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Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

(Received 29 August 2023; revised 3 November 2023; accepted 29 November 2023; published 5 January 2024)

The authors propose a tool for assessing the accuracy of approximate electronic wave functions produced

by diverse electronic structure calculations. The plots of fn = ( π2

νn
)
1/4 〈ψn (�r)|[�(�r)]1/4|ψn (�r)〉

〈ψn (�r)| T̂ |ψn (�r)〉 vs νn, where ψn(�r) is

the nth natural (spin) orbital, νn is its occupation number, �(�r) is the on-top two-electron density, and T̂ is the
kinetic energy operator, are found to vividly reveal inaccuracies of the underlying wave functions. As such, they
provide synthetic yet detailed visual information well suited for accuracy assessments especially in the cases
of approaches employing unstandardized basis sets and/or energy minimizations with unascertainable global
convergence characteristics.

DOI: 10.1103/PhysRevA.109.L010801

Orbital-based formalisms of quantum chemistry are the
workhorse of modern electronic structure calculations. These
formalisms, which date back to the formulation of the
Hartree equation [1] and its subsequent augmentation with
the electron-exchange term by Fock [2] and Slater [3] almost
a century ago, invariably involve the construction of an ap-
proximate electronic wave function or its equivalent (such
as the reduced density matrix or the one-electron density)
from one-electron functions (orbitals) given by linear com-
binations of the elements of some basis set. The finiteness
of the cardinality of this set introduces the truncation error
in the computed electronic properties that is independent of
its intrinsic counterpart due to the approximations inherent to
a given approach. In the case of modern implementations of
the Kohn-Sham formalism [4], which are de facto semiem-
pirical methods due to the plethora of adjustable parameters
employed in their approximate functionals, the latter error is
both dominant and not readily amenable to rigorous analysis,
making the impact of the basis set quality on the overall ac-
curacy less relevant. In contrast, highly sophisticated ab initio
approaches, invoked when both accuracy and reliability are
demanded, are characterized by small intrinsic errors, which
brings the issue of the truncation error to the forefront.

The electron-electron coalescence cusp, whose presence in
the exact electronic wave function � [5] carries over to the
related quantities such as the two-electron density ρ2(�r1, �r2)
[6] and the one-electron reduced density matrix (the 1-matrix)
1�(�r1; �r1′ ) [7] (here and in the following the spin coordinates
are suppressed for the sake of clarity), is poorly approxi-
mated by combinations of the Slater determinants constructed
from finite numbers of orbitals. This flaw of the orbital-based
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formalisms is the root cause of the slow decay of the trunca-
tion error 	EN in the electronic energy (and thus in all the
other properties) with the basis-set size N [8]. In fact, the
ratio 	EN

N , where N is the number of electrons, turns out to
be inversely proportional to N

N [9]. At the first glance, this
scaling of 	EN with N appears to be very unfavorable due
to the computational cost being typically proportional to N λ

(where λ > 1). However, this problem is mitigated in practical
calculations with several numerical techniques, such as the
computation of relative quantities (especially in the case of the
electronic energy), the extrapolation to the complete-basis-set
(CBS) limit [10] (note, however, the lack of solid theoretical
foundations for this approach [11]), and the standardization
of basis sets [12]. Among these three techniques, the last one
is particularly important as it allows meaningful comparisons
of the results obtained with different formalisms by different
practitioners of quantum chemistry, a priori ballpark estima-
tion of errors in the computed quantities with various rules
of thumb concerning appropriateness of a given combination
(colloquially called “the level of theory” [13]) of the formal-
ism and the basis set for a given system or a class of systems,
and the formulation of various composite methods that aim at
error reduction without undue increase in computational cost
[14]. Moreover, the aforementioned CBS extrapolations hinge
upon the employment of systematically designed sequences of
standard basis sets.

Unfortunately, this alleviation of the truncation error prob-
lem does not suffice when very high accuracy of electronic
properties is sought. In such circumstances, the construction
of approximate electronic wave functions from basis functions
involving the interelectron distance(s) becomes indispensable.
There are many variants of this explicitly correlated formalism
[15–18] (which emerged concurrently [19] with its orbital-
based counterpart) that differ in accuracy and computational
cost. Among them, those employing the exponentially cor-
related Gaussians (ECGs) of Boys [20] and Singer [21] are
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particularly suitable for few-electron systems [17,22], en-
abling predictions of electronic properties of atoms (such
as Be [23], B [24], and C [25]), molecules (such as LiH
[26], LiH− [27], BH [28], and H3 [29]), and weakly bound
species (such as He2 [30]) with unprecedented accuracy. Since
calculations involving ECGs readily lend themselves to effi-
cient parallelization, the ongoing progress in the performance
of computer hardware is certain to result in further exten-
sion of their range of applicability to other di- and triatomic
molecules and their ions (especially within the nonrelativistic
clamped-nuclei approximation).

At the center core of such calculations is the minimiza-
tion of the Rayleigh quotient with respect to (in general)
N (N+1)

2 exponents and 3N origin-shift coordinates of each
ECG. Since thousands of ECGs are typically used, this quo-
tient is an extremely complicated function of these variational
parameters that has a large number of local minima. Con-
sequently, its computed approximate minimizer is inherently
ill-defined, depending strongly on the initial guess, the min-
imization method, and the number of function evaluations.
Although, from a practical point of view, “it is only nec-
essary to find a wave function that is sufficiently low lying
in energy” [17], the infeasibility of locating the global min-
imum hinders the evaluation of the overall accuracy of the
electronic properties produced by a given ECG calculation.
This is so because, unlike in the case of the orbital-based
formalisms, in which standardized basis sets are usually em-
ployed and the electronic wave function (or its equivalent)
results from global minimization of some energy expression
(often followed by additional mathematical operations in-
volving the minimizer) and/or of the norm of the residual
error vector, these properties are derived from sets of vari-
ational parameters corresponding to the vicinities of local
minima that are approached at random. Consequently, as the
lowering of the electronic energy cannot be regarded as a
reliable indicator of the improvement in the overall accu-
racy, the juxtaposition of the computed data against their
experimentally determined counterparts appears to be the
only reliable way of comparing the quality of different ECG
calculations. However, such an approach is not without its
own challenges that stem from uncertainties in empirical
data and the necessity of their adjustment to account for the
contributions (such as those due the nuclear motion, the rela-
tivistic effects, and the QED phenomena) not included in the
calculations.

In principle, bracketing of the ground-state energy offered
by combining rigorous lower bounds with their variational
counterparts discussed above can provide some informa-
tion about the quality of the underlying approximate wave
function. However, a practical application of this accuracy
measure has several disadvantages. First of all, except for
those obtained from the Weinstein formalism, the lower
bounds are de facto properties of the basis sets whose linear
combinations are the approximate wave functions rather than
properties of the wave functions themselves [31]. Second,
these bounds are usually quite loose, resulting in estimates
of energy errors that are far too large. Third, these estimates
are just single numbers that may not reflect the deficiencies of
the wave functions affecting electronic properties other than
energy.

The above observations underscore the necessity of de-
velopment of a theoretical tool enabling a comprehensive
yet concise accuracy assessment of ECG-based predictions
of electronic properties. Such a tool, whose importance is
particularly clear in light of the anticipated increase in the
number of these predictions due to the continuous advances in
the performance of computer hardware, should (i) rely solely
on the quantities derivable from the electronic wave function
under examination, (ii) be universally applicable to a broad
spectrum of quantum-chemical methods (despite, for the rea-
sons spelled out above, being developed with the ECG-based
approaches in mind), (iii) be robust, i.e., yielding equally
useful information for wave functions of both high and low
accuracy, (iv) be sensitive enough to readily reveal differences
among wave functions corresponding to barely different ener-
gies, and (v) produce synthetic yet sufficiently detailed output
(preferably graphical) that lends itself to simple interpretation,
thus facilitating rapid comparison and identification of indi-
vidual wave functions.

Consider the ratio

fn =
(

π2

νn

)1/4 〈ψn(�r)|[�(�r)]1/4|ψn(�r)〉
〈ψn(�r)| T̂ |ψn(�r)〉 , (1)

where T̂ is the kinetic energy operator, ψn(�r) is the nth nat-
ural (spin) orbital (NO), νn is its occupation number [32],
and �(�r) = ρ2(�r, �r) is the on-top two-electron density. When
derived from exact �, these quantities are known to asymp-
totically obey the zero-energy Schrödinger equation [33]

T̂ ψn(�r) −
(

π2

νn

)1/4

[�(�r)]1/4 ψn(�r) = 0 (2)

at the limit of n → ∞ (where n orders the occupation numbers
nonascendingly) provided that �(�r) does not vanish for all �r.
This asymptotic behavior implies fn rapidly tending to one as
νn → 0 [33,34]. Thus, as any deviation from this trend (called
“a feature” in the following text) is indicative of inaccuracies
in a given approximate electronic wave function, the plot of fn

vs νn (the latter conveniently displayed in a logarithmic scale)
constitutes an accuracy fingerprint of such �.

The quantities that enter Eq. (1) are readily computable
from any N-electron wave function. The first step in the
evaluation of fn involves the computations of ρ2(�r1, �r2) and
1�(�r1; �r1′ ), which are particularly straightforward for � given
by a linear combination of ECGs. Diagonalization of the latter
(in a suitable basis of one-electron functions whose adequacy
can be easily assessed by examining the effect of its aug-
mentation on the accuracy fingerprint) affords the NOs and
their occupation numbers, from which the expectation values
of [�(�r)]

1/4
and T̂ can be calculated for each ψn(�r). For the

latter, the respective integrals are amenable to analytical eval-
uation, whereas one has to resort to a numerical quadrature for
the former. However, since [�(�r)]

1/4
varies rather slowly with

�r, the estimate

〈ψn(�r)|[�(�r)]1/4|ψn(�r)〉 ≈
∑

j

[�( �Rj )]
1/4

∫
� j

|ψn(�r)|2 d3�r,

(3)
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(a) (b)

(c)

FIG. 1. The accuracy fingerprints of the approximate ground-state electronic wave functions of the Be atom computed with (a) 2745,
(b) 4023, and (c) 5896 ECGs. The quantities corresponding to the s-, p-, d-, and f -type NOs are denoted by green, red, blue, and orange dots,
respectively.

where �Rj =
∫
� j

�r d3�r∫
� j

d3�r is the center of � j , converges rapidly to

the exact value with the diminishing sizes of the domains {� j}
such that

⋃
j � j = R3 (note that three significant digits in the

computed properties suffice for the purpose of their plotting).
It transpires from the above considerations that, be-

ing directly derivable from approximate electronic wave
functions of any accuracy computed with a broad spec-
trum of quantum-chemical methods [including those that
are not explicitly wave-function-based, for which, if avail-
able, ρ2(�r1, �r2) and 1�(�r1; �r1′ ) can be used instead of �],
the accuracy fingerprints meet the first three of the afore-
mentioned five requirements expected to be satisfied by the
interpretive tool sought in the present study. The confor-
mity with the remaining two requirements is convincingly

demonstrated with the help of the following numerical
examples.

The first of these examples concerns the approximate
1Sg ground-state electronic wave functions of the Be atom
obtained with 2745, 4023, and 5896 [35] ECGs (which
correspond to the respective energies of −14.667 356 431,
−14.667 356 476, and −14.667 356 500 hartree that are 77,
32, and 8 nhartree above the best literature value of
−14.667 356 508 hartree [23]). Inspection of their accuracy
fingerprints displayed in Fig. 1 gives rise to several interest-
ing observations. First of all, the deficiencies of the wave
functions in question are manifest almost exclusively in the
s-type NOs, hinting perhaps at the predominance of inaccu-
racies in the reproduction of the electron-nucleus cusp over
those pertaining to its electron-electron counterpart. Second,
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(a) (b)

(c)

FIG. 2. The accuracy fingerprints of the approximate ground-state electronic wave functions of the Li− anion atom computed with (a) 2745,
(b) 4023, and (c) 5896 ECGs. The quantities corresponding to the s-, p-, d-, and f -type NOs are denoted by green, red, blue, and orange dots,
respectively.

the features in the accuracy fingerprints that reflect these
deficiencies are rich in detail, which implies the feasibil-
ity of rapid comparisons of wave functions originating from
different sources by means of simple superimpositions of
the relevant plots. Such comparisons are expected to be
particularly useful in the cases of calculations (partially)
converged to distinct local minima with close energy val-
ues or in the situations where relative quality of the results
of calculations carried out by different researchers (possi-
bly with different methods) has to be ascertained. Third,
although the magnitudes of the occupation numbers at the
onsets of these features become progressively smaller with
the increasing numbers of ECGs, the features themselves
do not evolve in a systematic manner, signaling the random
and incomplete nature of the minimization process involved

in the computation of the underlying approximate wave
functions.

The above observations carry over to the analogous ac-
curacy fingerprints pertaining to the 1Sg ground state of the
Li− anion (Fig. 2), for which the calculations employing
2745, 4023, and 5896 [35] ECGs yield the respective ener-
gies of −7.500 776 566, −7.500 776 603, and −7.500 776 622
hartree (note that the last of these values is lower than its
best literature counterpart of −7.500 776 613 hartree com-
puted with 10 000 ECGs [36]). An interesting aspect of these
accuracy fingerprints is the presence of the s-type NO with the
occupation number of ca. 10−9 that stands out from the other-
wise regular dependencies of fn on νn as a solitary persistent
feature in the midsections of the plots. This NO is an instance
of solitonic natural orbitals (SoNOs) that occasionally appear
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(a) (b)

(c)

FIG. 3. The accuracy fingerprints of the approximate ground-state electronic wave functions of the Li atom computed with (a) 1873,
(b) 2745, and (c) 4023 ECGs. The quantities corresponding to the s-, p-, d-, and f -type NOs are denoted by green, red, blue, and orange dots
(solid/hollow for the NOs with the α/β spin components), respectively.

in strongly correlated systems [34]. Although the values of fn

computed for these SoNOs deviate significantly from 1, their
appearance in the accuracy fingerprints is largely irrelevant in
the context of the present study.

The example involving the 2Sg ground state of the
Li atom, for which the energies of −7.478 060 322 652,
−7.478 060 323 725, and −7.478 060 323 881 hartree (which
are 1258, 185, and 29 phartree above their best literature
counterpart of −7.478 060 323 910 147 hartree [37]) are ob-
tained with 1873, 2745, and 4023 [35] ECGs, respectively,
demonstrates the applicability of the concept of the accuracy
fingerprints to approximate wave functions of spin-polarized
systems. In this instance, the NOs can be marked for not only
their angular momenta but also their spin components (Fig. 3).
As in the previous cases of Be and Li−, it turns out that the

features indicating the deficiencies of the corresponding wave
functions are largely confined to the s-type NOs with both the
α and β spin components. Not surprisingly, the presence of
these features does not correlate with the magnitude of the en-
ergy error as some of those absent in the accuracy fingerprint
pertaining to 1873 ECGs appear upon the number of the basis
functions being increased to 2745, only to vanish again for the
wave function computed with 4023 ECGs.

The capability of the accuracy fingerprints to discrimi-
nate among approximate wave functions yielding essentially
identical variational energies is vividly illustrated with the
results of a numerical experiment in which the optimized
exponents of the 4023 ECGs employed in the construction
of the most accurate of the three aforedescribed ground-
state wave functions of the lithium atom are scaled by either
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(a) (b)

FIG. 4. The accuracy fingerprints of the approximate ground-state electronic wave functions of the Li atom computed from 4023 ECGs
with the optimized exponents scaled by (a) 0.90893 and (b) 1.10395. The quantities corresponding to the s-, p-, d-, and f -type NOs are denoted
by green, red, blue, and orange dots (solid/hollow for the NOs with the α/β spin components), respectively.

0.908 93 or 1.103 95 in order to simulate incomplete en-
ergy minimizations. Such a scaling results in the variational
energies matching within 0.1 phartree that corresponding to
the wave function computed with 2745 ECGs. Inspection of
the plots displayed in Fig. 4 and their comparison with that
presented in Fig. 3(b) reveal well-pronounced dissimilarities
among the accuracy fingerprints of the approximate wave
functions arising from a smaller basis of optimized ECGs
and from its larger unoptimized counterparts. In addition to
distinct features in the leftmost regions of the plots, there are
prominent differences within the 10−16−10−12 range of the
occupation numbers, where the three features present at ca.
2.52 × 10−17, 8.17 × 10−17, and 8.73 × 10−17 in the accuracy
fingerprint pertaining to the 2745 optimized ECGs [Fig. 3(b)]
are replaced by those at 1.06 × 10−16 and 3.44 × 10−15 [for
the 4023 ECGs with the exponents scaled down; Fig. 4(a)]
and at 3.58 × 10−15, 2.11 × 10−14, and 4.84 × 10−13 [for the
4023 ECGs with the exponents scaled up; Fig. 4(b)]. One is
tempted to regard the earlier (i.e., at greater occupation num-
bers) onset of these features as the indicator of the incomplete
energy minimizations simulated by scaling of the optimized
exponents.

The usefulness of the accuracy fingerprints in the detec-
tion of inaccuracies in approximate electronic wave functions
obtained with the orbital-based methods is convincingly
demonstrated by the case of the 1Sg ground state of the helium
atom. A juxtaposition of the plot pertaining to the approx-
imate wave function obtained from benchmark calculations
[38] against that produced by the full configuration interaction
(FCI) method employed in conjunction with the cc-pV6Z
basis set [12] reveals two interesting facts (Fig. 5). First of
all, although within the FCI formalism the number of the
NOs equals the cardinality of the basis set, several of the
respective occupation numbers are reproduced surprisingly
well. On the other hand, the corresponding values of fn are
severely overestimated for all n due to the very inaccurate

on-top two-electron density. In contrast to those encountered
in the previous numerical examples, this deficiency is mani-
fested at the rightmost region of the plot.

In summary, the plots of the values of a certain quan-
tity derived from the properties of natural (spin) orbitals vs
their occupation numbers can be regarded as accuracy fin-
gerprints that encode deficiencies of approximate electronic

FIG. 5. A juxtaposition of the accuracy fingerprints pertaining
to the approximate ground-state electronic wave functions of the
He atom obtained from benchmark (solid dots) and FCI/cc-pV6Z
(hollow dots) calculations. The quantities corresponding to the s-, p-,
d-, f -, g-, and h-type NOs are denoted by green, red, blue, orange,
magenta, and cyan dots, respectively.
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wave functions in a manner suitable for detailed visual inspec-
tion. Consequently, they provide simple yet effective means
for assessing the numerical quality of such wave functions,
solving a problem whose importance to quantum-chemical
calculations employing unstandardized basis sets and/or en-
ergy minimizations with unascertainable global convergence
characteristics has not been fully recognized thus far. When
employed in conjunction with ECG-based approaches, the
accuracy fingerprints are expected to be particularly useful
as tools for monitoring both the gradual construction of ba-
sis sets and the optimization of their variational parameters,
comparing both the wave functions that belong to different
local energy minima and those obtained with different nu-
merical runs, and identifying possible pathways to accuracy
improvement. For electronic states with nontrivial point-group
symmetries, the visual information carried by these finger-
prints can be further enhanced by marking the NOs according
to the pertinent irreducible representations.
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Appendix: details of calculations. Since the method-
ology of the ECG-based electronic structure calculations
has been repeatedly reviewed [17,22], only the details
specific to the present work are presented here. Single func-
tions of the spin coordinates {σi}, namely, [α(σ1) β(σ2) −
β(σ1) α(σ2)] α(σ3) for the 2Sg state of Li and [α(σ1) β(σ2) −
β(σ1) α(σ2)] [α(σ3) β(σ4) − β(σ3) α(σ4)] for the 1Sg states
of Be and Li−, have been employed. The ECG basis
sets have been constructed in an iterative manner that
commences with those comprising K1 = 1, K2 = 2, and
K3 = 3 functions. For each J > 3, the sets of KJ−2 and KJ

ECGs with the variational parameters already optimized by
separate minimizations of the respective Rayleigh quotients
have been merged and the resulting parameters of the set of
KJ+1 = KJ−2 + KJ ECGs have been employed as the initial
guess for the de novo optimization.

The NOs and their corresponding occupation numbers
have been obtained from the 1-matrices (which are themselves
given by linear combinations of the ECG-type functions) de-
rived from the computed approximate wave functions. These
matrices have been projected onto basis sets composed of
nucleus-centered Gaussian primitives {xki yli zmi e−ζi r2} with
ki, li, and mi equal to either 0 or 1, the sum ki + li + mi

assuming the values of 0, 1, 2, and 3 for the s-, p-, d-, and
f -type NOs, respectively. The projections have involved com-
putation of the matrix elements of the 1-matrices in the bases
of these primitives, their transformation to orthonormal bases,
and diagonalization of the resulting matrices. In principle,
the optimal values of the exponents {ζi} could be determined
for each of the NO types by maximization of the overlap
between the original and projected matrices. However, as such
maximizations are prohibitively expensive, {ζi} have been
restricted to the elements of two even-tempered sequences
of exponents whose parameters have been optimized for the
1-matrices derived from the wave functions constructed with
either 406 (Li) or 129 (Be and Li−) ECGs. For the s- and
p-type orbitals, the resulting sets of exponents have been
augmented with modified even-tempered sequences covering
the range of the greatest values of {ζi} in order to circumvent
the problem of excessive linear dependencies among basis
functions. In the case of Li, the final calculations of the NOs
and their occupation numbers have been carried out in the
extended precision of 96 decimal digits with 160 (320 for the
s-type NOs) Gaussian primitives, whereas in the cases of Be
and Li−, 100 (200 for the s-type NOs) Gaussian primitives
have been used in conjunction with the quad-double precision
(equivalent to ca. 64 decimal digits). Appropriate numerical
libraries [40] have been employed in all of these calculations.
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