2, and its largest value almost
saturates at the Page value [68] SPage = (ln 3)L/2 − 1/2 [58,59] (a
green dashed line). We consider the system size L = 12 under open
boundary conditions and the interaction strength U/J = 1 in Eq. (3).
The quantum number sector with the particle number N = L (unit
filling) and the even parity I = +1 is shown. Each QMBS state (a
red circle with a dot) with the particle number N has the energy UN/2
and the expectation values 〈∑L

i=1 n̂i〉 = N and 〈∑L
i=1 n̂2

i 〉 = 2N . Its
half-chain EE at N = L, corresponding to a state |Sn=L/2〉, becomes
SvN

A → [ln(πL/8) + 1]/2 for L → ∞.

2, . . . ) spaces [66]. Therefore, as long as the operator acts on
the state in the physical subspace, the generated states remain
physical. The transformation within the physical subspace
does not change the spectra of eigenenergies. Consequently,
the bosonic operators with the truncated Hilbert space nmax =
2 (namely, âi = P̂nmax=2b̂iP̂nmax=2) can be mapped exactly to
S = 1 spin operators. Then, the spin ladder operator K̂+ =
1
2

∑
i(−1)ri (Ŝ+

i )2, which is used for constructing the QMBS
states in the S = 1 XY model [58,59], is evaluated as

K̂+ = 1

2

∑
i

(−1)ri

[√
2b2

i −
√

2b̂†
i b̂3

i + 1√
2

(b̂†
i )2b̂4

i

+(5 − 3
√

2)(b̂†
i )3b̂5

i +
(

3

2
−

√
2

)
(b̂†

i )4b̂6
i

]
. (10)

We immediately see K̂+ → Ĵ+ with a three-body constraint
(â3

i = P̂nmax=2b̂3
i P̂nmax=2 = 0), indicating the QMBS states in

both systems are equivalent.
We then transform the term ĤXY

0 = Jxy
∑

i(Ŝ
x
i Ŝx

i+1 +
Ŝy

i Ŝy
i+1) in the S = 1 XY system into the bosonic one. Expand-

ing it by the bosonic operator b̂i, we get correlated hopping
terms in addition to the conventional boson hopping term:

ĤXY
0 = Jxy

∑
i

(b̂ib̂
†
i+1 + H.c.)

+
(

1√
2

− 1

)
Jxy

∑
i

(b̂ib̂
†
i+1ν̂i+1 + b̂i+1b̂†

i ν̂i + H.c.)

+
(

3

2
−

√
2

)
Jxy

∑
i

(ν̂ib̂ib̂
†
i+1ν̂i+1 + H.c.). (11)

Here, we drop unphysical higher-order terms, which corre-
spond to those containing b̂3

i at the rightmost end. Correlated
hoppings are known to play a crucial role in stabilizing
the QMBS states [53,54,69]. By utilizing the improved

Holstein-Primakoff expansion, we successfully show that the
correlated hopping terms in our model also possess the same
QMBS as in the original constrained BH model [66].

Scars in the strong-coupling limit. Let us discuss how
the QMBS states behave in the strong-coupling limit, which
will be useful for experimental realization as we will ex-
plain later. We consider the strong-coupling limit of the BH
model on an open chain with a three-body constraint at
unit filling: Ĥ = −J

∑L−1
i=1 (â†

i âi+1 + â†
i+1âi ) + ∑L

i=1 �in̂i +
U
2

∑L
i=1 n̂i(n̂i − 1). Here, �i is the external potential, which

is often chosen to be a parabolic one in experiments, and the
local Hilbert space is spanned by {|0〉, |1〉, |2〉}. We derive
the effective model in the strong U/J limit for the Hilbert
subspace satisfying

∑
i ni = N (unit filling) and ni = 0 or 2

using the Schrieffer-Wolff transformation [70,71]:

Ĥeff = 1

2
LU +

L∑
i=1

�i + 1

2

L−1∑
i=1

J̃i,i+1 +
L∑

i=1

h̃iT̂
z

i

+ 2
L−1∑
i=1

J̃i,i+1
(
T̂ x

i T̂ x
i+1 + T̂ y

i T̂ y
i+1 − T̂ z

i T̂ z
i+1

)
. (12)

Here, we define

h̃i := 2�i − (J+
i,i+1 − J−

i,i+1) + (J+
i−1,i − J−

i−1,i ), (13)

J̃i,i+1 := J+
i,i+1 + J−

i,i+1 = 2J2U

U 2 − (�i+1 − �i )2
, (14)

J±
i,i+1 :=

{
J2

U±(�i+1−�i )
, i = 1, 2, . . . , L − 1,

0, i = 0, L.
(15)

The operators T̂ α (α = x, y, z) are the S = 1/2 spin opera-
tors that act on the space spanned by {|0〉, |2〉}, and satisfy
T̂ z = (|2〉〈2| − |0〉〈0|)/2 and T̂ + = |2〉〈0|. Note that a similar
effective model was derived previously [72–75] although they
are different from the present one which prohibits the hopping
process containing ni > 2.

After performing a spin rotation around the z axis by π

radians for even sites, the effective model in Eq. (12) trans-
forms into the ferromagnetic Heisenberg model in the absence
of the external potential (�i = 0). The ground state after the
transformation is a trivial ferromagnetic state, which includes
a state |ψFM

GS 〉 ∝ P̂UF
⊗L

j=1
|0 j〉+|2 j 〉√

2
at unit filling. Here, P̂UF is

a projection onto the space at unit filling (
∑

i ni = L). Then,
the corresponding ground state of the original effective model

in Eq. (12) becomes |ψAF
GS 〉 ∝ P̂UF

⊗L
j=1

|0 j〉−(−1) j |2 j〉√
2

, which is
equivalent to |SL/2〉 in Eq. (8). Therefore, the exact ground
state of the effective model in the strong-coupling limit is
embedded in the spectra of eigenstates of the constrained BH
model. Note that the effect of small external potential is found
to be negligible [66].

Next, let us consider how the QMBS state behaves in the
case of U/J < ∞. For U 
 J , the energy spectrum is divided
into well separated bands, and the eigenstates belonging to
each band nearly preserve the number of sites at which the
particle number takes the values ni = 0, ni = 1, and ni = 2.
In the case of unit filling with a three-body constraint, the
highest-energy band (consisting of L/2 sites with ni = 0 and
L/2 sites with ni = 2 only) and the second highest-energy
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FIG. 2. Energy spectra as a function of the interaction strength at
unit filling. We consider the Hamiltonian in Eq. (3) without the exter-
nal potential under open boundary conditions, the system size L = 8,
10, and 12, and the interaction strength J/U = 0.01, 0.02, . . . , 0.1.
The quantum number sector with the particle number N = L and
the parity I = (−1)mod(L,4)/2 for L = 8, 10, and 12 is given by
largest purple, middle green, and smallest blue dots, respectively.
Each QMBS state (a red circle with a dot) with the particle number
N (= L) has the energy UN/2. The effective subspace exhibiting
the highest energy (≈UL/2) and that exhibiting the second highest
one (≈UL/2 − U ) are well separated energetically for U 
 J . The
QMBS state is found to become the lowest-energy eigenstate in the
former subspace for sufficiently strong interaction.

band (consisting of L/2 − 1 sites with ni = 0, L/2 − 1 sites
with ni = 2, and remaining 2 sites with ni = 1) are well sepa-
rated energetically (see Fig. 2). Because the QMBS state is the
exact eigenstate of the constrained BH model for any U , we
can always find the QMBS eigenstate in the band consisting of
only ni = 0 and ni = 2 sites. Remarkably, we have found that
the QMBS state corresponds to the lowest-energy eigenstate
in this subspace (the highest-energy band) not only at the
strong-coupling limit J/U = 0 but also for J/U � 0.1, using
the exact diagonalization method for L � 12 [66].

Preparing scars in ultracold-atom experiments. For a wide
parameter region of U 
 J , the QMBS state is found to
become the lowest-energy eigenstate in the highest-energy
band, where the particle number takes only the values 0 and
2. Therefore, it would be possible to achieve QMBS states in
the BH model with a three-body constraint in the following
manner: (i) Prepare the 202020 · · · -type charge-density wave
(CDW) state with a choice of �i = const × (−1)i to join in
the effective ni = 0, 2 subspace [76]. (ii) Make the external
potential nearly uniform (�i ≈ const) by adiabatically chang-
ing it while keeping U/J sufficiently strong. The quantum
adiabatic theorem ensures that the final state approaches the
lowest-energy eigenstate (equivalent to |SL/2〉) in the ni = 0, 2
subspace. (iii) Subsequently reduce the potential depth so that
the strength of the interaction becomes comparable to the
magnitude of hopping. Note that the ETH breaking may be
caused by the fragmentation [75] and the QMBS states for
U 
 J . To purely observe the effect of the QMBS states, it is
desirable to prepare the system with smaller U .

Concerning the three-body constraint, strong three-body
losses of atoms in optical lattices prohibit more than two

particles from occupying a single site because of the con-
tinuous quantum Zeno effect, resulting in the Bose-Hubbard
model with nmax = 2 [76,77]. To allow control over the ratio
of the three-body-loss term to the two-body interaction term,
one can use a broad Feshbach resonance [78–80]. This proce-
dure enables us to realize the much stronger three-body-loss
term than the interaction and hopping terms, while keeping
periodic potentials shallow so that the interaction is not so
strong. Because our QMBS states in the constrained BH
model can be realized for both attractive and repulsive in-
teractions, they would be detected in ultracold atoms with
three-body losses in optical lattices.

In such QMBS states with a fixed particle number, most
of the physical quantities (such as single-particle correla-
tions [81], density-density correlations [82], and the Rényi
EE [83,84]) exhibit almost no time dependence, which would
be observed after a sudden quench in experiments. The loga-
rithmic size dependence of the EE growth would also provide
a smoking gun for the existence of the QMBS states.

Conclusions. Motivated by the exact construction of the
QMBS states in the S = 1 XY model, we have provided the
equivalent athermal states in the BH model with a three-body
constraint. To get insight into the mechanism of realiz-
ing the QMBS states in the bosonic system, we transform
the spin model into the bosonic model using the improved
Holstein-Primakoff transformation [61–65] that does not mix
the physical and unphysical Hilbert spaces and consequently
does not change the exact energy spectra. The bosonic model
obtained after the transformation is similar to the conventional
BH model, but with the additional correlated hopping terms,
which also possess the same QMBS states. Based on the
fact that the QMBS state corresponds to the lowest-energy
eigenstate of the effective model for the strong-coupling limit
with the highest-energy sector, we propose the realization of
the QMBS states in ultracold-atom systems. Moreover, such a
local effective Hamiltonian, which also possesses the QMBS
states as its eigenstates, would deepen our understanding of
the scar phenomena.

Our findings will stimulate further research on the QMBS
states in general BH models without any constraints, which
would be realized more easily in experiments of ultracold
atoms in optical lattices. The construction of the QMBS
states in the general spin S system has been discussed re-
cently [85,86], and it could be extended to the BH model
by utilizing the improved Holstein-Primakoff transforma-
tion [61–65]. These QMBS states do not have to be generated
according to the conventional SU(2) algebra [85,86]. This
topic will be left for a subject of future study.
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