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Coherence via reiterated beam splitting
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Beam splitters are not-free operations with regard to quantum coherence. As a consequence, they can create
coherence from both coherent and incoherent states. We investigate the increase in coherence produced by
cascades of beam splitters. To this end, we construct two different configurations and analyze different sequences
of input states.
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I. INTRODUCTION

The beam splitter is a basic device in optics conceived
to create coherence in the classical realm and is therefore
a fundamental element in interferometry. Its role is no less
relevant in quantum optics [1,2]. In this realm, it allows one
to easily perform fundamental quantum state transformations,
such as entanglement generation, state measurements like to-
mography, and certification of nonclassicality. For this reason,
it is present in most photonic implementations of quantum
applications [3–5]. Thus, we investigate beam splitting as a
coherence-making process in quantum optics.

In recent years, we have witnessed a rapid growth in in-
terest in quantum coherence as the cornerstone of quantum
theory [6–8]. Far from the more standard theory of coher-
ence in quantum optics, based on the works of Glauber
and Sudarshan [9–11], current formulations of quantum co-
herence mainly focus on its resourcefulness as a quantifier
of quantum superpositions [8,12,13]. This novel approach
is definitely more versatile within the ongoing technologi-
cal perspective, which motivates the effort to translate the
theoretical framework to the laboratory [14,15]. It has been
shown that quantum coherence improves the efficiency of
Grover’s, Deutsch-Jozsa’s, and Shor’s algorithms [16–18];
it is directly related to path-information uncertainty [19,20]
and purity [21], and it plays an important role in quantum
thermodynamics [22] and condensed-matter scenarios [23].
However, behind the operational perspective, a lot of theoreti-
cal research is still expanding the resource theory of quantum
coherence [24,25]. For example, the concepts of distillation,
dilution, and catalysis relate to the fundamental question of
defining the set of free operations [26,27].

In this regard, beam splitters are not-free operations even
in the more restrictive contexts in which the inability to
use coherence is taken into account [28]. Thus, we face the
question of how much coherence can be introduced by beam
splitting. In the context of quantum correlations, this question
has usually focused on the generation of entanglement, which
excludes the option of Glauber coherent input states [29].
However, Glauber coherent states have proven to be a useful

tool for quantum tasks [30], and quantum coherence goes
beyond entanglement, so we broaden the point of view for the
analysis.

In this work we look for the optimal configuration of a set
of beam splitters in order to maximize the quantum coherence
of the output state. The analysis is grounded on the study of
an individual beam splitter as a coherence maker introduced in
Ref. [31]. This is especially motivated by the rather unsettling
possibility of unlimited coherence growth with an unlimited
increase in the number of beam splitters. We especially focus
on the mode decomposition of the total coherence, trying to
relate the overall coherence to the coherence of each output
mode.

Throughout, we consider lossless beam splitters and com-
pute coherence in the photon-number basis |n〉. As a suitable
coherence measure, we utilize the l1 norm of coherence [7,8],

C =
∑
n,n′

|〈n|ρ|n′〉| − 1, (1.1)

where ρ is the density matrix. It simplifies for pure states,
|ψ〉 = ∑

n cn|n〉, into the form

C =
(∑

n

|cn|
)2

− 1, (1.2)

where n represents any collection of natural numbers needed
to label the photon-number basis in a multimode scenario.

The state acting as the input of the series of beam splitters
is designed such that only one input mode is populated, while
all the other input modes are in vacuum states. This is the
traditional way in which beam splitting is used to manage co-
herence. For the field state in the populated mode, we examine
pure and mixed states, both coherent and incoherent. These
are Glauber coherent states |α〉 as pure and partially coherent
inputs, number states |n〉 as pure and incoherent inputs, and,
finally, phase-averaged and thermal states as both mixed and
incoherent inputs. With these choices, we examine whether
the increase in coherence depends on the initial coherence
conveyed by the input field state, its quantumness, or purity.
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FIG. 1. Plot of C(n̄, N = 0) for a single coherent state as a func-
tion of the total mean number of photons n̄ (orange solid line) and its
approximation in Eq. (2.5) (gray dashed line).

II. COHERENT-STATE INPUT

First, we consider a Glauber coherent state |α〉 in the only
populated mode, so that the input state becomes

|α, 0, . . . , 0〉. (2.1)

Let us compute the coherence for the input state. The coeffi-
cients in the single-mode photon-number basis have modulus

|cn| =
√

n̄n

n!
e−n̄/2, (2.2)

where n̄ is the mean number of photons n̄ = |α|2. The coher-
ence of the input state, which we shall denote C(n̄, N = 0),
where N will later represent the number of beam splitters, is

C(n̄, N = 0) = e−n̄

( ∞∑
n=0

√
n̄n

n!

)2

− 1. (2.3)

In order to obtain the intuition of analytical solutions we
utilize the following approximation: For large enough n̄, the
sum in Eq. (2.3) can be approximated by an integral, and the
Poissonian statistics in Eq. (2.2) can be approximated by a
Gaussian,

|cn| � 1

(2π n̄)1/4
e−(n−n̄)2/(4n̄). (2.4)

Under this assumption, the coherence results in

C(n̄, N = 0) � 2
√

2π n̄ − 1. (2.5)

In Fig. 1, we plot C(n̄, N = 0) for a single coherent state as a
function of the total mean number of photons n̄ (orange solid
line) and its approximation in Eq. (2.5) (gray dashed line).

It is worth noting the increase of coherence with the mean
number of photons, without an upper limit [32]. This behavior
is not contemplated in the Glauber-Sudarshan quantum-
optical theory of coherence or in the classical theory of
coherence, where coherence is independent of the field inten-
sity. This independence, by construction, reflects the idea that
coherence is a measure of the wavelike quality independent of
the amount of light.

Now, we can address the coherence after a cascade of N
arbitrary lossless beam splitters, such as the ones illustrated in
Figs. 2 and 3. We take advantage of the known properties of

FIG. 2. Configuration 1.

coherent states and beam splitters to note that the output state
will be a product of coherent states in all the N + 1 output
modes, that is,

|β0〉|β1〉 · · · |βN 〉, (2.6)

where β j = τ jα, with τ j being the transmission coefficients
linking the complex amplitude of the corresponding output
mode with the complex amplitude of the coherent state in the
input mode. For example, for configuration 2 in Fig. 3 we have

τ0 = t1 · · · tN , τ1 = r1, τ j>1 = t1 · · · t j−1r j (2.7)

for j = 1, . . . , N , where t j and r j are the corresponding
transmission and reflection coefficients of each beam splitter
numbered from left to right in Fig. 3.

Thanks to this factorization, the total coherence at the
output can be expressed in the form

C(n̄, N ) = �N
j=0[C(n̄ j, 0) + 1] − 1, (2.8)

where C(n̄ j, 0) is the coherence of a single-mode coherent
state in Eq. (2.3) and n̄ j = |β j |2 is the mean number of pho-
tons of the coherent state in the corresponding output mode,
with

n̄ =
N∑

j=0

n̄ j, (2.9)

by energy conservation.

FIG. 3. Configuration 2.
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In order to characterize the set of beam splitters as a
coherence-maker entity, we look for the optimum choice of
parameters for each individual beam splitter, so that C(n̄, N )
in Eq. (2.8) becomes the maximum. Thanks to the factorized
form in Eq. (2.8), we can easily demonstrate the following
theorem: The maximum of C(n̄, N ) in Eq. (2.8) occurs when
the mean photon numbers of all output modes are equal,

n̄ j = n̄

N + 1
, (2.10)

and then

Cmax(n̄, N ) =
[
C
(

n̄

N + 1
, 0

)
+ 1

]N+1

− 1. (2.11)

After the Gaussian approximation in Eq. (2.5), which we have
shown works even for a small mean number of photons, the
coherence becomes

Cmax(n̄, N ) �
(

8π
n̄

N + 1

) N+1
2

− 1. (2.12)

Let us address the demonstration of the theorem. For large
mean photon numbers, where Eq. (2.5) holds, a simple proof
is available since in such a case the state-dependent term in
Eq. (2.8) is proportional to

�N
j=0

√
n̄ j . (2.13)

Taking into account energy conservation in Eq. (2.9), the
maximum of this factor via Lagrange multipliers leads to a
unique extreme point reached when the equipartition of en-
ergy [Eq. (2.10)] holds, which is clearly the maximum.

In the general case, the theorem can be demonstrated with-
out approximations by reductio ad absurdum. Let us assume
that the maximum coherence Cmax holds when at least two of
the mean photon numbers are not equal, say, n̄0 �= n̄1, without
loss of generality. We can focus on the contribution of these
modes to the total coherence

[C(n̄0, 0) + 1][C(n̄1, 0) + 1]. (2.14)

We can show that this contribution can be increased by an
equal distribution of the n̄0 + n̄1 photons between the two
output modes without affecting the rest, contradicting the
assumed maximum.

To this end the contribution in Eq. (2.14) depending on the
splitting of the photons restricted to a constant total mean
number of photons shared by the two modes, say, n̄0,1 =
n̄0 + n̄1, can be expressed as

S(x)S(n̄0,1 − x), (2.15)

where

S(x) =
∞∑

n=0

√
xn

n!
(2.16)

and x represents the number of photons in one of the output
modes, say, x = n̄0. The standard procedure to look for ex-
tremes leads to satisfaction of the equation

S′(x)

S(x)
= S′(n̄0,1 − x)

S(n̄0,1 − x)
, (2.17)

FIG. 4. Plot of the function S′(x)/S(x), showing its monotone
character.

where the prime denotes the derivative with respect to x. It is
clear that the equal splitting x = n̄0,1/2 is a solution. That this
is unique can be inferred from the fact that the function

S′(x)

S(x)
= 1

2

∑∞
n=0 n

√
xn−2/n!∑∞

n=0

√
xn/n!

(2.18)

is monotone, as shown in Fig. 4. Then uniqueness follows
because the two sides of Eq. (2.17) are mutual mirror images
with respect their dependence on x. That the extreme is the
maximum follows from the fact that coherence is non-negative
and for both extremes x = 0, n̄0,1 the coherence vanishes.

Intuitively, the theorem can be understood from the fact
that there is full symmetry under the exchange between trans-
mission and reflection, so their equality must be an extreme.
Such an extreme must be the maximum since the spread-
ing of the photon-number distribution is clearly largest at
50% splitting, and the larger the spreading is, the larger the
coherence is.

In Fig. 5, we plot the gain in coherence caused by the reit-
eration of splitting, C = Cmax(n̄, N )/Cmax(n̄, 0), as a function
of the number of beam splitters N and the mean number of

FIG. 5. Plot of the quotient C = Cmax(n̄, N )/Cmax(n̄, 0) as a func-
tion of the number of beam splitters N and the mean number of
photons, n̄, showing a clear increase in coherence with both the
number of photons and the number of beam splitters.
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photons n̄. A clear increase in coherence can be appreciated
with regard to the increase in both the number of photons and
the number of beam splitters.

To go beyond numerical results that may be valid for a
small range of physical parameters, let us demonstrate analyt-
ically the limitless increase in coherence with an increasing
number of beam splitters N for a fixed mean number of
photons n̄. To this end we note that approximation (2.12)
might fail since for large N the mean number of photons in
each coherent state tends to be so small that the Gaussian
approximation of the photon-number distribution is no longer
valid.

We can prove the increase in coherence with N by deriving
a suitable lower bound to Cmax(n̄, N ). To this end we note that
after Eqs. (2.3) and (2.11)

Cmax(n̄, N ) = e−n̄

[
S

(
n̄

N + 1

)]2(N+1)

− 1, (2.19)

where S(x) was already defined in Eq. (2.16). Since n! �
√

n!,
we get

S(x) =
∞∑

n=0

√
xn

n!
�

∞∑
n=0

√
xn

n!
= e

√
x, (2.20)

and then

Cmax(n̄, N ) � e−n̄e2
√

n̄(N+1) − 1, (2.21)

which proves the limitless increase in coherence with an in-
creasing number of beam splitters N .

Moreover, we can show that this bound closely follows the
asymptotic scaling of Cmax(n̄, N ) with the number of beam
splitters in the limit of large N , say, N 	 n̄. This is because, in
the limit of large N , we have, retaining just the lowest orders
in 1/(N + 1),

S

(
n̄

N + 1

)
= 1 +

√
n̄√

N + 1
+ n̄√

2(N + 1)
+ · · · . (2.22)

We can use the convenient transformation[
S

(
n̄

N + 1

)]2(N+1)

= e2(N+1) ln S(n̄,N ). (2.23)

Taking into account that

ln(1 + z) = z − z2

2
+ · · · , (2.24)

we have

2(N + 1) ln S

(
n̄

N + 1

)
= 2

√
n̄(N + 1) + (

√
2 − 1)n̄ + · · · ,

(2.25)

so that coherence grows with N asymptotically as

Cmax(n̄, N ) → e(
√

2−2)n̄e2
√

n̄(N+1) − 1, (2.26)

which agrees well with the lower bound (2.21). In Fig. 6
we compare the asymptotic behavior in Eq. (2.26) with a
numerical evaluation of Eq. (2.11) for n̄ = 1 and N ranging
from 1 to 10, showing good agreement between them.

Up to this point, we have shown that the energy has to
be equally distributed between the output modes in order to

FIG. 6. Comparison of the asymptotic behavior in Eq. (2.26)
(orange solid line) with a numerical evaluation of Eq. (2.11) (gray
dashed line) for n̄ = 1 and N ranging from 1 to 10, showing good
agreement between the two equations.

maximize coherence. Thus, we can apply this consideration
to any combination of beam splitters in order to optimize the
resulting coherence. Here, we examine whether this optimal
distribution can be achieved with the two different arrays of
beam splitters shown in Figs. 2 and 3.

For cascade 1 in Fig. 2, the optimum balanced photon
splitting can be achieved simply by considering that all beam
splitters are balanced, having 50% reflectance and 50% trans-
mittance. Concerning cascade 2 in Fig. 3, the beam splitters
can no longer all be 50%. Instead, we express the transmission
and reflection coefficients of each beam splitter, which are
assumed to be real without loss of generality, as

t j = cos θ j, r j = sin θ j (2.27)

for j = 1, . . . , N , where the beam splitters are numbered from
left to right in Fig. 3.

For the last beam splitter on the right we must have 50%
reflectance and 50% transmittance, t2

N = r2
N . For the second

to last beam splitter, that is, j = N − 1, the transmittance
and reflectance must be in the ratio of 2:1 since we must
feed two modes by transmission and one mode by reflection,
t2
N−1 = 2r2

N−1. The general form of this series can easily be
constructed to give the optimum configuration

t2
j = (N + 1 − j)r2

j , (2.28)

where N + 1 − j is the number of final output modes to the
right of the jth beam splitter in cascade 2. In this way, the bal-
ance between transmission and reflection takes into account
the number of final output modes that each beam splitter leads
to. Finally, we can determine the angles θ j as

θ j = arcsin

(
1√

N + 2 − j

)
. (2.29)

In this scenario where both the input and output are multi-
mode coherent states, seemingly nothing would be changed by
the beam splitter in regard to quantum properties. This will be
the case if one restricts the analysis to the Glauber-Sudarshan
quantum-optical theory of coherence. The Glauber-Sudarshan
theory translates to the quantum domain the classical-optics
theory of coherence by considering the correlations between
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the operator counterparts of the electric fields expressed
in normal order. However, in this work we address a dif-
ferent theory, that is, the quantum-mechanical coherence
introduced by the pioneering work in Refs. [6,7]. This the-
ory is not restricted to electric fields and does not work
with field operators. Instead, it addresses the superposition
of states in Hilbert spaces for arbitrary physical systems.
Therefore, within the quantum-mechanical-coherence theory
considered in this work, which is, indeed, different from
the quantum-optical one, the amount of quantum-mechanical
coherence of Glauber-coherent states depends on the total
intensity and its distribution between field modes, as we have
just seen.

To better understand our results in this quantum-
mechanical context, we may regard coherence as being
physically derived from phase correlations present in relative-
phase statistics [33–35]. This intuition is supported by the fact
that maximum quantum-mechanical coherence for all coher-
ence monotones holds for phaselike states [7]. In this regard,
beam splitters produce pairs of modes with definite phase
relations that can be used, for example, in interferometric
arrangements, where one mode essentially provides a phase
reference for the other mode experiencing the phase shift.
This can be easily confirmed by the evaluation of the quantum
phase difference between modes [36–38]. Before the beam
splitter, the phase difference between the coherent state and
the vacuum is fully random, which can be ascribed to the fully
random phase of the vacuum. However, after the beam splitter,
the phase difference between the two modes is no longer fully
random (cf. Refs. [36,39]). Actually, equal splitting is the case
with smaller relative-phase uncertainty, in full agreement with
the results reported above. Note that quantum-phase statis-
tics is beyond the Glauber-Sudarshan quantum-optical theory,
which cannot address quantum-phase observables.

In order to experimentally access our results we refer to
the different strategies for measuring quantum-mechanical
coherence. First, according to Eq. (1.2), the coherence of pure
states is completely determined by the square root of the
photon-number probabilities, which is a basic observable in
quantum optics. For mixed states one can utilize quantum state
tomography [40–42], by which coherence can be determined
once the density matrix of the state is retrieved. Tomogra-
phy can be readily performed in multimode scenarios, which
can actually be extended to the tomography of multimode
input-output processes [43], including beam splitting [44].
Regarding the measurement of the quantum phase difference
invoked above, we refer to the experimental implementation
already carried out in Ref. [39]. This measurement, illustrated
in Fig. 7, was carried out for the two-photon subspace, lever-
aging the fact that a suitable unbalanced beam splitter (UBS)
transforms a phase-difference eigenstate, say, |φ = 0〉, into
the product of number states |1〉|1〉 at the output modes. After
a phase-difference shift φ carried out by the phase shifter
(PS), the coincidence detection of the two detectors at the
two output ports of the unbalanced beam splitter gives the
projection of the input state on any phase-difference eigen-
state |φ〉. Moreover, regarding quantum-phase relations, other
formulations such as the one presented in Ref. [45] can also
be experimentally observed via double-homodyne detection.

FIG. 7. Scheme illustrating the quantum phase-difference mea-
surement carried out in Ref. [39].

Finally, practical ways of witnessing coherence can be found
in Refs. [14,46,47].

III. NUMBER-STATE INPUT

In this section we address the case of a highly nonclassical,
pure, and incoherent input state, the number state |n〉, in one of
the input modes, with the rest of the input modes again being
in the vacuum state,

|n, 0, . . . , 0〉 = 1√
n!

a†n
0 |0, 0, . . . , 0〉, (3.1)

where a0 is the complex-amplitude operator for the excited
input mode. The output modes can be computed by the linear
relation established by any cascade of beam splitters between
the input and output modes, with a0 expressed in terms of the
output modes to determine that the output state is

1√
n!

⎛
⎝ N∑

j=0

τ ja
†
j

⎞
⎠

n

|0, 0, . . . , 0〉, (3.2)

where τ j are complex coefficients that must satisfy the follow-
ing equality required to preserve commutation relations:

N∑
j=0

|τ j |2 = 1. (3.3)

Without loss of generality, from now on we assume real
coefficients τ j . After some simple algebraic manipulations
via multinomial coefficients, we find that the output state
expressed in the number basis is

|n, τ 〉 =
√

n!
∑
{m}

τ
m0
0 τ

m1
1 · · · τmN

N√
m0!m1! · · · mN !

|{m}〉, (3.4)

where {m} labels the collection of N + 1 non-negative integers
respecting the photon-number conservation law

m0 + m1 + · · · + mN = n. (3.5)

It is worth noting that these states are SU(N+1) coherent
states with a nice internal structure in terms of some kind
of nesting of SU(2) coherent states [48,49]. With this, the
coherence becomes, in this case,

C(n, N ) = n!

⎛
⎝∑

{m}

τ
m0
0 τ

m1
1 · · · τmN

N√
m0!m1! · · · mN !

⎞
⎠

2

− 1. (3.6)
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Now, we address the optimization of the coherence (3.6)
when the coefficients τ j are varied. We proceed by following
the same reductio ad absurdum strategy assuming that the
maximum of Eq. (3.6) is reached when at least two of the
coefficients τ j are not equal, say, τ0 �= τ1, without loss of
generality. We focus on the factor inside the parentheses to
split the contribution of the photons within the two assumed
unequal modes,

∑
{m}

τ
m0
0 τ

m1
1 · · · τmN

N√
m0!m1! · · · mN !

=
n∑

k=0

k∑
m=0

τm
0 τ k−m

1√
m!(k − m)!

ck, (3.7)

where ck are the contributions of the rest of the modes that
will share n − k photons. For each k, the factor

k∑
m=0

τm
0 τ k−m

1√
m!(k − m)!

(3.8)

corresponds to the coherence of the two-mode output state
when a single beam splitter is illuminated by a number state
|k〉 in one of the modes and a vacuum in the other mode.
We also examined this case in a previous work [31], showing
that for all k the maximum value for such a factor holds for
balanced splitting τ0 = τ1.

This result can be deduced again intuitively from the fact
that the factor is symmetric under the exchange of τ0 and τ1,
so that τ0 = τ1 must be an extreme. That such an extreme is
the maximum follows from the behavior of the binomial, so
that the spreading of the photon-number distribution is clearly
largest when τ0 = τ1, and the larger the spreading is, the larger
the coherence is.

Therefore, the maximum coherence that can be obtained
under these circumstances holds when all the τ j coefficients
are equal, that is,

τ j = 1√
N + 1

, (3.9)

which is the same equipartition of energy reached in the pre-
ceding section where the input was a Glauber coherent state.
The explicit parameters and configurations for achieving (3.9)
and thus the optimal coherence in this number-state case are
then exactly the same as those found for the case of Glauber
coherent states.

Therefore,

|n, τ 〉max =
√

n!

(N + 1)n

∑
{m}

1√
m0!m1! · · · mN !

|{m}〉, (3.10)

and

Cmax(n, N ) = n!

(N + 1)n

⎛
⎝∑

{m}

1√
m0!m1! · · · mN !

⎞
⎠

2

− 1.

(3.11)

In Fig. 8, we show the behavior of Cmax(n, N ) as a function
of n for a single beam splitter, N = 1 (orange solid line), and
a cascade of two beam splitters, N = 2 (gray dashed line),
showing the increase with the number of beam splitters and
the number of photons.

FIG. 8. Plot of the maximum coherence for input number states
Cmax(n, N ) as a function of n for a single beam splitter, N = 1 (orange
solid line), and a cascade of two beam splitters, N = 2 (gray dashed
line), showing the fast increase with the number of beam splitters and
the number of photons.

Let us demonstrate analytically the limitless increase in
coherence with the number of beam splitters N following the
same process as applied above to the case of coherent states.
That is, using the multinomial theorem,∑

{m}

1√
m0!m1! · · · mN !

�
∑
{m}

1

m0!m1! · · · mN !
= (N + 1)n

n!
,

(3.12)

and then

Cmax(n, N ) � (N + 1)n

n!
− 1, (3.13)

proving the limitless increase in coherence with the number
of beam splitters N .

It might be interesting to compare Cmax(n, N ) with the
maximum coherence Csup (it might be better to say supremum
coherence) that might be reached in the finite-dimensional
subspace that embraces the n photons in N + 1 modes. This
maximum is obtained for the phaselike state

1√
D(n, N )

∑
{m}

eiφ({m})|{m}〉, (3.14)

where φ({m}) are arbitrary phases and D(n, N ) is the di-
mension of the space spanned by the photon-number states
|{m}〉, with m0 + m1 + · · · + mN = n. This dimension can be
easily computed as the number of different ways to distribute
n identical candies between N + 1 distinguishable children,
leading to the binomial coefficient

D(n, N ) =
(

n + N
N

)
. (3.15)

The supremum coherence is then

Csup(n, N ) = D(n, N ) − 1. (3.16)

In Fig. 9 we plot the quotient Cmax(n, N )/Csup(n, N ) as a
function of n for a single beam splitter (N = 1, purple solid
line), three beam splitters (N = 3, orange dashed line), and
five beam splitters (N = 5, gray dash-dotted line), showing a
global departure from the supremum for increasing n. We can
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FIG. 9. Plot of the quotient Cmax(n, N )/Csup(n, N ) as a function
of n for a single beam splitter, N = 1 (purple solid line); three beam
splitters, N = 3 (orange dashed line); and five beam splitters, N = 5
(gray dash-dotted line).

see that the single-photon case n = 1 reaches the supremum
for all N ,

Cmax(n = 1, N ) = Csup(n = 1, N ). (3.17)

In Fig. 10 we plot the quotient Cmax(n, N )/Cmax(n = n, N )
of the optimum coherence for number states versus the op-
timum coherence for coherent states with the same mean
number of photons for one beam splitter (N = 1, purple solid
line), three beam splitters (N = 3, orange dashed line), and
five beam splitters (N = 5, gray dash-dotted line). This shows
that Glauber coherent states do much better than number
states both for an increasing number of photons and for an
increasing number of beam splitters, at least for the numerical
ranges of parameters examined so far and in accordance with
the corresponding bounds in Eqs. (2.21) and (3.13).

FIG. 10. Plot of the quotient Cmax(n, N )/Cmax(n = n, N ) of the
optimum coherence for number states versus the optimum coher-
ence for coherent states with the same mean number of photons for
one beam splitter (N = 1, purple solid line), three beam splitters
(N = 3, orange dashed line), and five beam splitters (N = 5, gray
dash-dotted line).

IV. MIXED STATES

After addressing the case for pure states, we examine the
case of mixed states in the only excited input mode. More
specifically, we consider two classes of mixed states. The
first one is a statistical mixture of incoherent states, that is,
diagonal in the number basis. The second one is classical-like,
in the sense of the Glauber-Sudarshan P function being a
legitimate probability distribution. Both classes can be illus-
trated with the case of phase-averaged Glauber coherent states
and thermal states, which belong to both categories. But we
stress that there are incoherent states that are nonclassical, say,
number states, and classical states that are partially coherent,
say, Glauber coherent states different from the vacuum.

Incoherent mixed states are diagonal in the number basis,

ρ =
∞∑

n=0

pn|n, 0, . . . , 0〉〈n, 0, . . . , 0|. (4.1)

For phase-averaged Glauber coherent states and thermal states
the photon-number distributions are, respectively,

ppa,n = n̄n

n!
e−n̄, pth,n = 1

n̄ + 1

(
n̄

n̄ + 1

)n

. (4.2)

In the general case, the output state will take the form

ρτ =
∞∑

n=0

pn|n, τ 〉〈n, τ |, (4.3)

where |n, τ 〉 are the states in Eq. (3.4). Therefore, the coher-
ence can be computed as

C(p, N ) =
∞∑

n=0

pn

∑
{m},{m′}

|c(n)
{m}||c(n)

{m′}| − 1, (4.4)

which is equivalent to

C(p, N ) =
∞∑

n=0

pn

⎛
⎝∑

{m}
|c(n)

{m}|
⎞
⎠

2

− 1, (4.5)

where c(n)
{m} are the photon-number coefficients in Eq. (3.4).

Finally, resorting to the coherence of the pure photon-
number case C(n, N ), we get

C(p, N ) =
∞∑

n=0

pnC(n, N ) = C(n, N ), (4.6)

where the average denoted by the overline is taken with re-
spect to the photon-number distribution pn. So the coherence
of the output state is the average of the coherences obtained
with each photon-number state, which respects the convexity
condition of coherence measures [7].

Finally, it is clear that the maximum coherence will be
obtained when the beam splitters are arranged to give the
equipartition in Eq. (3.9) since it does not depend on the
number of photons n, that is,

Cmax(p, N ) = Cmax(n, N ). (4.7)

We stress that this holds for every state of the form (4.1).
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There is another approach to the mixed case in terms of the
P function of Glauber and Sudarshan [1],

ρ =
∫

d2αP(α)|α, 0, . . . , 0〉〈α, 0, . . . , 0|, (4.8)

where we will always consider classical-like states with P(α)
functions that are legitimate probability distributions on the
complex plane. For phase-averaged Glauber coherent and
thermal states we have, respectively,

Ppa(α) = δ(|α|2 = n̄), Pth(α) = 1

π n̄
e−|α|2/n̄. (4.9)

In the optimum case the output state ρτ will take the form

ρτ =
∫

d2αP(α)
N⊗

j=0

∣∣∣∣ α√
N + 1

〉
j

〈
α√

N + 1

∣∣∣∣. (4.10)

Following essentially the same steps as above,

Cmax(P, N ) =
∫

d2αP(α)Cmax(|α|2, N ), (4.11)

where Cmax(|α|2, N ) is the coherence in Eq. (2.11) for a pure
coherent state with a mean number of photons n̄ = |α|2. The
final result can again be expressed as an average,

Cmax(P, N ) = Cmax(|α|2, N ), (4.12)

where the average is with respect to P(α). We stress that this
holds for every classical-like state of the form (4.8) with bona
fide P(α) as a probability distribution.

As a straightforward conclusion of Eqs. (4.6) and (4.12)
we find that the output coherence when the input is a phase-
averaged Glauber coherent state, which is an incoherent state,
is exactly the same as that for a pure Glauber coherent input
state of the same mean photon number.

Regarding thermal states,

Cmax(Pth, N ) = 1

π n̄

∫
d2αe−|α|2/n̄Cmax(|α|2, N ), (4.13)

we may proceed further by considering a large mean number
of photons so that the approximation (2.12) can be safely used,
leading to

Cmax(|α|2, N ) �
(

8π

N + 1

) N+1
2

|α|N+1 − 1, (4.14)

and then

Cmax(Pth, N ) = �

(
N + 3

2

)(
8π

n̄

N + 1

) N+1
2

− 1, (4.15)

where � is the gamma function.

Comparing Eqs. (2.12) and (4.15), we can note that they
differ only in the presence of the � prefactor in the thermal
case, which makes coherence grow much faster with N than it
does for Glauber coherent states with the same mean photon
number. This is an effect of nonlinearity in the dependence of
coherence on intensity, which, as we have already noted, is a
rather novel feature in coherence theories.

V. CONCLUSIONS

We saw that coherence can grow without limit by in-
creasing the number of beam splitters in all the scenarios
considered here. These devices are usually considered rather
passive in the classical optical scenario, so it is interesting that
they may easily increase such a valuable quantum resource
in its quantum counterpart. Actually, layouts akin to those
examined here are the first step in all interferometric protocols
precisely in this spirit.

We showed that, in this coherence production, the initial
coherence of the input state plays no role, as demonstrated by
the phase-averaged states, that are incoherent but give rise to
the same coherence as the initial coherent states. Furthermore,
classical incoherent input thermal states produce larger quan-
tum coherence than Glauber coherent states with the same
mean photon number, which seems to defy standard intuition.

Moreover, rather paradoxically, quantumness seems to play
no role since strongly quantum states, such as the photon-
number states, lead to a much smaller amount of quantum
coherence than classical-like states with the same mean num-
ber of photons.

In this work, utilizing states fully characterized by the
mean number of photons allowed us to compare the increase
in coherence for very different states with regard to pho-
ton statistics. In this regard, the analysis can be extended
to squeezed states, utilizing the squeezing parameter as an
additional degree of freedom in the optimization process.
For states with more exotic photon statistics, such as NOON
states, a variable other than the mean number of photons
would be needed in order to compare the results.

Finally, note that the analysis of configuration 1 could be
extended to investigate the impact of varying coherence due
to the bias of the coin in a quantum walk scenario.
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