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Chiral and nonreciprocal transmission of single photons in coupled-resonator-waveguide systems
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In this paper, we employ two two-level atoms and a �-type atom to connect two one-dimensional semi-infinite
coupled resonator waveguides, respectively. The first configuration is a chiral setup, where incident photons
undergo an elastic scattering process. We investigate the influence on the single-photon transfer rate of spatial
coupling points between the small or giant atom and the waveguides. Our numerical simulations demonstrate
that additional coupling points in the giant atom system will modify the transmission rule observed in the small
atom system due to their unique interference effects. The second configuration is a nonreciprocal setup, where
the conduction direction depends entirely on the initial state of the �-type atom. The incident photon undergoes
an inelastic scattering process accompanied by frequency conversion.
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I. INTRODUCTION

Quantum information science, as an essential topic in
quantum optics, optomechanical systems [1–3], cold atom
physics [4–6], cavity quantum electrodynamics (cavity QED)
systems [7–9], and superconducting circuit quantum electro-
dynamics (circuit QED) systems [10–12], has been proposed
to obtain and transport quantum information through the in-
teraction between light and matter. To expand the physical
space of transmission, waveguide QED has recently garnered
considerable attention [13–16]. For instance, the coupled res-
onator waveguide (CRW) [17–20] has been widely studied
in quantum routers [21], quantum memories [22], and slow
light applications [23]. Compared with traditional continuous
waveguides, CRW offers several advantages, such as tunable
group velocity for traveling photons [24], control over the
dissipation or decoherence of atoms [25], and the ability to
induce effective coupling between remote atoms [26].

In the traditional atom-CRW scheme, the dipole approx-
imation is typically invoked [27], treating the atom as a
pointlike object that only interacts with the waveguide at a
single resonator. However, the dipole approximation becomes
inadequate when the size of the atom becomes comparable
or larger than the mode wavelength. In such cases, the atom
interacts with the CRW at multiple coupling points, and the
atom is referred to as a giant atom [28,29]. Generally, giant
atoms can be achieved by increasing the ratio between the
atomic size and the mode wavelength [30–32] or by cou-
pling a small atom to the curved waveguide at well-separated
locations [33,34]. The distinctive configurations of these
structures lead to physical phenomena distinct from those
observed in small atom systems. This distinction arises from
the phase differences resulting from parametric couplings and
direction-dependent phase delays, encompassing effects such
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as time delay [35,36], decoherence-free interaction among
giant atoms [37,38], photon storage [39,40], and beyond.

Different configurations of the atom-CRW usually cor-
respond to different functions; examples include chiral and
nonreciprocal setups. The latter, such as diodes [41–48],
and circulators [49–53], have been widely studied for their
usefulness. In this work, we construct two types of atom-
CRW systems, involving either small or giant atoms, to
achieve single-photon chiral and nonreciprocal transmission,
respectively. The first system consists of two one-dimensional
(1D) semi-infinite CRWs connected by two coupled two-level
atoms. The transmission of a single photon is not affected
by the incident port, undergoing an elastic scattering process.
Our numerical simulations show that the transfer rate of the
incident photon can be changed by adjusting the coupling
point between atoms and waveguides. Moreover, the second
coupling point for each giant atom can alter the transport laws
in small atomic systems. In the second setup, similar to the
configuration described in Ref. [54], we employ a �-type
atom coupled to the CRWs, collectively forming a nonrecipro-
cal device. The unidirectional transmission of a single photon
is contingent upon the initial state of the atom, involving an
inelastic scattering process that leads to the frequency conver-
sion of the incident photon, which differs from the mechanism
observed in chiral-giant-molecule waveguide systems [55].
We investigate the impact of coupling points on the transfer
rate at resonance, and intriguingly, the observed peculiarity
mirrors that of the scenario with two two-level atoms. Lastly,
we delve into the influence of three distinct CRW band con-
figurations on both the reflectance and transfer rate.

This work is structured as follows. In Sec. II, we introduce
the model of a two two-level atom system and present the
corresponding Hamiltonian. The analysis of the single-photon
scattering process for the small atom system is presented in
Sec. II A, while Sec. II B delves into the same process for the
giant atom system. Moving on to Sec. III, we substitute the
two two-level atoms from Sec. II with a �-type atom and ex-
plore the single-photon scattering process for both small and
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FIG. 1. The system comprises a semi-infinite coupled resonator
waveguide, referred to as the lower bus waveguide M, and a semi-
infinite coupled resonator waveguide, referred to as the upper drop
waveguide N . These waveguides are interconnected by a molecule
at four resonators (M, M + m, N, N + n), respectively. The molecule
consists of two interacting two-level atoms with a coupling strength
denoted as J .

giant atom cases. Additionally, we investigate the impact of
three distinct configurations of CRW bands on single-photon
transmission. Section IV is dedicated to a discussion on the
experimental feasibility, and finally, Sec. V provides a sum-
mary of the findings.

II. CHIRAL TRANSMISSION OF SINGLE PHOTONS
WITH TWO TWO-LEVEL ATOMS

Our proposed system comprises two semi-infinite CRWs,
each forming a quasi-1D array of identical optical cavi-
ties with nearest-neighbor coupling. The connection between
these two CRWs is established by a molecule (refer to Fig. 1).
The first two-level atom, characterized by the transition fre-
quency ω1 between the ground state |g〉 and the excited state
|e〉, is coupled to CRW-M at resonator M and resonator
M + m with the coupling strength g1. The second atom, with
the transition frequency ω2, is coupled to CRW-N at resonator
N and resonator N + n with the coupling strength g2. The in-
teraction between these two atoms is governed by the coupling
strength J , mediated through virtual photon exchange [56].

A. Small atom system in the case of m = n = 0

When we set m = n = 0, the initial two coupling points
converge into a singular coupling point. In this arrangement,
there is the small atoms couple with the waveguide at in-
dividual resonators, and the system’s Hamiltonian can be
represented as (assuming h̄ = 1).

H1 = Ha + Hw + Hint,

Ha =
2∑

i=1

ωiσ
+
i σ−

i ,

Hw =
∑

α=M,N

{
ωα

∑
j

a†
α ( j)aα ( j)

− ξα

+∞∑
j=1

[a†
α ( j + 1)aα ( j) + a†

α ( j)aα ( j + 1)]

}
,

Hint = g1a†
M (M )σ−

1 + g2a†
N (N )σ−

2 + Jσ−
1 σ+

2 + H.c. (1)

Here, Ha represents the free Hamiltonian of the atoms, and
σ+

i (σ−
i ) denotes the raising (lowering) operator of the atom.

Hw is the Hamiltonian for the CRWs with the homogeneous
intercavity coupling constant ξα . The operators a†

α ( j) (where
j = 1, . . . ,+∞) represent the creation operator of the jth
single-mode resonator with frequency ωα for the waveguide α.
The term Hint comprises two parts: (i) the interactions between
the atomic transitions and the CRWs, and (ii) an effective
atom-atom coupling.

Hw describes the typical tight-binding boson model, where
each CRW possesses an energy band centered at ωα with a
bandwidth of 4ξα . The chosen frequency ωα allows the disper-
sion relation of the waveguide to be linearized as EM = ωM −
2ξMcos(k) and EN = ωN − 2ξN cos(q) [21,57]. Here, k and q
represent the wave vectors of the propagating single photon in
CRW-M and CRW-N , respectively. For simplicity, we assume
ξM = ξN = ξ , g1 = g2 = J = g in the following discussion.
Initially, we prepare two atoms in the ground state |g〉, and
a single photon can be incident from either the infinitely far
left end of CRW-M or the infinitely far right end of CRW-N .
Following elastic scattering between the atom and the photon,
the eigenvalue of each waveguide remains unchanged (i.e.,
EM = EN ). Assuming ωM = ωN , we have k = q.

In this section, we delve into the single-photon scattering
process. This can be elucidated by expressing the single-
excitation eigenstate as

|ψ〉 =
⎧⎨⎩∑

j

[cM ( j)a†
M ( j) + cN ( j)a†

N ( j)] +
2∑

i=1

ueiσ
+
i

⎫⎬⎭|∅〉,

(2)

|∅〉 represents the vacuum state of the resonator field, while
the atoms are in the ground state |g〉. cM ( j) and cN ( j) denote
the probability amplitudes for finding a photonic excitation in
resonator j of CRW-M and CRW-N , respectively. uei stands
for the excitation amplitude of the atom.

We derive the coupled stationary equations for the ampli-
tudes from the eigenvalue equation H1|ψ〉 = E |ψ〉
(E − ωM )cM (M ) = −ξ [cM (M − 1) + cM (M + 1)] + gue1,

(3a)

(E − ωN )cN (N ) = −ξ [cN (N − 1) + cN (N + 1)] + gue2,

(3b)

(E − ω1)ue1 = g[cM (M ) + ue2], (3c)

(E − ω2)ue2 = g[cN (N ) + ue1]. (3d)

First, we consider a scenario where a single photon with
wave vector k is incident from the left side of CRW-M, and the
atoms occupy the state |g〉. In the regime j > M, both incident
and reflected photons coexist, while in the regime j > N ,
only the transmitted photon exists. For j � M or j � N , the
boundary compels the photon to be generated as a stationary
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FIG. 2. The spectra of the single-photon transfer rate TN are plot-
ted as functions of the incident energy E and the coupling strength
g. In (a), we consider M = N = 1; in (b), M = N = 2; in (c), M =
N = 3; and in (d), M = N = 4. These spectra are calculated for the
parameter values ωM = ωN = ω1 = ω2 = 0.

wave within the finite CRWs. Therefore, the wave functions
in the asymptotic regions are given, respectively, by

cM ( j) =
{

e−ik j + rMeik j, j > M

A sin(k j), j = 1, 2, . . . , M
(4)

and

cN ( j) =
{

tN eiq j, j > N

B sin(q j), j = 1, 2, . . . , N
(5)

where rM is the reflected amplitude in CRW-M, and tN is the
transfer amplitude in CRW-N . The corresponding continuity
conditions at j = M, N are

e−ikM + rMeikM = A sin(kM ), (6a)

tN eiqN = B sin(qN ). (6b)

Taking the simplest case as an example, we choose M = N =
1 and assume ωM = ωN = ω1 = ω2 = 0 [58]. By applying
solutions (4) and (5) to the discrete scattering equations (3),
we obtain the transfer amplitude,

tN = e−3ik (e2ik − 1)g3ξ

η + 2Eeik (E2 − 2g2)ξ + e2ik (E2 − g2)ξ 2
, (7)

where η = E4 − 3E2g2 + g4.
In Fig. 2, we have illustrated the transfer rate TN = |tN |2

as a function of both the incident energy E and the coupling
strength g for various atom-CRW configurations with M =
N = 1, 2, 3, 4. Figure 2(a) reveals that, within a broad band-
width, high transfer rates are predominantly concentrated in

FIG. 3. The spectra of the single-photon transfer rate TN are
plotted as functions of the incident energy E . In (a), we consider
M = 1; in (b), M = 2; in (c), M = 3; and in (d), M = 4. Each group
of spectra corresponds to four different values of N , where N = 1
(solid green line), N = 2 (blue dashed line), N = 3 (black dot-dashed
line), and N = 4 (red dashed line). These spectra are calculated for
the parameters g = 1ξ , ωM = ωN = ω1 = ω2 = 0.

the range g ∈ [1ξ, 1.5ξ ]. Notably, when the coupling strength
g equals the intercavity coupling constant ξ , the transfer rate
TN attains unity across the entire bandwidth. This behavior
can be analytically verified by applying the dispersion relation
E = 2ξcos(k) to the transfer amplitude (7). Figures 2(b) and
2(d) depict scenarios where both M and N are even values. In
these cases, incident photons are completely reflected near the
band center (E = 0), and this outcome remains independent
of the coupling strength.

To further investigate the relationship between coupling
position and transfer amplitude, we depict the spectra of the
single-photon transfer rate TN as a function of the incident
energy E in Fig. 3 for various combinations of M and N . The
system operates symmetrically, as evidenced by the coinci-
dence of the TN curve for M = 1, N = 3 (black dot-dashed
line) in Fig. 3(a) and M = 3, N = 1 (solid green line) in
Fig. 3(c). We further validate this symmetry in the ensuing
discussion. In Fig. 3(a) with N = 1, the curve manifests as
a flat band with TN = 1 throughout the entire bandwidth,
aligning with the results in Fig. 2(a). Focusing on the dis-
crepancy near E = 0, it is observed that single-photon transfer
occurs exclusively when either M = N = 1 or M = 1, N = 3
in Fig. 3(a), and M = 3, N = 1 or M = N = 3 in Fig. 3(c). A
comparative analysis of all 16 curves suggests that achieving
TN ≈ 1 at resonance is possible only when both M and N are
odd values. Additionally, we note that the bandwidth of high
transfer rate is broader when the sum of the number M and N
is smaller.

In superconducting quantum devices, Josephson junction
loops threaded by external fluxes allow us to introduce a
local coupling phase [59], represented by θ , which induces
intriguing interference effects in the scattering properties. The
atom-CRW coupling is described as g1 = g2 = geiθ . In Fig. 4,
we compare the cases where θ = π and θ = π/2. We ob-
serve that the additional coupling phase does not significantly
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FIG. 4. The spectra of the single-photon transfer rate TN are
plotted as functions of the incident energy E . In (a), we consider
N = 1; in (b), N = 2; in (c), N = 3; and in (d), N = 4. Each group of
spectra corresponds to two different values of θ , where θ = π (solid
green line), θ = π/2 (blue dashed line). These spectra are calculated
for the parameters g = 1ξ , ωM = ωN = ω1 = ω2 = 0, M = 1.

affect the transmission rule at resonance. However, outside the
resonance region, the transfer rate TN undergoes a noticeable
change, especially at M = N = 1, where the flat band charac-
terized by TN = 1 is significantly reduced. Hence, it becomes
feasible to manipulate single-photon scattering through an
external field.

Now, let us consider another scenario where a single pho-
ton with wave vector q is incident from the right side of
CRW-N , and the atoms occupy the state |g〉. The wave func-
tions in the asymptotic regions are given, respectively, by

c̃M ( j) =
{

t̃Meik j, j > M

B̃ sin(k j), j = 1, 2, . . . , M
(8)

and

c̃N ( j) =
{

e−iq j + r̃N eiq j, j > N

Ã sin(q j), j = 1, 2, . . . , N
(9)

where t̃M is the transfer amplitude in CRW-M, and r̃N is the
reflected amplitude in CRW-N . The corresponding continuity
conditions at j = M, N are

t̃MeikM = B̃ sin(kM ), (10a)

e−iqN + r̃N eiqN = Ã sin(qN ). (10b)

It can be demonstrated that there always exist tN = t̃M and
rN = r̃M in the scattering process. The entry direction does
not influence the transfer rate of the single photon. There-
fore, the operation of this device exhibits chirality. Moreover,
by selecting ωM = ω1 and ωN = ω2, it becomes feasible to
effectively connect two waveguides with different center fre-
quencies. This achievement contrasts with the single-atom
scenario, where a substantial detuning between the atom and
the waveguide is encountered, as discussed in Ref. [60].

B. Giant atom system in the case of m �= 0 or n �= 0

Now, we replace the small atoms in Sec. II A with gi-
ant atoms (m �= 0 or n �= 0). Each giant atom is coupled
to the waveguide at two resonators. The related parameters
are consistent with those in Sec. II A. The novel interaction
Hamiltonian is expressed as

H ′
int = g[a†

M (M ) + a†
M (M + m)]σ−

1

+ g[a†
N (N ) + a†

N (N + n)]σ−
2 + gσ−

1 σ+
2 + H.c., (11)

and we have the Hamiltonian of the whole system H2 = Ha +
Hw + H ′

int.
We obtain the coupled stationary equations for the ampli-

tudes from the eigenvalue equation H2|ψ〉 = E |ψ〉
(E − ωM )cM (M ) = −ξ [cM (M − 1) + cM (M + 1)] + gue1,

(12a)

(E − ωM )cM (M + m) = −ξ [cM (M + m − 1)

+ cM (M + m + 1)] + gue1, (12b)

(E − ωN )cN (N ) = −ξ [cN (N − 1) + cN (N + 1)] + gue2,

(12c)

(E − ωN )cN (N + n) = −ξ [cN (N + n − 1)

+ cN (N + n + 1)] + gue2, (12d)

(E − ω1)ue1 = g[cM (M ) + cM (M + m) + ue2],

(12e)

(E − ω2)ue2 = g[cN (N ) + cN (N + n) + ue1]. (12f)

We consider a scenario in which a single photon with wave
vector k is incident from the left side of CRW-M, and the
atoms occupy the state |g〉. Unlike the small atomic system,
there are simultaneously plane waves moving in opposite di-
rections in the regime M < j � M + m or N < j � N + n.
Therefore, the wave functions in the asymptotic regions are
given, respectively, by

cM ( j) =

⎧⎪⎨⎪⎩
e−ik j + rMeik j, j > M + m

Ceik j + De−ik j, M < j � M + m

A sin(k j), j = 1, 2, . . . , M

(13)

and

cN ( j) =

⎧⎪⎨⎪⎩
tN eiq j, j > N + n

Eeiq j + Fe−iq j, N < j � N + n

B sin(q j). j = 1, 2, . . . , N

(14)

Together with the continuous condition at j = {M, M +
m, N, N + n}, which are

e−ik(M+m) + rMeik(M+m) = Ceik(M+m) + De−ik(M+m), (15a)

CeikM + De−ikM = A sin(kM ), (15b)

tN eiq(N+n) = Eeiq(N+n) + Fe−iq(N+n), (15c)

EeiqN + Fe−iqN = B sin(qN ). (15d)

By applying solutions (13) and (14) to the discrete scattering
equations (12), the transfer amplitude tN and the reflected
amplitude rM can be obtained.
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FIG. 5. The single-photon transfer rate TN spectra are plotted as
functions of the incident energy E for the case of M = N = 1 in
(a) and M = 1, N = 2 in (b). Each group of spectra corresponds to
four different values of n, where n = 1 (solid green line), n = 2 (blue
dashed line), n = 3 (black dot-dashed line), and n = 4 (red dashed
line). These spectra are calculated for the parameters g = 1ξ , ωM =
ωN = ω1 = ω2 = 0, m = 0.

We investigate the effect of the size of the giant atom on
the transfer rate TN in Fig. 5. We choose m = 0 and select the
value of n from 1 to 4, meaning the molecule is asymmetric,
with the upper part being a giant atom and the lower part being
a small atom. Figure 5(a) corresponds to the case shown in
Fig. 3(a) by the green solid line, where M = N = 1. It man-
ifests that the additional coupling point has an obvious effect
on single-photon transmission due to the unique interference
effects. For instance, TN < 0.7 in the whole bandwidth when
n is even, and only a single eigenenergy point at the edge
satisfies TN = 1 when n is odd. Figure 5(b) corresponds to
the case shown in Fig. 3(a) by the blue dashed line, where
M = 1, N = 2. Around E = 0, the small atom system acts
as a mirror, blocking the propagation of photons [61–64],
while the giant atom system allows the incident photon to be
transferred by selecting odd values for n.

In Fig. 6, the molecule comprises two giant atoms (m =
n = 1) and exhibits symmetry. Under this configuration, we
consistently assume M = N and systematically investigate the
impact on the transfer rate TN with simultaneous increments
in the values of M and N . The curve in Fig. 6 for M = N = 1
corresponds to the cases depicted in Fig. 3(a) by the green
solid line; M = N = 2 corresponds to the cases shown in
Fig. 3(b) by the blue dashed line; M = N = 3 corresponds
to the cases illustrated in Fig. 3(c) by the black dot-dashed
line; and M = N = 4 corresponds to the instances presented

FIG. 6. The single-photon transfer rate TN spectrum is plotted as
a function of the incident energy E . There are four different values
of M and N , where M = N = 1 (solid green line), M = N = 2 (blue
dashed line), M = N = 3 (black dot-dashed line), and M = N = 4
(red dashed line). The spectrum is calculated for the parameters
g = 1ξ , ωM = ωN = ω1 = ω2 = 0, m = n = 1.

in Fig. 3(d) by the red dashed line. Upon comparing these four
sets of curves around E = 0, it becomes evident that, akin to
the scenario with a single giant atom, the additional coupling
points of two giant atoms can effectively govern the trans-
mission of incident photons. Specifically, they can facilitate
the opening of closed CRWs when M and N are even values.
Conversely, they significantly diminish the transfer rate for the
opened CRWs when M and N are odd values. Furthermore,
owing to the distinctive interference effects between the two
coupling points of giant atoms, the symmetry of the spectrum
is disrupted, resulting in a more disordered pattern.

III. SINGLE-PHOTON NONRECIPROCAL TRANSMISSION
WITH A �-TYPE ATOM

In this section, we replace the two two-level atoms in
Sec. II with a �-type atom, as depicted in Fig. 7. The

Waveguide N

N+n+1N+nN+n-1N+1N1

Waveguide M

M+m+1 M+m M+m-1 M+1 M 1

FIG. 7. The system consists of a semi-infinite coupled resonator
waveguide, denoted as the lower bus waveguide M, and a semi-
infinite coupled resonator waveguide, denoted as the upper drop
waveguide N . These waveguides are connected by a �-type atom
at four resonators (M, M + m, N, N + n), respectively. The atomic
transitions |g〉 ↔ |e〉 coupled to CRW-M (red line) and |s〉 ↔ |e〉
coupled to CRW-N (blue line).
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FIG. 8. The single-photon transfer rate TN spectrum is plotted as
functions of M and N . The spectrum is calculated for the parameter
ωM = ωe = 0, g1 = g2 = g = 1ξ .

�-type atom possesses atomic transitions |g〉 ↔ |e〉 coupled
to CRW-M and |s〉 ↔ |e〉 coupled to CRW-N , respectively.
This atom-waveguide coupling form is similar to that in
Ref. [65].

The setup functions akin to a diode, where the permissible
direction for the single photon’s travel hinges on the initial
state of the atom. Initially, we prepare the atom in state |g〉. Let
us envision a single photon with wave vector k approaching
from the left side of CRW-M. Upon interacting with the atom,
the incident photon can be redirected to CRW-N via frequency
conversion k → q. This process involves inelastic scattering,
inducing a change in waveguide energy �=EN −EM =−ωs.
However, if the same photon arrives from the right side of
CRW-N , it won’t be absorbed due to the atomic transition
|s〉 ↔ |e〉. Next, we prepare the atom in state |s〉. This state
facilitates the single photon’s journey from CRW-N to CRW-
M through frequency conversion k′ → q′, with an energy shift
between waveguides of �′ = EM − EN = ωs. To summarize,
this setup enables single-photon nonreciprocal transmission
with frequency conversion, where the direction of conduction
is entirely dictated by the initial state of the atom.

The Hamiltonian of the small atom system can be written
as (setting h̄ = 1)

H̃ = H̃a + H̃w + H̃int,

H̃a = ωeσ
+
g σ−

g + ωsσ
−
s σ+

s ,

H̃w =
∑

α=M,N

⎧⎨⎩ωα

∑
j

a†
α ( j)aα ( j)

− ξα

+∞∑
j=1

[a†
α ( j+1)aα ( j)+a†

α ( j)aα ( j+1)]

⎫⎬⎭,

H̃int = ga†
M (M )σ−

g + ga†
N (N )σ−

s + H.c., (16)

(a) TN

1 2 3 4 5 6 7 8 9

1
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9

n

m

(b)
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7

8

9

n

m

FIG. 9. The single-photon transfer rate TN spectra are plotted as
functions of m and n for the case of M =N =1 in (a) and M =N =2
in (b). These spectra are calculated for the parameter ωM = ωe = 0,
g1 = g2 = g = 1ξ .

where σ+
g = |e〉〈g| and σ+

s = |e〉〈s| are the raising operators
of the atom. ωe and ωs are the energies of the states |e〉 and |s〉
with respect to the state |g〉, respectively.

The single excitation eigenstate for this system by
expressing as

|ψ̃〉 =
⎧⎨⎩∑

j

[cM ( j)a†
M ( j) + cN ( j)a†

N ( j)]+ue(σ+
g +σ+

s )

⎫⎬⎭|∅〉.

(17)

We obtain the coupled stationary equations of small atom
system for the amplitudes as

(E − ωM )cM (M ) =−ξ [cM (M − 1)+cM (M + 1)]+gue,

(18a)

(E − ωN − ωs)cN (N ) = −ξ [cN (N−1) + cN (N + 1)] + gue,

(18b)

(E − ωe)ue = gcM (M ) + gcN (N ). (18c)
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FIG. 10. The single-photon reflectance RM (solid green line) and transfer rate TN (blue dashed line) spectra are plotted as function of the
detuning �N . (a)–(c) and (d)–(f) corresponding to the case of N = 1, 3, 5 and N = 2, 4, 6, respectively. The spectrum are calculated for the
parameters g = 1ξ , ωM = ωe = 0, M = 1.

The single-photon wave functions in the asymptotic regions
and the continuous conditions of the system remain un-
changed. Following the same solution steps in Sec. II, the
transfer amplitude could be obtained. The same process can
be extended to the case of giant atoms.

To simulate the transmission of the single photon across
the entire bandwidth, we assume k = q and ωM = ωN + ωs

in the following. The results are consistent with the cases in
Sec. II. In Fig. 8, we plotted the transfer rate TN as functions
of the parameters M and N at the atom-waveguide resonance
in the small atom system. The spectrum manifests that only
when M and N are both odd values can a high transfer rate be
achieved, confirming the previous conjecture in Sec. II A. We
also explore the transmission rules in the giant atom system in
Fig. 9. It can be observed that when the additional coupling
locations are located at 4 j − 2 ( j = 1, 2 . . .), the incident
photon is completely reflected, even though the configuration
allows full transmission in the small atom system for M =
N = 1. For the case of M = N = 2 in Fig. 9(b), by choosing
m and n to be both odd values, the original closed passage can
be opened, confirming the previous conjecture in Sec. II B.

Additionally, Figs. 8 and 9(b) coincide; the extra coupling
points of the giant atoms act in the same way as the single
coupling point of the small atoms.

Now consider the more general case in small atom system,
assume �M = ωM − ωe, �N = ωN + ωs − ωe. We calculate
the transfer rate tN under the condition of ωM = ωe = 0,
there is

tN = 8i sin
(

Mπ
2

)
sin

[
N arccos

(
�N
2

)]
χ

, (19)

the analytical expression guarantees that no photon is trans-
mitted to CRW-N when the value of M is even. The variable
χ represents a polynomial that does not impact the stated
conclusion.

In Fig. 10, we have depicted the reflectance RM and
transfer rate TN as functions of the detuning �N at E = 0,
accompanied by three distinct band configurations illustrated
above the figures. When �M − �N � 4ξ , indicating complete
separation of the two bands, the wave vector q becomes com-
plex with a positive imaginary component. In the scenario
where N = 1, we observe TN �= 0 due to the formation of a
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stationary wave in the coupling resonator between CRW-N
and the atom. Here, the bound states in CRW-N constitute the
closed channel-N , with TN representing both the amplitude
of the bound states localized around the atom and the trans-
mission coefficient. Conversely, for N � 2, single photons are
localized around the atom, forming local modes in CRW-N ,
preventing the travel of single photons in CRW-N . For 4ξ �
�M − �N � 0, signifying partial overlap of the two bands,
the figures illustrate that TN can exceed 1 for the bound state
of CRW-N . This intriguing phenomenon can be elucidated
by the divergence of the scattering cross section when the
energy of the incident particle aligns with the bound state of
the closed channel, akin to the Feshbach resonance in cold
atom scattering [66]. Moreover, when the energy bands of
the two waveguides overlap by half, the transmission prob-
ability reaches its maximum. By comparing Figs. 10(a)–10(c)
or Figs. 10(d)–10(f), we deduce that the enlargement of the
stationary wave formation region solely increases the number
of wave peaks. Finally, when �M = �N , corresponding to the
perfect coincidence of the two bands, we have portrayed this
scenario in Fig. 8.

IV. EXPERIMENTAL FEASIBILITY

In this section, we provide a detailed analysis of the exper-
imental feasibility of this scheme. The CRW can be realized
with at least three types of systems. (i) Defect resonators
in photonic crystals: An array of photonic band gap cavities
allows intercavity photon hopping due to their proximity and
evanescent coupling between the cavities. The nitrogen va-
cancy (NV) diamond would be a candidate system, with the
interesting transition at 637 nm ≈ 3 × 1015 Hz [67]. Silicon-
on-silica photonic band gap cavities have achieved Q ≈ 107

[68], meeting the requirements of the system for photon
hopping between adjacent cavities. Additionally, adopting
an asymmetric cavity [69] at the termination of the waveg-
uide enables the construction of a semi-infinite dimensional
waveguide. For instance, within a high-finesse Fabry-Pérot
cavity measuring 335 µm in length, the decay rates of the
cavity mirrors may be observed as κ1 = 2π × 3.1 MHz and
κ2 = 2π × 0.2 MHz [70]. (ii) Coupled superconducting trans-
mission line resonators: The traditional model of atom-cavity
interaction can be represented by the coupling between line
resonators and charge qubits [71]. We construct the configura-
tion and take the length of line resonators L = 1 cm, with the
capacitance per unit length C = 0.13fF/µm [72]. In addition,
the charge qubit could be represented by a biased Cooper
pair box (CPB) with a proper biased voltage Vg [73]. (iii)
Atomic waveguides: Atomic waveguides are an intrinsically
quantum reservoir, made of spins using an array of neutral
atoms trapped in optical lattices [74,75] or tweezers [76–78].
Compared to conventional dielectric structures, the optical
properties of atomic arrays can be dynamically controlled via
external dressing fields.

In experiments on superconducting circuits, numerous
studies have showcased the feasibility of fabricating LC cir-
cuit arrays [79,80]. The transmon qubit, acting as a giant
atom, has been instrumental in establishing multiple coupling
points to the flux line [37], as well as achieving qubit-
qubit coupling [81–84]. Drawing upon these advancements in
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FIG. 11. Effective superconducting circuit diagram of the devices.

superconducting experiments, we have developed a concrete
superconducting circuit, depicted in Fig. 11(a), where LC
circuits (LCCs) function as resonators interconnected by ca-
pacitors. Within the enclosed area demarcated by a dotted box,
two transmon qubits are coupled with a strength denoted as J .
This coupling is achieved by inserting a capacitor C12 between
the voltage nodes of the two circuits involved [56,85]. The
transmission line establishes connections between the LCCs
and the transmon qubit, characterized by coupling strengths gi

(i = 1, 2), modulated by capacitances Ci. The parameters ad-
here to certain constraints: J ∝ C12V1V2 ∝ C12/Cq1Cq2, g1 ∝
C1VmVm1 ∝ C1/C0Cq1, and g2 ∝ C2VnVn2 ∝ C2/C0Cq2, where
C0 denotes the coupling capacitance of the LCC, Cq1 and
Cq2 represent the capacitance of the transmon qubits, C12 is
the coupling capacitance between transmon qubits, and Vϕ

(ϕ = 1, 2, m1, n2, m, n) signifies the voltage operator of the
corresponding voltage node being connected. Thus, by ad-
justing the coupling capacitances, we can attain the condition
g1 = g2 = J = g. Moreover, it is feasible to employ qubit-
qubit inductive coupling in Fig. 11(b) and qubit-waveguide
inductive coupling in Fig. 11(c), where the coupling constants
are controlled by external fields [85,86]. If we replace the two
transmon qubits with a � system on the left, as proposed
in Refs. [87–89], it could realize the configuration depicted
in Fig. 7.

V. CONCLUSION

We conducted an analysis of the transmission properties of
single photons in chiral and nonreciprocal modes within two
distinct types of atom-CRW systems. The initial hybrid con-
figuration involves two semi-infinite CRWs interconnected by
two two-level atoms. In this scenario, a single photon under-
goes elastic scattering, resulting in chiral transmission. Our
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numerical simulations for a small atom system reveal that the
transfer rate of incident photons is influenced by the coupling
position between the atom and the waveguide (denoted as
M and N), leading to either complete transfer or blockage.
Specifically, our findings indicate that a high transfer rate is
achievable at resonance only when both M and N are odd
values. Upon extending our analysis to a giant atom system,
we observed that additional coupling points (denoted as m and
n) introduce unique interference effects, thereby revising the
previous conclusions. Notably, in the case where M and N are
not simultaneously odd values, the photon transfer channel is
reopened. Conversely, the channel is closed when both M and
N are odd values.

The second hybrid arrangement comprises two semi-
infinite CRWs connected by a �-type atom. In this config-
uration, the transmission of a single photon undergoes an
inelastic scattering process accompanied by frequency con-
version, akin to the functionality of a single-photon diode.
The direction of conduction is contingent upon the initial
state of the atom. When a single photon with a wave vector
k approaches from the left side of CRW-M, with the atom
initially in state |g〉, it undergoes frequency conversion to q.
Conversely, if the same single photon approaches from the
right side of CRW-N and the atom is prepared in state |s〉,
the frequency conversion results in k → q′. The roles of the
parameters M, N, m, n align with the scenarios observed in the
two two-level atom system.

It is noteworthy that replacing the semi-infinite CRW
with an infinite one is feasible, albeit resulting in a con-
siderable reduction in the transfer rate (refer to Appendix).
In essence, our research has revealed novel phenomena
and applications within atom-CRW systems. These pro-
posed systems seamlessly integrate nonreciprocity and the
realm of giant atomic physics, presenting promising solutions
for quantum network engineering and quantum information
processing.
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APPENDIX: ONE CONFIGURATION COMBINING ONE
SEMI-INFINITE CRW AND ONE INFINITE CRW

In this Appendix, we extend the semi-infinite lower bus
waveguide in Fig. 1 to an infinite one. The Hamiltonian for
the CRWs is written as

H ′
w =

+∞∑
j=−∞

{ωMa†
M ( j)aM ( j)

− ξ [a†
M ( j + 1)aM ( j) + a†

M ( j)aM ( j + 1)]}

+
+∞∑
j=1

{ωN a†
N ( j)aN ( j)

− ξ [a†
N ( j + 1)aN ( j) + a†

N ( j)aN ( j + 1)]}, (A1)

FIG. 12. The single-photon transfer rate TN spectrum is plotted
as a function of the incident energy E . There are four different
values of N , in which N = 1 (solid green line), N = 2 (blue dashed
line), N = 3 (black dot-dashed line), N = 4 (red dashed line). The
spectrum is calculated for the parameters g = 1ξ , ωM = ωN = ω1 =
ω2 = 0, M = 0.

then we have the Hamiltonian of the whole system H ′ = Ha +
H ′

w + Hint. In this small atom-waveguide system, we consider
M = 0 as the coupling point in waveguide M.

The wave functions in the asymptotic regions are given,
respectively, by

cM ( j) =
{

e−ik j + rMeik j, j > 0

tMe−ik j, j < 0
(A2)

and

cN ( j) =
{

tN eik j, j > N

A sin(k j), j = 1, 2, . . . , N
(A3)

where tM is the transfer amplitude in the CRW-M. Together
with the continuous condition at j = 0, N , which are

1 + rM = tM, (A4a)

tN eikN = A sin(kN ). (A4b)

Finally, we obtain the analytic solution of transfer amplitude
tN as

tN = 2ie−ik (e2ik − 1)sin(kN )

η′ − 4iEsin(k) + e2ikN [2iEsin(k) − 1]
, (A5)

where η′ = 3 − 2E2 + 2(E2 − 1)cos(2k).
In Fig. 12, we present the transfer rate TN as a function of

the incident energy E , where the coupling point in CRW-N is
varied from 1 to 4. The spectrum reveals that a high transfer
rate is only attainable around E = 0 when N is an odd value.
In comparison to the scenario in Sec. II, more than half of the
probability indicates that the single photon will be reflected
and transmitted in CRW-M throughout the entire bandwidth.
Consequently, the transfer rate TN in this configuration is
limited to no more than 0.5.
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