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Single-photon scattering in giant-atom waveguide systems with chiral coupling
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We study single-photon scattering spectra of a giant atom chirally coupled to a one-dimensional waveguide
at multiple connection points, and examine chirality-induced effects in the scattering spectra. We show that the
transmission spectra typically possess an anti-Lorentzian lineshape with a nonzero minimum, but by engineering
the chirality of the multipoint coupling, the transmission spectrum of an incident photon can undergo a transition
from complete transmission to total reflection at multiple frequency “windows,” where the width of the anti-
Lorentzian lineshape for each of the window can be flexibly tuned at a fixed frequency detuning. Moreover, we
show that a perfect nonreciprocal photon scattering can be achieved due to the interplay between internal atomic
spontaneous emission and the chirally external decay to the waveguide, in contrast to that induced by the non-
Markovian retardation effect. We also consider the non-Markovian retardation effect on the scattering spectra,
which allows for a photonic band gap even with only two chiral coupling points. The giant-atom-waveguide
system with chiral coupling is a promising candidate for realizing single-photon routers with multiple channels.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED) [1–3], which
studies the interaction between atoms (or other quantum
emitters) and free propagating photons in a one-dimensional
(1D) waveguide, has been experimentally demonstrated in
many state-of-the-art architectures, such as trapped natural
or artificial atoms (including quantum dots [4–7], diamond
defects [8–11], superconducting qubits [12], and single or-
ganic molecules [13]) coupled with optical fibers [14–16],
photonic crystal waveguides [17–19], or microwave trans-
mission lines (TLs) [20–24]. Typically, the (natural) atoms
are orders of magnitude smaller than optical (microwave)
wavelengths of the continuous bosonic modes in the 1D
waveguide, therefore, they can be viewed as point-like emit-
ters to justify the dipole approximation. Waveguide QED
systems with natural “small” atoms can potentially be used to
construct the quantum network [25–27] and simulate quantum
many-body physics [28–30]. However, extending the small
atom platform to artificial “ giant” atomic systems has at-
tracted significant recent attention (see the first review by
Kockum [31]), in part, because it represents a breakdown of
the dipole approximation where the scale of atoms becomes
comparable to the wavelength of the light they interact with.
The artificial giant atoms have been well designed and re-
cently demonstrated with superconducting qubits coupled to
short-wavelength surface acoustic waves (SAWs) [32–37] or
a microwave-waveguide at multiple discrete points [38–40].
The multiple coupling points give rise to self-interference
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effects, which are quite different from the conventional inter-
ference effects among point-like small atoms (or resonators)
coupled locally to a common bath. The self-interference ef-
fects, which depend on both the distances between coupling
points and the photonic frequency, allows to observe several
unconventional phenomena, including frequency-dependent
Lamb shift and relaxation rate [38,41], decoherence-
free atomic states [39,42–45], non-Markovian decay dy-
namics [34,35,46–48], and chiral light-matter interactions
[29,49–53].

A waveguide QED system with giant atoms has emerged
as a new promising platform for engineering the transport
of photons and single-photon routing [41,49,50,53–61].
The system enables strong tunable atom-waveguide
coupling and the engineering of time delay, manifesting
multiple-point interference and non-Markovian retardation
effects in the photon scattering spectra [50,53,55,56,60].
Herein, the photon scattering spectra can exhibit interesting
features, such as electromagnetically induced transparency
[57,58,61], atomic decay induced nonreciprocity [50,53,55],
and photonic band gap [56,58], and these features can be
applied to probe collective radiance and topological states
[49,57,58] with a chain of two-level giant atoms in both
the Markovian and non-Markovian regimes [41]. Moreover,
an experimental setup with chiral interfaces between giant
atoms and waveguides has recently become a reality based
on technological progress, e.g., by coupling transmon qubits
[62,63] to meandering TLs with circulators [64–67]. In
these setups, the coupling between waveguide modes and
giant atoms depends on the propagation direction of the
light. Despite the chirality of their coupling, one can still
observe perfect collective radiance and decoherence-free
dark states [49] inaccessible with small atoms, and
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furthermore, non-Markovianity induced nonreciprocity
[50,53] and photon frequency conversion [50], whereas the
previous studies about single-photon routing were limited
to special cases, e.g., a (multilevel) giant atom with two
asymmetric coupling points [50,54]. Thus, it is unclear what
can bring about by engineering the chirality with more than
two coupling points.

In this paper, we study single-photon scattering spectra
and their nonreciprocity with a two-level giant atom chirally
coupled to a waveguide at multiple points. We assume equally
spaced coupling points, and focus on chirality induced effects
by considering three chiral coupling regimes: (1) bidirectional
even coupling (BEC); (2) unidirectional uneven coupling
(UUEC); and (3) bidirectional uneven coupling (BUEC),
respectively. By engineering the chirality of the couplings,
we find that an incident photon, which is fully transmitted
in the BEC (UUEC) regimes, can become totally reflected in
the BUEC regime for a fixed two-point propagating phase.
This feature cannot be observed in the nonchiral setting
simply by increasing the number of coupling points N [56].
Moreover, the transmission spectra can exhibit multiple
(N − 1) total reflection “windows” at fixed frequencies
whose widths can be flexibly controlled. In comparison,
other chiral setups proposed for photon routing are involved
with a three-level giant atom [50] or giant-atom pairs (i.e.,
giant molecules) [53,60] and are limited to the case of two
coupling points, preventing it from multiple-window photon
routing. We examine the phases of the transmission and
reflection coefficients, and find that the giant atom imprints
direction-dependent phases on the incident photon uniquely
for the chiral setup with uneven couplings.

Furthermore, by taking atomic spontaneous decay into ac-
count, we find that a perfect nonreciprocal photon scattering
(with transmission probability of unity in the forward di-
rection and zero in the backward), which is inaccessible in
the giant-atom-waveguide system with uniformly symmetric
coupling [56], can now be realized by engineering the chi-
rality of the atom-waveguide interaction. This is in contrast
to other schemes concerning nonreciprocal photon scattering
[50,53], where the nonreciprocity is typically induced by non-
Markovian retardation effects [53] or by synthetic gauge fields
[55]. We also consider the non-Markovian retardation effect
on the scattering spectra. We observe a photonic band gap for
the spectra in the intermediate non-Markovian regime even
with only two chiral coupling points, which normally arises
in a setup with a large number of coupling point and with uni-
formly symmetric coupling [56]. The giant-atom-waveguide
system with chiral coupling provides a promising platform
for realizing single-photon routers with multiple frequency
channels.

The paper is organized as follows. Section II introduces
the theoretical model and calculates the transmission and
reflection coefficients of an incident photon by using a
real-space scattering method, where the giant atom’s Lamb
shifts and effective decay rates are derived and discussed.
Section III presents the scattering spectra for three chiral
coupling conditions (i.e., the BEC, the UUEC, and the BUEC
conditions) in the Markovian regime and discusses intriguing
features induced by the chiral coupling. Section IV shows
that nonreciprocal photon scattering can be realized due to the

……

……
……

FIG. 1. Schematics of a giant-atom system. A two-level giant
atom (with excited state |e〉 and ground state |g〉) couples to the
one-dimensional waveguide at multiple points (labeled by the coor-
dinates z j), where gL j (gR j) are coupling strengths at the jth coupling
point for left-going (right-going) waveguide modes, φi j are distance-
dependent phases for the photon propagating between the ith and the
jth coupling points, and γ is the spontaneous decay rate of the atom
to the bath environment.

cooperative effect of chiral coupling and atomic spontaneous
decay. Section V further discusses the scattering spectra in the
non-Markovian regime, with a conclusion given in Sec. VI.

II. MODEL AND METHOD

As schematically shown in Fig. 1, the system consists of
a two-level giant atom chirally coupled to a 1D waveguide
at N discrete points (labeled j, coordinates z j). The coupling
strengths between the giant atom and waveguide modes de-
pend on the propagation direction of the light. Under the
rotating-wave approximation, the total Hamiltonian of the
system in real space can be written as (h̄ = 1 hereafter) [68]

H = Ha + Hw + Hint, (1)

with

Ha = (ωe − iγ )|e〉〈e|,

Hw =
∫ +∞

−∞
dza†

L(z)

(
ω0 + ivg

∂

∂z

)
aL(z)

+ a†
R(z)

(
ω0 − ivg

∂

∂z

)
aR(z),

Hint =
∫ +∞

−∞
dz

N∑
j=1

δ(z − z j )
√

vg[gL ja
†
L(z)eik0z

+ gR ja
†
R(z)e−ik0z]|g〉〈e| + H.c.,

where Ha is the bare atomic Hamiltonian, with ωe being the
transition frequency between the ground state |g〉 and the
excited state |e〉, and γ being the spontaneous emission rate
induced by the nonwaveguide modes in the environment. Hw

is the bare waveguide Hamiltonian, with a†
L(z)[a†

R(z)] and
aL(z) [aR(z) ] the creation and annihilation operators of the
left-propagating (right-propagating) modes at position z. ω0 is
the central frequency around which a linear dispersion relation
under consideration is given by ω(k) = ω0 + (k − k0)vg with
k the wave vector of the incident photon, k0 the wave vector
corresponding to ω0, and vg the group velocity in the vicinity
of ω0 [69]. Hint is the interaction Hamiltonian with gL j and gR j

the renormalized coupling strengths for the atom interacting
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with a left-going and right-going photon at the position z = z j ,
respectively, where in real space, the giant atom behaves as a
potential δ(z − z j ) at each coupling point. Note that the atom-
waveguide coupling at multiple points enable us to observe
system dynamics in both the Markovian and non-Markovian
regimes [49,53], which strongly depends on the accumulated
phases φi j = k|zi − z j | [or φi j = (ω − ω0)τi j + k0|zi − z j | ]
of photons propagating between any two of the N coupling
points with τi j = |zi − z j |/vg.

We consider the single-photon scattering problem by engi-
neering the chirality of the atom-waveguide couplings, where
the system is constrained to the single excitation subspace,
and then the eigenstate of Hamiltonian (1) is given by

|ψ〉 =
∫ +∞

−∞
dz[cgL(z)a†

L(z) + cgR(z)a†
R(z)]|g, 0〉

+ ce0|e, 0〉, (2)

where cgL(z) [cgR(z) ] is the probability amplitude of the states
a†

L(z)|g, 0〉 [a†
R(z)|g, 0〉 ], describing a left-propagating (right-

propagating) photon at position z and the atom in |g〉, and ce0

is the probability amplitude of the atom in the excited state
|e〉, finding no photon in the waveguide.

Solving the stationary Schrödinger equation H |ψ〉 = E |ψ〉
with an appropriate ansatz for the probability amplitudes
cgL(z) and cgR(z) (see Appendix A), we obtain the transmis-
sion and reflection coefficients for a left-incident photon

tN = (	 − 	ls) + i(γ + 
L − 
R)

(	 − 	ls) + i(γ + 
L + 
R)
,

r1 = −i
LR

(	 − 	ls) + i(γ + 
L + 
R)
, (3)

and for a right-incident photon

t̃1 = (	 − 	ls) + i(γ − 
L + 
R)

(	 − 	ls) + i(γ + 
L + 
R)
,

r̃N = i
∗
LR

(	 − 	ls) + i(γ + 
L + 
R)
, (4)

where 	 = ω(k) − ωe is the detuning between the incident
photons and the atomic transition |g〉 ↔ |e〉; 	ls ≡ 	L + 	R

is the overall Lamb shift contributed by both the left- and
right-propagating directions’ waveguide modes from interfer-
ence between connection points, with

	L = 1

2

N∑
i, j

gLigL jsinφi j, 	R = 1

2

N∑
i, j

gRigR jsinφi j, (5)

correspondingly; 
L and 
R are the direction-dependent re-
laxation rates given by [38,56]


L = 1

2

N∑
{i, j}=1

gLigL jcosφi j, (6)


R = 1

2

N∑
{i, j}=1

gRigR jcosφi j, (7)

and


LR =
(

N∑
i=1

eikzi gLi

)⎛
⎝ N∑

j=1

eikz j gR j

⎞
⎠. (8)

It follows that the transmission and reflection probabilities
are defined by TL = |tN |2 (TR = |t̃1|2) and RL = |r1|2 (RR =
|r̃N |2), respectively. Note that the (chiral) atom-photon inter-
action is imprinted on the phases of the transmission and
reflection coefficients, which depend on the Lamb shift 	ls

and the direction-dependent relaxation rates 
L and 
R. In
particular, for TL(R) = 1 or RL(R) = 1, the phase imprinted on
the scattering photon can depend on the incident direction and
the chirality of couplings, see the further discussion later.

Revisiting the small-atom limit [38], where the atom in-
teracts with the left-going (right-going) waveguide modes by
a single connection point (e.g., at position z j), the atomic
relaxation rates into the continuum modes can be simply
derived by Fermi’s golden rule and are given by g2

L j/2 and
g2

R j/2, and the atomic ground state is not shifted by the atom-
waveguide coupling (i.e., 	L(R) = 0) [38]. In the case of a
giant-atom with N connection points, when the couplings with
left-going and right-going photons are uniformly symmetric,
i.e., gLi = gL j = gRi = gR j (for all i 	= j), one finds 	L = 	R

and 
L = 
R regardless of the details of phases φi j , then the
transmission and reflection probabilities read

TL = TR = (	 − 2	L )2 + γ 2

(	 − 2	L )2 + (γ + 2
L )2 , (9)

RL = RR = 4
2
L

(	 − 2	L )2 + (γ + 2
L )2 . (10)

For γ = 0, the reflection probabilities have the standard
Lorentzian lineshapes centered at 	 = 2	L with the full-
width at half-maximum (FWHM) 4
L and the transmission
probabilities have the anti-Lorentzian lineshapes. There exists
a singular point with 
L = 0 for which the giant atom decou-
ples from the waveguide, leading to TL = TR = 1. Moreover,
Eqs. (9) and (10) imply that nonreciprocal photon scattering
cannot happen whether γ = 0 or γ 	= 0.

To clearly see chirality induced features, we now con-
sider the N coupling points being equally spaced and first
focus on the effect of even or uneven chiral coupling in the
Markovian regime, where the propagating time of the pho-
tons’ travel between the leftmost and the rightmost coupling
points τ1N = (zN − z1)/vg is short compared to the charac-
teristic relaxation time ∼
̃−1 of the giant atom with 
̃ =
[(

∑N
i=1 gLi )2 + (

∑N
j=1 gR j )2]/2 + γ , corresponding to the de-

cay rate for τ1N → 0. However, when τ1N ∼ 1/
̃, the giant
atom-waveguide interaction will enter the non-Markovian
regime [31,34,38,56], i.e., the time evolution of the system
can depend on what the system state was at an earlier time,
and will be discussed later in Sec. V. It should be emphasized
that the transmission and reflection coefficients in Eqs. (3) and
(4) are valid in both the Markovian and the non-Markovian
regimes. Moreover, given that the bandwidth 	 is of the
order of 
̃, we can examine the Markovian physics based
on Eqs. (5)–(7) under the condition of 
̃τ1N ∼ |	|τ1N � 1,
and neglect the contribution of |	|τ1N to the φi j-dependent
effect. In the next section, we first replace the phases φi j
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by φ̃i j = (ωe − ω0)τi j + k0|zi − z j |, and the transmission and
reflection coefficients are rephrased in terms of the phase dif-
ference between adjacent coupling points φ̃12, i.e., φi j = | j −
i|(	τ12 + φ̃12) → φ̃i j = | j − i|φ̃12. We take the φ̃12 modulo
2π [denoted by mod(φ̃12, 2π ) in the following] into account
for its effectiveness, and study photon scattering under differ-
ent chiral coupling regimes.

III. PHOTON SCATTERING WITH CHIRAL COUPLING:
THE MARKOVIAN REGIME

By considering the chiral coupling with γ = 0 and assum-
ing gLi (gRi) being positive real values, one typically has 
L 	=

R, i.e., 1

2

∑N
{i, j}=1(gLigL j − gRigR j )cosφi j 	= 0. The chirality

can be divided into three different regimes: (1) bidirectional
even coupling (BEC) gLi = gL j, gRi = gR j, but gLi 	= gRi;
(2) unidirectional uneven coupling (UUEC) gLi = gL j, gRi 	=
gR j , or gLi 	= gL j, gRi = gR j ; and (3) bidirectional uneven cou-
pling (BUEC) gLi 	= gL j, gRi 	= gR j . Remarkably, we find that

L = 
R can be achieved by appropriately tuning the uneven
coupling strengths distributed at different coupling points. As
a result, it offers a flexible way to control the transmission
and reflection of a single incident photon and allows for
photon routing at multiple fixed frequencies corresponding to
	 = 	ls. This will be discussed in detail later.

A. Bidirectional even coupling

We first consider the BEC regime for a giant atom with
N � 2 coupling points. The coupling strengths of the N cou-
pling points are identical for the same propagation direction
and are set to gLi = gL and gRi = gR. Due to the multiple-point
interference effect, the overall Lamb shift takes the form

	ls = 1

2

(
g2

L + g2
R

)Nsinφ̃12 − sinN φ̃12

1 − cosφ̃12
, (11)

and the sum (difference) of the two effective decay rates is
given by


L ± 
R = 1

2

(
g2

L ± g2
R

) sin2
(

1
2 N φ̃12

)
sin2

(
1
2 φ̃12

) , (12)

which shows that the photon interferes with itself multiple
times independently for the distinct (left and right) propaga-
tion directions.

(1) When the two-point propagating phase satisfies
mod(φ̃12, 2π ) = 0, the Lamb shift vanishes regardless of the
chiral couplings, but the effective decay rates are N2-enhanced
and are given by


L ± 
R = 1
2 N2

(
g2

L ± g2
R

)
. (13)

The transmission probabilities then read

TL = TR = 4	2 + N4
(
g2

L − g2
R

)2

4	2 + N4
(
g2

L + g2
R

)2 . (14)

In contrast to the case with uniformly symmetric coupling
(gL = gR), the chirality of couplings leads to a nonvanishing

transmission TL(R) 	= 0 at resonance 	 = 0, i.e.,

TL(R) =
(


L − 
R


L + 
R

)2

=
(

g2
L − g2

R

g2
L + g2

R

)2

, (15)

corresponding to TL(R) in the large N → ∞ limit.
(2) For mod(φ̃12, 2π ) = 2m′π/N (m′ = 1, 2, . . . , N − 1),

the Lamb shift can be nonvanishing and is given by

	ls = N

2

(
g2

L + g2
R

)
cot

(
m′π
N

)
, (16)

but the effective decay rates vanish (
L = 
R = 0) due to
the destructive interference effect among the coupling points.
Then, a photon incident from the left or the right will be com-
pletely transmitted, independent of the frequency detuning
between the incident photon and the atomic transition. This
is analogous to the case with uniformly symmetric coupling,
except that 	L 	= 	R.

B. Unidirectional uneven and bidirectional uneven coupling

The results for the BEC regime can be understood intu-
itively, but those for the UUEC and the BUEC regime are not
self-evident. To obtain instructive insight, we first consider
the simplest model with only N = 2 coupling points in the
Markovian limit, where the Lamb shifts are 	L = 	R = 0
both for mod(φ̃12, 2π ) = 0 and mod(φ̃12, 2π ) = 2m′π/N , but
the sum and difference of the two effective decay rates 
L ±

R strongly depend on the chirality of the coupling strengths.
For mod(φ̃12, 2π ) = 0, the effective decay rates are simply
given by


L ± 
R = (gL1 + gL2)2 ± (gR1 + gR2)2

2
, (17)

and correspondingly the transmission probabilities are

TL(R) = 4	2 + [(gL1 + gL2)2 − (gR1 + gR2)2]2

4	2 + [(gL1 + gL2)2 + (gR1 + gR2)2]2
; (18)

for mod(φ̃12, 2π ) = π , the effective decay rates are alterna-
tively given by


L ± 
R = (gL1 − gL2)2 ± (gR1 − gR2)2

2
, (19)

and the transmission probabilities read

TL(R) = 4	2 + [(gL1 − gL2)2 − (gR1 − gR2)2]2

4	2 + [(gL1 − gL2)2 + (gR1 − gR2)2]2
. (20)

Note that in the UUEC regime [i.e., gL1 = gL2 and gR1 	= gR2

(or gR1 = gR2 and gL1 	= gL2)], if the coupling strengths satisfy
gL1 + gL2 = gR1 + gR2, Eq. (18) reduces to

TL(R) = 	2

	2 + (gL1 + gL2)4 , (21)

which possesses the anti-Lorentzian line shape centered at
	 = 0 with the FWHM 2(gL1 + gL2)2 and the minimum
TL(R)(	 = 0) = 0, in contrast to 0 < TL(R) < 1 of the BEC
regime, see Fig. 2(a); however, the transmission probabil-
ities [Eq. (20)] for mod(φ̃12, 2π ) = π are constant unity
(i.e., TL(R) ≡ 1) regardless of the specific value of the detun-
ing 	, exhibiting the same feature as in the BEC regime.
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FIG. 2. Transmission probabilities TL(R) in the Markovian regime
with chiral coupling. (a) TL(R) given by Eqs. (21) and (22) as
functions of 	 by considering gL2/gL1 = {1, 1.5, 2} with N = 2
coupling points. The dashed lines correspond to the single-photon
transmission spectrum under the condition of gL1 + gL2 = gR1 + gR2

and mod(φ̃12, 2π ) = 0, and the solid lines correspond to |gL1 −
gL2| = |gR1 − gR2| and mod(φ̃12, 2π ) = π . For mod(φ̃12, 2π ) = π ,
TL(R) remains unity under the even coupling condition gL1 = gL2,
while for gL1 	= gL2, TL(R) possesses the anti-Lorentzian lineshape
of the width 2(gL1 − gL2)2 and undergoes a sudden jump from
unity to zero at resonance 	 = 0. (b)–(d) TL(R) versus the coupling
strengths gLi/gL and gRi/gL at the ith coupling point with (b) N =
2, mod(φ̃12, 2π ) = 0, 	 = 	ls = 0, (c) N = 5, mod(φ̃12, 2π ) = 0,
	 = 	ls = 0, and (d) N � 2, mod(φ̃12, 2π ) = 2m′π/N , 	 = 	ls,
respectively. Here, we consider the N coupling points are equally
spaced and set (gL j, gR j )/gL = (1, 2) for j 	= i. The white dotted
lines indicate TL(R) = 1 under the condition of gLi = gL or gRi = gR,
i.e., the UUEC regime. The white dashed lines indicate TL(R) = 0
under the condition of 
L = 
R corresponding to the BUEC regime,
except the intersection (BEC) point of the lines. The white dots
in (b)–(d) indicate the set of coupling strengths (gLi, gRi )/gL =
{(1, 2), (3, 2), (3, 4)}, with respect to the BEC, UUEC, and BUEC
regimes discussed later in Fig. 3.

In the BUEC regime, the overall profile of TL(R)(	) for
mod(φ̃12, 2π ) = 0 is below unity and TL(R)(	 = 0) = 0 again
for gL1 + gL2 = gR1 + gR2; while for mod(φ̃12, 2π ) = π , it is
remarkable that, under the condition of |gL1 − gL2| = |gR1 −
gR2| (corresponding to 
L = 
R 	= 0), TL(R)(	) [Eq. (20)] re-
duces to

TL(R) = 	2

	2 + (gL1 − gL2)4 , (22)

which has the minimum TL(R)(	 = 0) = 0 at resonance and
possesses the FWHM 2(gL1 − gL2)2 that can be infinitely
narrow for gL2/gL1 → 1, in contrast to TL(R)(	) ≡ 1 for both
the BEC and the UUEC regime. In other words, an incident
photon can be totally reflected or fully transmitted for the “de-
structive” interference phases mod(φ̃12, 2π ) = π when the

chirality of couplings is tuned between the BEC (UUEC)
regime and the BUEC regime, and moreover, the width of
the reflection window can be flexibly controlled [as shown in
Fig. 2(a)]. The chiral setups thus have the merits of flexibility
and tunability in controlling photon transmission, offering the
potential application for sensing and optical switch [2,56,58].

For N > 2, we consider the simplified model where the
coupling strengths at the ith coupling point gLi (gRi) for the
left-propagating (right-propagating) photons are uniquely dif-
ferent from those [assumed to be identical to gL (gR)] of
other (N − 1) coupling points. Note that, in this case, both
the Lamb shift 	ls and the decay rates (
L, 
R) strongly
depend on the differences of the coupling strengths (gL − gLi )
and (gR − gRi ), and moreover relate to the specific position
zi of the coupling point with distinct coupling strengths, see
Appendix B.

(1) For mod(φ̃12, 2π ) = 0, the Lamb shifts vanish again,
but the decay rates become dependent on the number of the
coupling points, see Appendix B. Then, the incident photon
is totally reflected at 	 = 0 if the chirality of the coupling
strengths satisfies

(N − 1)gL + gLi = (N − 1)gR + gRi, (23)

which reduces to gL + gLi = gR + gRi for N = 2. In Fig. 2(b)
[Fig. 2(c)], we show TL(R)[	 = 0, mod(φ̃12, 2π ) = 0] as
functions of gLi and gRi (in units of gL) with gR/gL = 2 and
N = 2 (N = 5), and indicate TL(R) = 0 (or RL(R) = 1) cor-
responding to the condition [Eq. (23)] by the white dashed
lines. Around the resonance, TL(R)(	) under the condition
of Eq. (23) possess the anti-Lorentzian line shape with the
FWHM 2[(N − 1)gL + gLi]2 scaling as N2.

(2) For mod(φ̃12, 2π ) = 2m′π/N , it is interesting to see
that 
L ± 
R are independent of N and are simply deter-
mined by the differences of the coupling strengths (gL − gLi )
and (gR − gRi ), see Appendix B. As a result, the scattering
behavior is similar to the case of N = 2, where an incident
photon is perfectly transmitted [TL(R)(	) ≡ 1 ] if gL = gLi or
gR = gRi, regardless of the specific value of the detuning 	.
In the BUEC regime, when the coupling strengths of the ith
coupling point fulfill the condition

|gL − gLi| = |gR − gRi|, (24)

the transmission probabilities reduce to

TL(R) = (	 − 	ls)2

(	 − 	ls)2 + (gL − gLi )4 , (25)

which again possess the anti-Lorentzian line shape of the
tunable width 2(gL − gLi )2 but with the center (TL(R) = 0)
shifted to 	 = 	ls. In Fig. 2(d), we show the density
plot of TL(R)(	 = 	ls) as functions of the chiral coupling
(gL j, gR j )/gL, and indicate the UUEC regime by horizontal
and vertical dotted lines and the BUEC regime (with |gL −
gLi| = |gR − gRi|) by the white dashed line. The intersection
of the white dashed line with the coordinate (gL j, gR j )/gL =
(1, 2) corresponds to the BEC regime with TL(R) = 1. Fur-
thermore, if we take i = N , i.e., the coupling strengths of
the leftmost (or rightmost) coupling point are different from
those of the others, the Lamb shift then reduces to 	ls =
N
2 (g2

L + g2
R)cot(m′π/N ) (with m′ = 1, 2, . . . , N − 1), which
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FIG. 3. Transmission probabilities TL(R) versus 	 and mod(φ̃12, 2π ) for N = 2, 5, 6, respectively. We consider the rightmost (i.e., N th)
coupling point which has the coupling strength (gLN , gRN )/gL different to those of the others with (gL j, gR j )/gL = (1, 2) ( j 	= N). As indicated
in Figs. 2(b)–2(d), we set (gLN , gRN )/gL = {(1, 2), (3, 2), (3, 4)}, which (from top to bottom) correspond to the BEC [(a)–(c)], the UUEC
[(d)–(f)], and the BUEC [(g)–(i)] regime, respectively. The white solid lines are used to label the solutions for 	 = 	ls(φ̃12), and the horizontal
gray dashed lines label the phases mod(φ̃12, 2π ) = 2m′π/N (m′ = 1, 2, . . . , N − 1). Panels (j)–(l) depict transmission spectrum in the BUEC
regime by fixing mod(φ̃12, 2π ) = 2m′π/N , where for N being an even number, one can observe TL(R) = 0 at the resonance 	 = 0 with N − 2
dips symmetrically around it. This can potentially be used for multichannel photon routing.

is exactly the same to that of the BEC regime, see Eq. (16).
Note that 	ls is now independent of the coupling strengths
{gLN , gRN } at the N th coupling point. Therefore, by engi-
neering the coupling strengths {gLN , gRN }, the transmission
probabilities TL(R)(	) can be tuned between zero and unity at
the frequency detunings 	 = 	ls(φ̃12), and the width of the
(N − 1) total reflection windows given by 2(gL − gLN )2 can
be flexibly controlled in the BUEC regime. This remarkable
feature is not present in the nonchiral setup with a large N
[56], as well as in a chiral setup (with only two coupling
points) working in the BEC (or UUEC) regime [50,53,55].

In Fig. 3, we plot the transmission probabilities TL(R) as
functions of the detuning 	 and the two-point phase de-

lay φ̃12 modulo 2π [i.e., mod(φ̃12, 2π ) ] with gR/gL = 2
and N = {2, 5, 6}. We consider the set of coupling strengths
(gLN , gRN )/gL = {(1, 2), (3, 2), (3, 4)} for the N th coupling
point, corresponding to the BEC, the UUEC, and the BUEC
regime, respectively. In all subfigures, the white solid lines
indicate 	 = 	ls(φ̃12). We first look at the case of N =
2 coupling points, for mod(φ̃12, 2π ) = 0, the incident pho-
ton is partially reflected (i.e., 0 < TL(R) < 1) in the BEC
regime with (gLN , gRN )/gL = (1, 2) [Fig. 3(a)], and neverthe-
less is totally reflected (i.e., TL(R) = 0) in the UUEC regime
with (gLN , gRN )/gL = (3, 2) satisfying gL + gLi = gR + gRi

[Fig. 3(d)]. In both cases, the incident photon is com-
pletely transmitted for mod(φ̃12, 2π ) = π , which is indicated

063703-6



SINGLE-PHOTON SCATTERING IN GIANT-ATOM … PHYSICAL REVIEW A 109, 063703 (2024)

(a) (b)

(c) (d)

left
incidence

right
incidence

FIG. 4. Phases of the transmission (tN , t̃1) and reflection (r1, r̃N )
coefficients versus 	 with N = 2. The set of coupling strengths for
the second coupling point are (gL2, gR2)/gL = {(1, 2), (3, 2), (3, 4)},
and (gL1, gR1)/gL = (1, 2). The two-point propagating phase is set to
mod(φ̃12, 2π ) = π .

by the gray dashed line. As a result, the two red regions
(corresponding to high transmission probabilities) connect
to each other around 	 = 0. In contrast, in the BUEC
regime with (gLN , gRN )/gL = (3, 4) (satisfying |gL − gLN | =
|gR − gRN |), the transmission probabilities have the minimum
TL(R) = 0 precisely at 	 = 0 with mod(φ̃12, 2π ) = π , the
two red regions are then disconnected [see Fig. 3(g)]. For
N = 5 (N = 6), as shown by the Figs. 3(b), 3(c), 3(e), and
3(f), one then finds that the incident photon is completely
transmitted along the dashed lines [corresponding to
mod(φ̃12, 2π ) = 2m′π/N (m′ = 1, 2, . . . , N − 1) ] in the
BEC and the UUEC regime, and meanwhile is totally reflected
at the detunings 	 ∼ 	ls = N

2 (g2
L + g2

R)cot( m′π
N ) in the BUEC

regime [see Figs. 3(h) and 3(i)]. Moreover, in Figs. 3(j)–
3(l), we show the transmission spectrum corresponding to
the cut of the plots [Figs. 3(g)–3(i)] at mod(φ̃12, 2π ) =
2m′π/N (indicated by the dashed lines), which possess the
anti-Lorentzian lineshape centered at 	 = 	ls with a tunable
width. It is worth noting that 	ls is independent of the specific
values of the coupling strengths (gLi, gRi ) for i = N , thus, by
setting 	 = 	ls(φ̃12 = 2m′π

N ), the setup can potentially act as
a multichannel photon router, with the frequencies of incident
photons ωe + 	ls(φ̃12) and the number of channels N − 1
under the condition of mod(φ̃12, 2π ) ∈ (0, 2π ).

Moreover, as shown in Figs. 4 and 5, we examine the
phases of the transmission coefficients [arg(tN ) and arg(t̃1)]
and the reflection coefficients [arg(r1) and arg(r̃N )] for the
BEC, UUEC, and BUEC regimes, respectively. The two-point
propagating phases are set to mod(φ̃12, 2π ) = 2m′π/N (m′ =
1, 2, . . . , N − 1) (corresponding to the horizontal dashed lines
in Fig. 3), where the incident photon can be completely trans-
mitted or totally reflected.

For N = 2 and (gLN , gRN )/gL = {(1, 2), (3, 2)}, we find
that tN = 1 and r1 = 0 at any 	 for a left-incident pho-
ton, leading to arg(tN ) = arg(r1) = 0, see Figs. 4(a) and

(a) (b)

(c) (d)

2

3

4

2

3

4

2
34

2
34

left
incidence

right
incidence

FIG. 5. Phases of the transmission (tN , t̃1) and reflection
(r1, r̃N ) coefficients versus 	 with N = 5. We consider the
rightmost (i.e., N th) coupling point which has the coupling
strengths (gLN , gRN )/gL = {(1, 2), (3, 2), (3, 4)} differing from those
(gLN , gRN )/gL = (1, 2) ( j 	= N)] of the other coupling points. Here,
the two-point propagating phases are mod(φ̃12, 2π ) = 2m′π/N (m′ =
1, 2, . . . , N − 1).

4(c). For (gLN , gRN )/gL = (3, 4), we alternatively have tN =
	

	+i2
L
with arg(tN ) = −atan(2
L/	) and r1 = −i
LR

	+i2
L
with

arg(r1) = atan(	/2
L ). In particular, for 	 → 0, the pho-
ton is totally reflected and the reflection coefficient r1

picks up a phase of π . For a right-incident photon, arg(t̃1)
for (gLN , gRN )/gL = (1, 2) and (gLN , gRN )/gL = (3, 4) are
the same as those [i.e., arg(tN )] in the left-incident case
[see Figs. 4(a) and 4(b)]; but for (gLN , gRN )/gL = (3, 2),
one has t̃1 = 	−i
L

	+i
L
and arg(t̃1) = −2atan(
L/	), which

now depends on the frequency detuning 	. Moreover, for
(gLN , gRN )/gL = (3, 4), the phase of the reflection coefficient
becomes arg(r̃N ) = arg(r1) + π [see Fig. 4(d)], which im-
plies that the right-incident photon is reflected at 	 = 0 with
arg(r̃N ) = 2π . Thus, in the UUEC regime, one finds TL(R) = 1
at any 	, but a different transmission phase for the forward-
and backward-propagating photons. In the BUEC regime, one
obtains RL(R) = 1 at 	 = 0, but a different reflection phase
for the forward- and backward-propagating photons.

For N = 5 and mod(φ̃12, 2π ) = 2m′π/N (m′ =
1, 2, . . . , N − 1), the phases of the transmission and
reflection coefficients show similar features for the
forward- and the backward-propagating photons as
those for N = 2, but now become dependent on φ̃12.
For (gLN , gRN )/gL = (3, 2), the transmission phases are
arg(tN ) = 0 and arg(t̃1) = −2atan[
L/(	 − 	ls)]; while
for (gLN , gRN )/gL = (3, 4), the transmission phases are
arg(tN ) = arg(t̃1) = −atan[2
L/(	 − 	ls)]. As shown
in Figs. 5(a) and 5(b), when m′ is varied, the curves
corresponding to the transmission phases are transversely
displaced by 	ls( 2m′π

N ) in comparison with that of N = 2
[where arg(tN ) = −atan(2
L/	) ]. However, the curves
corresponding to the reflection phases arg(r̃N ) and arg(r1)
are displaced both transversely and longitudinally, see
Figs. 5(c) and 5(d). Consequently, the giant atom imprints
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direction-dependent phases on the propagating photon
uniquely for the chiral setup in the UUEC and BUEC
regimes.

IV. NONRECIPROCAL PHOTON SCATTERING WITH
ATOMIC SPONTANEOUS EMISSION

We now take the atomic spontaneous decay into account,
i.e., γ �= 0. Previously, we mentioned that nonreciprocal
photon scattering (i.e., TL 	= TR) cannot occur for the giant
atom with uniformly symmetric coupling. Moreover, it is
remarkable that only reciprocal photon transport can be ob-
served with γ = 0 despite the even or uneven chiral coupling.
However, we will see that, by engineering the chirality of
the coupling strengths, nonreciprocal photon transfer can be
realized due to the joint effect of the chirality (i.e., 
L 	= 
R)
and the atomic spontaneous decay γ 	= 0, and while the reflec-
tions are reciprocal RL = RR, see Eqs. (3) and (4). In other
words, the atomic spontaneous decay of the giant atom due
to its coupling to the thermal environment and the external
decay due to the interfaced waveguide can cooperatively lead
to nonreciprocal photon transport.

As an example, for γ = 
L − 
R and 	 = 	ls, a photon
incident from the left will be partially transmitted with the
probability

TL =
(

1 − 
R


L

)2

, (26)

while a photon incident from the right will be completely iso-
lated, i.e., TR = 0. For a generic situation, the nonreciprocity
in transmission can be described by a contrast ratio defined as

I =
∣∣∣∣TL − TR

TL + TR

∣∣∣∣ = 2γ |
L − 
R|
(	 − 	ls)2 + γ 2 + (
L − 
R)2 . (27)

Thus, the nonreciprocity can only be observed when both the
conditions γ 	= 0 and 
L 	= 
R are simultaneously satisfied.
By setting 	 = 	ls, one achieves the optimal nonreciprocity
I = 1 with γ = |
L − 
R|, where the spontaneous decay rate
γ cancels out the difference between the effective decay rates
in the forward and backward directions. For 	 	= 	ls, the
contrast ratio is always less than 1. Note that here the nonre-
ciprocity is induced by the chirality of couplings, in contrast
to that induced by non-Markovian retardation effects [53] and
by synthetic gauge fields [55].

In Figs. 6(a) and 6(d), we plot the contrast ratio I as
functions of the coupling strengths (gLi, gRi )/gL for gR/gL =
2, γ /g2

L = 0.2, Figs. 6(a)–6(c) N = 5, and Figs. 6(d)–6(f)
N � 2. Correspondingly, we show the forward (backward)
transmission probabilities TL(	 = 	ls) [TR(	 = 	ls)] for a
left-incident (right-incident) photon in Fig. 6(b) [Fig. 6(c)]
with mod(φ̃12, 2π ) = 0 and Fig. 6(e) [Fig. 6(f)] with
mod(φ̃12, 2π ) = 2m′π/N . As discussed above, the optimal
nonreciprocity (I = 1) condition for mod(φ̃12, 2π ) = 0 is

γ = ± [(N − 1)gL + gLi]2 − [(N − 1)gR + gRi]2

2
, (28)

(d)

(a)

1
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1
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(b)

(e)
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0.02
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0.02

0

FIG. 6. Nonreciprocal transport of a single photon by includ-
ing the spontaneous emission decay γ /g2

L = 0.2. The contrast ratio
I versus gLi/gL and gRi/gL for (a) N = 5, mod(φ̃12, 2π ) = 0 and
(d) N � 2, mod(φ̃12, 2π ) = 2m′π/N , with the corresponding trans-
mission probability TL (TR ) for a left-incident (right-incident) photon
being shown in (b) [(c)] and (e) [(f)]. The white dashed lines in panels
(a), (d) indicate the optimal nonreciprocity condition with I = 1. The
white hyperbola dashed lines in (b) [(c)] and (e) [(f)] are used to
label the transmission probabilities with TL(R) = 0, corresponding to
γ + 
L = 
R or γ + 
R = 
L . Other parameters are the same as in
Figs. 2(c) and 2(d).

and alternatively for mod(φ̃12, 2π ) = 2m′π/N (m′ =
1, 2, . . . , N − 1) is

γ = ± (gLi − gL )2 − (gRi − gR)2

2
, (29)

corresponding to the hyperbola branches indicated by the
white dashed lines in Figs. 6(a) and 6(d). Note that for
mod(φ̃12, 2π ) = 0, one can only observe the tail of hyperbola
branches since we consider the coupling strengths being posi-
tive values; when physical parameters (coupling strengths) are
extended to the complex plane, the full hyperbola branches
will be clearly seen in the lower left quadrant. However,
the optimal nonreciprocity is achieved at the expense of low
transmission probabilities TL(R) [shown in Figs. 6(b) and 6(c)].
For mod(φ̃12, 2π ) = 2m′π/N , we previously showed in the
UUEC regime TL = TR ≡ 1 along gRi/gR = 1 (gLi/gL = 1)
for γ = 0, in contrast to that, when γ 	= 0, there emerges an
avoided crossing at the BEC point (gLi, gRi )/gL = (1, 2) with
a gap ∼2

√
2γ of the coupling strength gRi/gR (gLi/gL) for TL

(TR) in Fig. 6(e) [Fig. 6(f)]. Here, the optimal nonreciprocity
[Eq. (29)] corresponds to the total reflection of the incident
photon TL = 0 or TR = 0, as indicated by the white dashed
lines in Figs. 6(e) and 6(f). In particular, by considering the
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UUEC regime (i.e., 
L = 0 or 
R = 0), we obtain the pefect
nonreciprocity I = 1 with TL = 0 (TR = 1) or TL = 1 (TR =
0) for a left-incident (right-incident) photon since the chiral
coupling gRi (gLi) at the ith coupling point is counteracted by
the spontaneous decay according to gRi = gR ± √

2γ (gLi =
gL ± √

2γ ). Extending to a generic case of chiral coupling,
including the BEC, the UUEC, and the BUEC regime, one
finally observes I = 1 on the hyperbola branches in Fig. 6(d).
This gives a more complete picture of the chiral coupling
induced nonreciprocity, which is not limited to the special
cases with two-point asymmetric couplings [50,53,55].

V. NON-MARKOVIAN REGIME

So far, we consider only the Markovian regime, namely,
the time for light to travel between the leftmost and the
rightmost coupling points is much less than the characteristic
relaxation time τ1N � 
̃−1. For the giant atom with N equally
spaced coupling points, where 
̃ is on the same order of N2g2

L
(with regard to the uniformly symmetric coupling) [34,56,70],
the system in the non-Markovian regime implies τ1N = (N −
1)τ12 being comparable to or even larger than 
̃−1. More-
over, by considering the bandwidth of the order |	| ∼ 
̃ or
|	|/g2

L ∼ N2, the effect of 	τ12 on the propagating phase
φ12 = 	τ12 + φ̃12 (and therefore the non-Markovian retarda-
tion effect) cannot be ignored [50,53].

In Fig. 7, we show transmission spectra for
N = 2 coupling points as functions of 	/g2

L for
g2

Lτ12 = 0.25, 1, 2.5, respectively. We consider the set
of coupling strengths with (gL1, gR1, gL2, gR2)/gL =
(1, 0.5, 1, 0.5), (gL1, gR1, gL2, gR2)/gL = (1, 0.5, 1, 1.5),
and (gL1, gR1, gL2, gR2)/gL = (1, 0.5, 0.5, 1), according
to the specific chiral conditions Eqs. (23) and (24). For
g2

Lτ12 = 0.25, the weak non-Markovian effect starts to
influence the transmission spectra. As shown in Fig. 7(a),
for mod(φ̃12, 2π ) = 0, all of the scattering spectrum
have a single minimum at 	 = 0, but with a different
width when the coupling strengths (gL2, gR2)/gL are
varied. For mod(φ̃12, 2π ) = π , as |	|/g2

L increases,
the transmission probabilities in the UUEC [with
(gL1, gR1, gL2, gR2)/gL = (1, 0.5, 1, 1.5)] and the BEC
[with (gL1, gR1, gL2, gR2)/gL = (1, 0.5, 1, 0.5)] regime
decline weakly from TL(R)(	 = 0) = 1, while in the BUEC
regime [with (gL1, gR1, gL2, gR2)/gL = (1, 0.5, 0.5, 1)],
TL(R)(	) quickly transits from zero to almost one for
being out of resonance [see Fig. 7(b)]. For g2

Lτ12 = 1, the
system enters the intermediate non-Markovian regime.
For mod(φ̃12, 2π ) = 0, there emerges a wide frequency
interval where TL(R) remain approximately unchanged, see
Fig. 7(c). In particular, TL(R) � 0 in the frequency interval
for (gL2, gR2)/gL = (0.5, 1) (corresponding to the BUEC
regime), which is referred to as a photonic band gap with
the bandwidth scaling as |	|/g2

L ∝ N2 [56]. Note that
this feature was previously found in a nonchiral setup
[56], but with a large number of coupling points. For
mod(φ̃12, 2π ) = π , as shown in Fig. 7(d), TL(R)(	) starts
to oscillate and additional minima at around 	/g2

L ∼ 3
can be found. In the deep non-Markovian regime with
g2

Lτ12 = 2.5 [as shown in Figs. 7(e) and 7(f)], the flat
lineshape in the band gap splits and exhibits side valleys

(a) (b)

(c) (d)

(f)(e)

FIG. 7. Transmission spectra in the non-Markovian regime
with N = 2 and γ = 0, where (a), (c), (e) mod(φ̃12, 2π ) = 0
(the left panels), and (b), (d), (f) mod(φ̃12, 2π ) = π (the
right panels). The photon propagation time is set as
g2

Lτ12 = {0.25, 1, 2.5}, corresponding to the weak, intermediate, and
deep non-Markovian regimes, respectively. Coupling strengths
for the two coupling points are (gL1, gR1, gL2, gR2)/gL =
{(1, 0.5, 1, 0.5), (1, 0.5, 1, 1.5), (1, 0.5, 0.5, 1)}, which correspond
to the BEC (blue), the UUEC (green), and the BUEC (red) regimes,
respectively.

near 	 = 0 for mod(φ̃12, 2π ) = 0, and only in the case of
(gL2, gR2)/gL = (0.5, 1) with respect to the BUEC regime,
we observe TL(R) = 0 at the two side valleys; in addition,
for (gL2, gR2)/gL = (1, 1.5) and (gL2, gR2)/gL = (1, 0.5),
TL(R)(	) oscillate between 0 and 1 as |	| increases whether
mod(φ̃12, 2π ) = 0 or mod(φ̃12, 2π ) = π .

In Fig. 8, we show the transmission spectra as functions of
	/g2

L with N = 5 for g2
Lτ12 = 0.01, 0.04, and 0.1, which cor-

respond to the weak, intermediate, and deep non-Markovian
regimes, respectively. We consider the propagating time τ1N ∼
(N2g2

L )−1 from the first to the last coupling point, and the
frequency bandwidth is set to |	| ∼ N2g2

L. Furthermore, we
assume that the set of coupling strengths for the N th cou-
pling point are (gLN , gRN )/gL = {(1, 0.6), (1, 2.6), (0, 1.6)},
and the coupling strengths for the other coupling points are
(gL j, gR j )/gL = (1, 0.6), corresponding to the three chiral
coupling regimes discussed above. Note that the coupling
strengths (gLN , gRN )/gL = (0, 1.6) satisfy both the conditions
gLN − gRN = (1 − N )(gL − gR) and |gLN − gL| = |gR − gRN |,
while the coupling strengths (gLN , gRN )/gL = (1, 2.6) satisfy
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(a) (b)

(c) (d)

(f)(e)

FIG. 8. Transmission spectrum in the non-Markovian regime
with N = 5 and γ = 0, where (a), (c), (e) mod(φ̃12, 2π ) =
0, and (b), (d), (f) mod(φ̃12, 2π ) = 0.8π [i.e., mod(φ̃12, 2π ) =
2m′π/N with m′ = 2 without loss of generality]. We set the cou-
pling strengths of the N th coupling point as (gLN , gRN )/gL =
{(1, 0.6), (1, 2.6), (0, 1.6)} and that of the others as (gL j, gR j )/gL =
(1, 0.6) ( j 	= N), which correspond to the BEC (blue), the UUEC
(green), and the BUEC (red) regime, respectively. Moreover, the
photon propagation time is set as g2

Lτ12 = {0.01, 0.04, 0.1}, cor-
responding to the weak, intermediate, and deep non-Markovian
regimes, respectively.

gLN − gRN = (1 − N )(gL − gR) only. For mod(φ̃12, 2π ) = 0,
as shown by Figs. 8(a), 8(c), and 8(e), the transmission
spectra with g2

Lτ12 = {0.01, 0.04, 0.1} show oscillation behav-
iors similar to those of N = 2 in the same non-Markovian
regime, and as |	| increases, TL(R)(	) saturate to unity after a
few oscillations in the intermediate and deep non-Markovian
regimes. For mod(φ̃12, 2π ) = 2m′π/N , the lineshape of the
scattering spectra becomes asymmetric for an odd number
of coupling points, see Figs. 8(b), 8(d), and 8(f), where we
take m′ = 2 [i.e., mod(φ̃12, 2π ) = 0.8π ] as an example.
In particular, since the Lamb shift 	ls is nonvanishing for
mod(φ̃12, 2π ) = 2m′π/N , the time delay ∼	τ12 will lead
to a shift of the dip [corresponding to TL(R)(	ls) → 0] for
the BUEC regime [i.e., (gLN , gRN )/gL = (0, 1.6)], while in
comparison, TL(R) remain unity at resonance [i.e., TL(R)(	 =
0) ≡ 1] for the UUEC [(gLN , gRN )/gL = (1, 2.6)] and BEC
[(gLN , gRN )/gL = (1, 0.6)] regimes. Note that, since there
may not exist an appropriate detuning 	 fulfilling both 
L =

R and 	 = 	ls, TL(R) in the BEC regime suffer from a

sudden jump to TL(R)(	ls) = [(
L − 
R)/(
L + 
R)]2 at the
detuning 	 = 	ls [see the blue curve in Figs. 8(b), 8(d), and
8(f)], which does not occur in the case of N = 2. In general,
for mod(φ̃12, 2π ) = 2m′π/N , the oscillation amplitudes of
TL(R)(	) become larger when the system enters the interme-
diate and deep non-Markovian regimes.

VI. EXPERIMENTAL FEASIBILITY AND CONCLUSION

The giant atom model under consideration can be found in
Refs. [39,40], where the three- and six-coupling-point archi-
tectures are realized with nonchiral waveguides and are used
to demonstrate decoherence-free interaction [39] or electro-
magnetically induced transparency [40]. In these experiments,
a frequency-tunable transmon qubit capacitively couples to
a meandering microwave TL at multiple points, where the
number of coupling points is limited by the device geometry
and the physical size of the transmon qubit. The qubit can
be regarded as a two-level system when the atom-waveguide
coupling strength ∼gL (of a few MHz) is much smaller than
the level anharmonicity (with the maximum value a few hun-
dred MHz) [62], and the atomic decay rate is on the order of
∼0.1 MHz [39]. Moreover, the capacitive coupling at each
connection point can be tuned by mediating the qubit-field
interaction with superconducting quantum interference de-
vices (SQUIDs) and tuning the magnetic fluxes threading
them [40]. For the two-point propagating phase φ12 = ωe|z2 −
z1|/v around the qubit frequency ωe, where v is the speed of
light in the waveguide, a phase φ12 of 2π corresponds to a
two-point distance |z2 − z1| = 2πv/ωe ∼ 20 mm, which can
be controlled with great precision [40]. However, chiral quan-
tum optics with photonic reservoir was studied with many
architectures [71], e.g., photonic-crystal waveguides or opti-
cal nanofibers with transversely confined light [32,72], and
microwave TLs with circulators [64–67]. Considering that the
giant artificial atoms demonstrated in Refs. [39,40] are based
on coupling to the microwave TLs, the scattering phenom-
ena unique to giant atoms chirally coupled with waveguides
may be demonstrated by using microwave circulators to pro-
vide the chirality [49,64–67]. Although the non-Markovian
effect has not yet been observed in the microwave-photons-
based systems so far, it can be alternatively demonstrated
with the SAW-based systems [35], or by increasing the atom-
waveguide coupling with a well-designed superconducting
flux qubit [73].

In conclusion, we study the photon scattering spectra by
a giant atom, which is chirally coupled to a waveguide at
multiple equally spaced points. The chirality is categorized
in terms of the evenness of coupling strengths in the left and
right propagation directions, and is divided into three regimes,
i.e., the BEC, UUEC, and BUEC regimes. In the Marko-
vian limit and for the two-point propagating phase being
mod(φ̃12, 2π ) = 0, the incident photon can be totally reflected
at resonance and the transmission spectra possess the anti-
Lorentzian line shape with the width depending on the number
of coupling points N . For the two-point propagating phase sat-
isfying mod(φ̃12, 2π ) = 2m′π/N , the incident photon is fully
transmitted at 	 = 	ls in the BEC and the UUEC regimes,
but can be totally reflected in the BUEC regime, where,
interestingly, the transmission probabilities can be flexibly
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tuned at (N − 1) fixed frequencies by engineering the chirality
of couplings, allowing for multiple-channel photon routing;
moreover, the giant-atom-waveguide coupling can imprint
direction-dependent phases on the scattering coefficients. Due
to the chiral coupling, the maximum nonreciprocity in photon
scattering (corresponding to the contrast ratio of unity) can
be achieved when the atomic spontaneous decay is taken
into account, differing from the non-Markovianity induced
effect in other chiral waveguide QED systems [50,53]. The
non-Markovian retardation effect manifested by the scatter-
ing spectra reflects itself mainly in the photonic band gap
and the oscillatory behavior between total reflection and full
transmission, especially in the intermediate and deep non-
Markovian regimes, respectively. The giant-atom-waveguide
system with chiral coupling thus offers flexible ways for
single-photon routing.
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APPENDIX A: SOLUTION OF TRANSMISSION AND
REFLECTION COEFFICIENTS

Inserting Eqs. (1) and (2) into the stationary Schrödinger
equation H |ψ〉 = E |ψ〉, we find that the probability ampli-
tudes obey the following relations:

EcgL(z) =
(

ω0 + ivg
∂

∂z

)
cgL(z)

+
N∑

j=1

δ(z − z j )
√

vggL je
ik0zce0,

EcgR(z) =
(

ω0 − ivg
∂

∂z

)
cgR(z)

+
N∑

j=1

δ(z − z j )
√

vggR je
−ik0zce0,

(	 + iγ )ce0 =
∫

dz
N∑

j=1

δ(z − z j )
√

vg[gL je
−ik0zcgL(z)

+ gR je
ik0zcgR(z)], (A1)

where 	 = ω(k) − ωe is the detuning between the incident
photons and the atomic transition |g〉 ↔ |e〉. Now suppose a
photon is incident from the left port and the atom is initially in
|g〉, the probability amplitudes, due to the δ-function potential
effect of the atom at the coupling point can be formed as

cgR(z) = ei(k−k0 )z

[
�(z1 − z) +

N−1∑
j=1

t j�(z − z j )�(z j+1 − z)

+ tN�(z − zN )

]
,

cgL(z) = e−i(k−k0 )z

[
r1�(z1 − z)

+
N∑

j=2

r j�(z − z j−1)�(z j − z)

]
, (A2)

where t j (r j) is the transmission (reflection) coefficient for
the jth coupling point, tN (r1) is the transmission (reflection)
coefficient for the last (first) coupling point, and �(z − z j ) is
the Heaviside step function. While for the right-incident case,
the probability amplitudes alternatively take the form

cgR(z) = ei(k−k0 )z

[
N−1∑
j=1

r̃ j�(z−z j )�(z j+1−z)+r̃N�(z − zN )

]
,

cgL(z) = e−i(k−k0 )z

[
t̃1�(z1 − z) +

N∑
j=2

t̃ j�(z − z j−1)�(z j − z)

+ �(z − zN )

]
, (A3)

with t̃ j , r̃ j being the corresponding transmission and reflec-
tion coefficients as in the right-incident case. Substituting
Eqs. (A2) and (A3) into Eq. (A1), one readily obtains the
transmission and reflection coefficients (tN and r1) for a
left-incident photon and the transmission and reflection coef-
ficients (t̃1 and r̃N ) for a right-incident photon. Furthermore,
the transmission and reflection probabilities are given by
TL = |tN |2 (TR = |t̃1|2) and RL = |r1|2 (RR = |r̃N |2) for a left-
incident (right-incident) photon, respectively.

APPENDIX B: LAMB SHIFT AND EFFECTIVE DECAY
RATES FOR THE UUEC AND BUEC REGIMES

For N > 2, we consider the simplified model where the
coupling strengths at the ith coupling point gLi (gRi) for the
left-propagating (right-propagating) photons are uniquely dif-
ferent from that [assumed to be identical to gL (gR)] of all the
other (N − 1) coupling points. A brief calculation shows that
the Lamb shift is given by

	ls = g2
L + g2

R

2
(NS1 − SN ) − gL(gL − gLi ) + gR(gR − gRi )

2

× (2S1 + Si−1 − Si + SN−i − SN−i+1), (B1)

with S j (φ̃12) = sin( jφ̃12)/(1 − cosφ̃12), j ∈ N, and the effec-
tive decay rates are


L ± 
R = g2
L ± g2

R

2
CN + (gL − gLi )2 ± (gR − gRi )2

2

+ gL(gL − gLi ) ± gR(gR − gRi )

2

× (Ci−1 − Ci + CN−i − CN−i+1), (B2)

with Cj (φ̃12) = sin2( 1
2 jφ̃12)/sin2( 1

2 φ̃12). (1) The Lamb shifts
vanish for mod(φ̃12, 2π ) = 0 due to S j (φ̃12) = 0, but the de-
cay rates in Eq. (B2) become dependent on the number of the
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coupling points according to


L ± 
R = [(N − 1)gL + gLi]2 ± [(N − 1)gR + gRi]2

2
.

(B3)

It follows that the transmission probabilities are

TL(R) = 4	2 + {[(N − 1)gL + gLi]2 − [(N − 1)gR + gRi]2}2

4	2 + {[(N − 1)gL + gLi]2 + [(N − 1)gR + gRi]2}2
.

(B4)

(2) For mod(φ̃12, 2π ) = 2m′π/N , there exist the math-
ematical identities Cj (φ̃12) = CN− j (φ̃12) and S j (φ̃12) =

−SN− j (φ̃12) ( j = 0, 1, . . . , N), from which we readily find the
Lamb shifts being nonvanishing and N-dependent

	ls = NS1
g2

L + g2
R

2
− (S1 + Si−1 − Si )

× [gL(gL − gLi ) + gR(gR − gRi )], (B5)

and more interestingly, the N-independent effective decay
rates


L ± 
R = 1
2 [(gL − gLi )

2 ± (gR − gRi )
2]. (B6)
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