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Thin-film nanostructures with embedded Mössbauer nuclei have been successfully used for x-ray quantum
optical applications with hard x-rays coupling in grazing incidence. Here we address theoretically an alternative
geometry, in which hard x rays are coupled in forward incidence (front coupling), setting the stage for waveguide
QED with nuclear x-ray resonances. We present in a self-contained manner a general model based on the Green’s
function formalism of the field-nucleus interaction in one-dimensional waveguides and show that it combines
aspects of both nuclear forward scattering, visible as dynamical beating in the spatiotemporal response, and
the resonance structure from grazing incidence, visible in the spectrum of guided modes. The interference of
multiple modes is shown to play an important role, resulting in beats with wavelengths on the order of tens of
micrometers, on the scale of practical photolithography. This allows for the design of special sample geometries
to explore the resonant response or microstriped waveguides, opening a toolbox of geometrical design for hard
x-ray quantum optics.
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I. INTRODUCTION

The resonant interaction of Mössbauer transitions in
atomic nuclei with coherent light from third generation syn-
chrotron and x-ray free electron laser (XFEL) sources has
been shown to be an excellent platform for quantum optics
in the x-ray energy scales [1]. The recoil-free emission due to
the Mössbauer effect means that scattering is highly elastic,
and free from Doppler broadening even at room temperature,
while the exceptionally narrow line-width of nuclear transi-
tions means that the temporal response of the nuclei can easily
be experimentally resolved [2].

So far, experiments with these systems have largely been
restricted to two types of target geometries: forward scattering
through homogeneous foils, and grazing incidence reflection
from nano-structured thin-film waveguides. In the former
geometry, the target consists of a homogeneous bulk foil
containing the resonant nuclei, on the order of µm thickness.
The resonant propagation characteristics are that of a homo-
geneous dielectric medium. The phase difference between the
scattered field at the back of the foil compared with the front
results in a characteristic spatiotemporal interference pattern
known as the “dynamical beat” [2]. The analogous visible op-
tical system is the collective emission of a “pencil geometry”
of identical atoms, where the dynamical beat is known as a
“collective Rabi oscillation” [3]. Several interesting quantum
optical effects with x-rays have been demonstrated in this
geometry, such as magnetic switching [4], coherent pulse
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shaping [5], electromagnetically induced transparency (EIT)
[6], optical control of the nuclear hyperfine spectrum [7],
pulse shaping [8,9], as well as direct observation of the multi-
photon dynamics of superradiance [10].

In a general x-ray optical context, waveguides have been
studied, and demonstrated experimentally to be powerful op-
tions for focusing and guiding down to the nanometre scale
[11–19]. Used as optical elements for synchrotron radia-
tion, exploiting their mode-filtering capabilities to provide
highly coherent pointlike illumination, they have been used
for imaging, in particular holographic imaging [20,21]. Ta-
pered waveguides have been used to focus x rays down to their
diffraction limit [22]. In periodically structured waveguides,
the photonic band-gap effect has been exploited for single
mode propagation [23], while longitudinal periodic structures
have been demonstrated as efficient mode filters [24,25]. Due
to the relatively large spot sizes of synchrotron beams, direct
front coupling of the beam to the waveguide is experimen-
tally challenging, and many experiments are performed using
grazing incidence driving. Nevertheless, Fuhse et al. have
experimentally demonstrated the viability of front coupling
using a combination of a Kirkpatrick-Baez mirror and pinhole
as a focusing element [26], while Bongaerts et al. have used
an asymmetric upper and lower cladding at the waveguide
entrance to couple the incoming beam via prereflection [27].

In the context of Mössbauer nuclei, existing experimental
work with thin film waveguides has used grazing incidence
driving, with layers of Mössbauer nuclei embedded as reso-
nant scatterers. Due to an approximate translational symmetry,
the system can be analysed in terms of a single Fourier mode,
and thus acts analogously to a system of atoms placed between
the mirrors of a Fabry-Pérot resonator. These nanostructures
have proven to be an excellent platform for x-ray quantum
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optics, with a diverse range of quantum optical phenomena
demonstrated, such as superradiance [28], EIT [29], spon-
taneously generated coherences [30], Fano resonances and
interferometry [31], subluminal pulse propagation [32], col-
lective strong coupling [33], Rabi oscillations between two
nuclear ensembles [34], as well as a platform for understand-
ing the multiple mode structure of Fabry-Pérot type resonators
[35].

In this work, we theoretically investigate a different sce-
nario, namely, forward incidence, front coupled driving of
Mössbauer transitions in such thin film nanostructures. Com-
pared to grazing incidence, the broken translational symmetry
results in direct driving of a superposition of attenuated guided
modes of the waveguide, rather than the grazing incidence
picture of a single Fourier mode with conserved wave vector.
Via the spatial structure of the Mössbauer scatter layer, this
provides direct nuclear control over the interacting waveguide
modes, and allows us to engineer the waveguide mediated
interaction between subensembles of Mössbauer nuclei. This
geometry has been only scarcely investigated so far in the
context of resonant nuclear scattering. We have recently per-
formed such an experiment on a single mode waveguide [36].
We are otherwise aware of a recent proposal for embedding
Mössbauer nuclei in tapered waveguides showing the poten-
tial for reaching inversion of the resonant transition [37],
while another proposal has considered using slab waveguides
with a core filled with density gradients of Mössbauer nuclei
as a gravitational sensor [38].

Due to the fact that they are an experimentally well es-
tablished platform in the grazing incidence geometry, with
good control over sample preparation, we will consider slab
waveguides as our explicit example. However, the theoretical
description we develop is fairly general, and applies to any
system with one-dimensional propagation, and a resonant nu-
clear ensemble that is thin in the transverse extent compared
to the mode widths. Our theoretical model is based on the
Grüner-Welsch quantization of the macroscopic Maxwell’s
equations [39–41], which allows us to describe the electro-
magnetic field in a fully quantum way, in terms of the classical
dyadic Green’s function of the medium.

Our formalism allows us to derive a system of multi-
mode Maxwell-Bloch equations, which in the linear response
regime can be rearranged into a matrix differential equa-
tion analogous to the equation of motion of ordinary nuclear
forward scattering. We are able to obtain an analytic series
solution for the spatiotemporal response in the case of two-
level nuclei, and demonstrate that this shows the characteristic
dynamical beat of forward scattering, but with additional in-
terference beats due to the coupling to multiple guided mode.

We additionally consider the case of a nonuniform reso-
nant layer; specifically we consider dividing the layer into
microscopic subensembles along the propagation direction.
In the regime where the ensemble spacing is a similar order
of magnitude to the mode interference length, we show that
a phenomenon similar to selective subradiance occurs, with
the waveguide mediated dipole-dipole interaction between
subensembles being sensitive to their spacing. In the limit of
a half wavelength spacing, we show that the subensembles
are at the nodes of the scattered field of their neighbours, and
thus the system splits into two noninteracting subensembles,

displaying a sensitivity to the even-odd parity of the num-
ber of subensembles. This opens an alternative direction of
geometrical control of the x-ray scattering, which could be
potentially exploited for quantum fluorescence imaging [42],
implementation of mesoscopic models for the investigation of
topological edge states [43–45], as well as the investigation
of geometrical radiation phenomena such as selective subra-
diance [46].

This paper is structured as follows. Section II introduces
the theoretical formalism we will use to model the waveguide
field and its interaction with the resonant nuclei. This is con-
tinued in Sec. III which gives the solutions of the equations of
motion for single as well as multiple modes. The theoreti-
cal approach for spatial patterning of the resonant layer is
presented in Secs. IV and V, while derivations for analytic
solutions for structured and unstructured layers of Mössbauer
nuclei are given in Appendix C and D. Finally, in Sec. VI, we
then give explicit numeric examples, and a detailed qualitative
study of these solutions for a realistically implementable two-
mode waveguide.

II. THEORETICAL DESCRIPTION

In this section, we introduce the theoretical model for
describing the waveguide field and its interaction with the
resonant nuclei. We begin with a brief perspective on the
macroscopic Maxwell’s Green’s function approach we will
use, and its applications in previous works.

The majority of works considering x-ray propagation in the
waveguide regime address nonresonant propagation of the x-
ray field, i.e., waveguides in the absence of Mössbauer nuclei.
Previous theoretical studies in the general x-ray context have
focused on the mode structure and coherence properties of
x-ray waveguides using semianalytic mode decompositions
combined with numeric integration [25,27,47–49], as well as
finite difference [50–52] approaches to the propagation of the
guided mode fields. In a recent paper, two of us have presented
a classical theory for planar x-ray waveguides, discussing
the general mode structure of the electromagnetic field and
the fields caused by embedded sources, based on classical
electromagnetic Green’s functions [53].

In nonresonant contexts, the refractive indices of the back-
ground media, the waveguide structure, vary slowly over the
bandwidth of interest. In contrast, introducing a nuclear reso-
nance results in a very rapid change in refractive index over
the nuclear linewidth compared with the background, and as
such it is simplest to treat the nuclear response separately from
the background waveguide, which can be taken as constant
over the bandwidth of interest. Additionally, with the advent
of narrower bandwidth x-ray sources such as XFEL oscillators
[54], the saturation of nuclear transitions could become more
feasible, and in anticipation of this we wish to develop an ab
initio microscopic description for the quantum dynamics of
both the nuclei and the waveguide fields.

In the interest of a self-contained presentation, we begin
with a brief overview of the Grüner-Welsch quantization of
the electromagnetic field in terms of the Green’s functions
of the macroscopic Maxwell’s equations. This approach has
been used in the description of collective light-matter inter-
action, with a wide variety of applications. Asenjo-Garcia
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et al, Chang et al. and others have used this form to derive
an effective dipole-dipole coupling model for atomic lattices,
with applications in one-dimensional waveguides [55], as well
as free space lattices [46,56]. Svidzinsky et al. have derived
an equivalent description ab initio in their studies of single
photon superradiance, in both isotropic atomic clouds [57,58],
and one-dimensional geometries [3], while Ma and Yelin have
used the Green’s function as part of a self-consistency ap-
proach to study the collective Lamb shift and modified decay
rates of atomic clouds [59]. In the nonlinear regime, Ru-
ostekoski et al. [60–63] have used this approach to study slab
geometries of atomic clouds, developing a hierarchy of equa-
tions for the correlation functions of the atomic cloud, coupled
via the classical Green’s function of the background medium,
while Schneider et al. have used a Feynman diagram approach
to study impurity scattering in waveguides, with the classical
waveguide Green’s function appearing as the free propagator
[64]. In the x-ray regime, the Grüner-Wlesch formalism has
been adapted to describe grazing incidence scattering [65,66],
which takes advantage of the fact that the Green’s function
for planar layered media are analytically known. Equivalent
expressions appear in the standard treatments of nuclear for-
ward scattering by Kagan et al. [67] and Shvyd’ko [68], as
well as the general formalism for x-ray resonant scattering of
Hannon and Trammel [2,69–71].

A. Macroscopic QED

The prototypical example of a Mössbauer nucleus is 57Fe.
The metastable internal states of nuclei are characterized
primarily by their spin quantum number I , and 57Fe has a
relatively low-lying magnetic dipole transition between the
Ig = 1/2 ground states and the Ie = 3/2 ground states, with
an energy of h̄ω0 = 14.4 keV and an incredibly narrow width
of h̄γ = 4.7 neV.

Due to this large energy, the nuclear transition lies well
above the largest electronic resonances in the layer materials,
and as such the electronic scattering is both weak, and well
described as a linear dielectric. In this regime, to describe
the electromagnetic propagation through the medium, we
will use the Grüner-Welsch quantization of the macroscopic
Maxwell’s equations [39]. In this scheme, the polariton-
like electromagnetic fields in the medium are quantized via
Bosonic noise currents f̂ , obeying

[ f̂λ(�r, ν), f̂ †
λ′ (�r′, ν ′)] =δλλ′δ3(�r − �r′)δ(ν − ν ′), (1)

[ f̂λ(�r, ν), f̂λ′ (�r′, ν ′)] = 0. (2)

Here, ν is a formal frequency parameter, and λ = e, m labels
the electric and magnetic polarization of the noise currents,
respectively. The free field Hamiltonian is then given by

ĤF =
∑

λ=e,m

∫ ∞

0
dν

∫
d3rh̄ν f̂ †

λ (�r, ν) f̂λ(�r, ν), (3)

ensuring that the formal frequency parameter corresponds to
a Fourier frequency for the free field,

∂t f̂λ(�r, ν, t ) = − i

h̄
[ f̂λ(�r, ν, t ), ĤF ] = −iν f̂λ(�r, ν, t ). (4)

The electric and magnetic fields are then obtained from the
noise currents using the dyadic Green’s functions of the
macroscopic Maxwell’s equations of the material [72],

Ê+(�r, ν) =
∑

λ=e,m

∫
d3s

←→
ξλ (�r, �s, ν) · f̂λ(�s, ν), (5)

Ê−(�r, ν) = Ê+(�r, ν)†, (6)

Ê (�r) =
∫ ∞

0
dν[Ê+(�r, ν) + Ê−(�r, ν)], (7)

B̂+(�r, ν) = 1

iν

∑
λ=e,m

∫
d3s∇ × ←→

ξλ (�r, �s, ν) · f̂λ(�s, ν), (8)

B̂−(�r, ν) = B̂+(�r, ν)†, (9)

B̂(�r) =
∫ ∞

0
dν[B̂−(�r, ν) + B̂+(�r, ν)], (10)

←→
ξe (�r, �r′, ν) = i

ν2

c2

√
h̄

πε0
Im ε(�r′, ν)

←→
G (�r, �r′, ν), (11)

←→
ξm (�r, �r′, ν) = i

ν

c

√
h̄

πε0

Im μ(�r′, ν)

|μ(�r′, ν)|2
←→
G (�r, �r′, ν) × ∇′. (12)

In these definitions, ε0, μ0 refer to the vacuum permittiv-
ity and permeability, c = 1√

μ0ε0
the speed of light, while

ε(�r, ν), μ(�r, ν) refer to the dimensionless relative permittivity
and permeability of the medium, respectively. For notational
convenience we have omitted the vector arrow for operators,
i.e. E , B. We have introduced the notation E± to denote posi-
tive and negative frequency field components, and

←→
G denotes

the dyadic electric Green’s function of the material, obeying(
∇ × μ−1∇ × −ν2

c2
ε

)←→
G (�r, �r′, ν) = ←→

δ (�r − �r′). (13)

B. Nuclear Hamiltonian and Lindblad superoperators

We will model the nuclei using transition operators,

�̂
(i)
ab = |a〉〈b|, (14)

where the bra and ket are implied to act only on the Hilbert
space of the ith nucleus, and a, b are arbitrary internal states
of the nucleus. These obey the commutation relations[

�̂
(i)
ab, �̂

( j)
cd

] = δi j
(
δbc�̂

(i)
ad − δda�̂

(i)
cb

)
. (15)

For polycrystalline ensembles of nuclei, Bragg scattering is
insignificant, and we can model the nuclear layer as a con-
tinuum, with number density ρ(�r). We then substitute the
transition operators with an operator field,

�̂
(i)
ab → �̂ab(�r) (16)

and (15) becomes

[�̂ab(�r), �̂cd (�r′)] = 1

ρ(�r)
δ(�r − �r′)[δbc�̂ad (�r) − δda�̂cb(�r)].

(17)
The internal nuclear Hamiltonian models the hyperfine in-
teractions of the nucleus, such as the isomer shift, magnetic
hyperfine field, and quadrupole splitting [73]. For the pur-
poses of this paper, however, it is sufficient to express it in
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terms of the excited and ground eigenstates,

ĤN =
∑
μ∈Ie

∫
d3rρ(�r)h̄(ω0 + μ)�̂μμ(�r)

+
∑
j∈Ig

∫
d3rρ(�r)h̄ j�̂ j j (�r), (18)

where we are using Greek indices such as μ to denote excited
eigenstates and Latin indices such as j to denote ground
eigenstates. Here, ω0 is the reference transition frequency,
while μ, j are the hyperfine-induced splittings.

The nuclear excited states decay via both radiative (rad)
and electron internal conversion (IC) channels, which can be
modelled via Lindblad superoperators,

L[�] = LIC[�] + Lrad[�], (19)

LIC[�] =
∑
λ,l

�IC (λl, Ie → Ig)Lλl [�], (20)

LIC[�] =
∑
λ,l

�rad(λl, Ie → Ig)Lλl [�], (21)

Lλl [�] =
∫

d3�rρ(�r)
∑
μ, j

R(λl, μ → j)

×
(

�̂ jμ(�r)��̂μ j (�r) − 1

2
{�, �̂μμ(�r)}

)
, (22)

LH
λl [Ô] =

∫
d3�rρ(�r)

∑
μ, j

R(λl, μ → j)

×
(

�̂μ j (�r)Ô�̂ jμ(�r) − 1

2
{Ô, �̂μμ(�r)}

)
. (23)

Here, λ = E,M denotes the electric or magnetic multipole
character of a decay channel, while l denotes the multipole
order of the decay. The notation LH denotes the Heisenberg
form of the superoperator, which acts on operators Ô in the
Heisenberg picture as opposed to density matrices � in the
Schrödinger picture. The sum of the partial rates can be ex-
pressed in terms of commonly tabulated quantities,∑

λ,l

�IC (λl, Ie → Ig) = α

1 + α
γ , (24)

∑
λ,l

�rad(λl, Ie → Ig) = 1

1 + α
γ , (25)

where γ is the total decay rate, and α the internal conversion
coefficient. The rate fractions R(λl, μ → j) can be obtained
in terms of the Wigner 3j symbols via [[74], Sec. 5.3]

R(λl, μ → j) =
∑

q

|C(lq, μ → j)|2, (26)

C(kq, μ → j) =
√

2Ie + 1
∑

me,mg

[
(−1)Ie−me〈μ|Ie, me〉

× 〈Ig, mg| j〉
(

Ie k Ig

−me q mg

)]
. (27)

The dominant multipolarity of the resonant transition is M1,
i.e., magnetic dipole. The coupling to the field is therefore

through the magnetic transition dipole field m̂(�r), which can
be expressed in terms of the transition operators as

m̂(�r) = m̂+(�r) + m̂−(�r), (28)

m̂+(�r) =m0

∑
μ, j

�d∗
μ j�̂ jμ(�r), (29)

m̂−(�r) =m̂+(�r)†. (30)

Here, we have used a generalization of the Wigner-Eckart
decomposition; the prefactor m0 is the usual reduced matrix
element of the transition dipole vectors, with magnitude

m0 =
√

fLMB(M1, 3/2 → 1/2), (31)

where fLM is the Lamb-Mössbauer factor, giving the fraction
of scattering in the elastic channel, while B(M1, 3/2 → 1/2)
is the reduced transition probability in Weisskopf units.

The expansion vectors �dμ j are dimensionless and given by

�dμ j =
1∑

q=−1

êqC(kq, μ → j) (32)

with C(kq, μ → j) as defined in (27), and êq the spherical
unit vectors:

ê−1 = 1√
2

(x̂ − iŷ), (33)

ê0 = ẑ, (34)

ê1 = 1√
2

(x̂ + iŷ). (35)

C. Interaction Hamiltonian and Maxwell-Bloch equations

For the field-nuclei coupling, as we have discussed in
the previous section, the dominant multipolarity is magnetic
dipole, and we therefore take the interaction Hamiltonian to
be

ĤI = −
∫

d3rρ(r)B̂(�r) · m̂(�r). (36)

We will work in the rotating frame of the nuclei, using the
following interaction picture transformation:

ĤT =ĤT,F + ĤT,N , (37)

ĤT,N =h̄ω0

∑
μ

∫
d3rρ(�r)�̂μμ(�r), (38)

ĤT,F =h̄ω0

∑
λ=e,m

∫ ∞

0
dν

∫
d3r f̂ †

λ (�r, ν) f̂λ(�r, ν). (39)

The field transformations are then given by

B̂+(�r, ν) →e−iω0t B̂+(�r, ν), (40)

B̂(�r) →B̂(�r, t ) =
∫ ∞

0
dνe−iω0t B̂+(�r, ν) + H.c., (41)

�̂ jμ(�r) →e−iω0t�̂ jμ(�r), (42)

�̂μν (�r) →�̂μν (�r), (43)

�̂ jk (�r) →�̂ jk (�r), (44)
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m̂+(�r) →e−iω0t m̂+(�r), (45)

m̂(�r) →m̂(�r, t ) = e−iω0t m̂+(�r) + H.c. (46)

The field equation of motion is then derived via the Heisen-
berg equations of motion for the field,

∂t B̂(�r, t ) = − i

h̄
[B̂(�r, t ), ĤF − ĤF,T + ĤI (t )]. (47)

In Appendix A, we show that for the Fourier transformed field,

B̂(�r, ω) =
∫ ∞

−∞
dteiωt B̂(�r, t ), (48)

applying the Kramers-Kronig relations leads one to obtain

B̂(�r, ω) = B̂in(�r, ω) − μ0

∫
d3r′ρ(r′)

× ←→
Gmm(�r, �r′, ω) · m̂(�r′, ω), (49)

where B̂in is the homogeneous solution in the absence of
resonant nuclei, while

←→
Gmm(�r, �r′, ω) = ∇ × ←→

G (�r, �r′, ω) × ∇′ (50)

is the Green’s function of the macroscopic Maxwell’s equa-
tions giving the magnetic field response of a magnetic source.
This therefore demonstrates that the macroscopic Maxwell

equations hold in the operator sense for the fully quantized
field-nucleus interaction.

We note at this stage that for the interacting system, the
Fourier frequency ω is not the same as the noise current
frequency ν defined in equations (5) through (10). Neverthe-
less, we may still divide the field into positive and negative
frequency components corresponding to annihilation and cre-
ation operators of the noise field respectively.

Evaluating the equation of motion of the nuclear transi-
tion operators results in the following Bloch equations (see
Appendix B for details),

∂t�̂μν (�r, t ) = (i(μ − k ) − γ )�̂μν (�r, t )

+ im0

h̄

∑
j

(�̂μ j (�r, t ) �dν je
iω0t

− �̂ jν (�r, t ) �d∗
μ je

−iω0t ) · B̂(�r, t ), (51)

∂t�̂ jk (�r, t ) = i( j − k )�̂ jk (�r, t ) + δ jk

∑
μ

�(μ → j)

× �̂μμ(�r, t ) − im0

h̄

∑
μ

(�̂μk (�r, t ) �dμ je
iω0t

− �̂ jμ(�r, t ) �d∗
μke−iω0t ) · B̂(�r, t ), (52)

∂t�̂μ j (�r, t ) =
(

i(μ −  j ) − γ

2

)
�̂μ j (�r, t ) + im0

h̄

(∑
ν

�̂μν (�r, t ) �d∗
ν je

−iω0t −
∑

k

�̂k j �d∗
μke−iω0t

)
· B̂(�r, t ), (53)

∂t�̂ jμ(�r, t ) =
(
−i(μ −  j ) − γ

2

)
�̂ jμ(�r, t ) − im0

h̄

(∑
ν

�̂νμ(�r, t ) �dν je
iω0t −

∑
k

�̂ jk �dμkeiω0t

)
· B̂(�r, t ). (54)

Here, �(μ → j) is the total decay rate over all channels from
excited state μ to ground state j. In current experiments, there
are few resonant photons per incident pulse, and thus we can
consider the linear response for the magnetization, �̂μν ≈ 0,
�̂ jk ≈ δ jk

2Ig+1 . In addition, due to the very large nuclear tran-
sition frequency, the rotating wave approximation holds very
well, and the positive and negative frequency components of
the magnetization can be described with via a linear suscepti-
bility tensor ←→χm (see Appendix B)

m̂+(�r, ω) = 1

μ0

←→χm(ω) · B̂+(�r, ω), (55)

←→χm(ω) = −σres

k0

←→
F (ω), (56)

σres = 2π

k2
0

fLM

1 + α

2Ie + 1

2Ig + 1
. (57)

Here, σres is the cross-section of resonant scattering, fLM is the
Lamb-Mössbauer factor, α the internal conversion coefficient,
and k0 = ω0c−1 the overall transition wave number. We note
that ←→χm has the overall dimension of volume, as we have

defined m̂(�r, ω) via the nuclear transition dipole moments,
rather than their density.

The dimensionless response tensor
←→
F (ω) is given by the

sum of the Lorentzian responses of the available transitions

←→
F (ω) = 3

2Ie + 1

∑
μ, j

γ /2

ω − μ +  j + iγ /2
�d∗
μ j ⊗ �dμ j .

(58)
In the case of an inhomogeneous ensemble, the response is av-
eraged over the probability distribution of the inhomogeneous
hyperfine environment of the nuclei [73].

D. Green’s function for slab waveguides

In Fig. 1, we give a schematic view of the scattering geom-
etry used to create a slab waveguide for resonant x rays. The
field propagates in the x direction, with refractive index gradi-
ents in the z direction used to create the waveguide structure.
The waveguide bulk is translationally symmetric in the x and y
directions, and since synchrotron sources are well collimated,
we can take the incident field to be uniform in the y direction,
making the problem effectively two-dimensional. For a slab
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FIG. 1. Overview of scattering geometry. The waveguide is
formed by a stack of dielectric layers in the z axis, while the in-
cident beam propagates along the x axis. The field is sufficiently
well collimated that it is uniform along y, allowing us to consider
a two-dimensional problem in the xz plane.

waveguide, the Green’s functions are analytically known (see,
for example, Refs. [72,75–77]). The Green’s functions can be
divided into transverse electric and transverse magnetic polar-
ization, with these components in turn being decomposed into
a sum of discrete modes, and a continuum of radiative modes
[53,77],

←→
G s(�r, �r′, ω) =

∑
λ

←→g s
λ (z, z′, ω)eiqs

λ(ω)|x−x′|

+ ←→
G s

rad(z, z′, x − x′, ω). (59)

Here, s = TE and TM labels the polarization while λ labels the
guided modes, which propagate with complex wave numbers
qs

λ, the positive imaginary parts of which give the attenuation
of the guided mode.

In particular, in the hard x-ray regime, compared to the
guided mode contributions, the radiative contribution is small
in magnitude and very short range [53] and due to the corre-
spondingly large bandwidth in momentum space results in an
overall Purcell factor and Lamb shift. Thus we will absorb it
into our definition of the transition frequency and decay rate.

Due to the very weak backscattering of x rays outside the
Bragg condition, we can neglect the backward propagating
scattered field, with the substitution

eiqs
λ|x−x′| → �(x − x′)eiqs

λ(x−x′ ), (60)

where �(x) is the Heaviside theta distribution.
Over the resonant bandwidth of the Mössbauer nuclei, the

envelope of the guided mode components of the Green’s func-
tion vary very little as functions of frequency, while the wave
numbers have a dispersion of approximately [53,78]

∂qλ

∂ω
≈ 1

c
. (61)

This linear dispersion can be eliminated by transforming op-
erators with

Ô(x, ω) → e−iωx/cÔ(x, ω), (62)

which has the effect of substituting time in the Fourier inver-
sion with the retarded time,

t → tr = t − x

c
. (63)

Thus we can simply solve for the absence of the linear disper-
sion, and substitute out ordinary time for the retarded time
in our solution. For 57Fe, with a lifetime of approximately
142 ns, the retardation is on the order of 10−5 lifetimes per
millimetre, and is thus negligible for our purposes, and we
will simply use the ordinary time from this point forward.

Within this regime, we can then approximate the Green’s
function as

gs
λ(z, z′, ω) ≈ gs

λ(z, z′, ω0), (64)

qs
λ(ω) ≈ qs

λ(ω0), (65)

where ω0 is the mean transition frequency of the nuclei.
In the geometry and energy scale we have considered,

the difference in reflectivity for TE and TM polarizations is
negligible, and additionally the longitudinal component of
the TM fields are small. Thus we can approximate the TM
components as having the same magnitude but orthogonal
polarization dependence to the TE, as well as the same wave
numbers. Therefore we can express the Green’s function in
the approximate form

←→
G (�r, �r′, ω) ≈(

←→
1 − x̂ ⊗ x̂)

∑
λ

gλ(z, z′)eiqλ(x−x′ ), (66)

←→
Gmm(�r, �r′, ω) ≈k2

0
←→
G (�r, �r′, ω), (67)

where the guided mode envelope gλ is given in terms of the
eigenfunctions uλ of the associated Sturm-Liouville problem
for TE modes,

gλ(z, z′) = i

2qλ

uλ(z)uλ(z′), (68)(
μ(z)∂zμ(z)−1∂z + k2

0n(z)2 − q2
λ

)
uλ(z) = 0, (69)

where n(z) = √
μ(z)ε(z) is the refractive index. The normal-

izable TE eigenfunctions obey the biorthogonality relation

δλλ′ =
∫ ∞

−∞
dz

1

μ(z)
uλ(z)uλ′ (z). (70)

A generalization to the non-normalizable leaky modes is also
possible [53], using an analogous regularization method to
that of Leung et al. [79,80].

For determining the incident field at the air-waveguide
interface, the negligible backscattering means that the field
normal is approximately equal on either side of the boundary,
and therefore we can take the boundary condition to simply
be continuity of the field. The incident field at the interface
can then be decomposed into the guided mode basis and
propagated,

B̂in(x, z, ω) =
∑

λ

B̂in,λ(x, z, ω), (71)

B̂in,λ(x, z, ω) = uλ(z)eiqλx
∫ ∞

−∞
dz

1

μ(z)
uλ(z)B̂in(0, z, ω).

(72)
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For a thin resonant nuclear layer, such that the guided mode
envelopes are uniform across the layer coordinate, we can take
the nuclear density to be a delta function,

ρ(�r) = Lδ(z − z0)ρN , (73)

where ρN is the number density of the bulk material, L is the
layer thickness, and z0 the z coordinate of the layer center. The
one-dimensional equation of motion then becomes

B̂(x, z0, ω) = B̂in(x, z0, ω) − i
ζ

2
F (ω)

∫ x

0
dx′ ∑

λ

ξλeiqλ(x−x′ )

× B̂(x′, z0, ω), (74)

where

ζ = ρNσres, (75)

is the on-resonance attenuation coefficient for ordinary nu-
clear forward scattering, while

ξλ = k0L
uλ(z0)2

qλ

(76)

is the dimensionless coupling strength for each mode λ, rela-
tive to ordinary nuclear forward scattering. In particular, we
can see that the equation of motion is similar in form to
ordinary nuclear forward scattering, with the NFS equation of
motion given by [67,68]

B̂(x, ω) = B̂in(x, ω)

− i
nζ

2
F (ω)

∫ x

0
dx′eink0(x−x′ )B̂(x′, ω). (77)

Here, we have included both the bulk medium refractive index
n, and the overall linear dispersion in the bulk medium wave
vector, which are usually neglected in the literature.

E. Matrix form of equations of motion

For many purposes it is convenient to work with the de-
composition of the waveguide field into the guided modes
directly. This can be expressed in a matrix-vector notation.
To begin with, we define the following vector, comprising the
field components of each participating mode, evaluated at the
layer position,

�β(x, ω) =

⎛
⎜⎝B̂1(x, z0, ω)

...

B̂n(x, z0, ω)

⎞
⎟⎠. (78)

The total field at any x, z coordinate can then be evaluated as

B̂(x, z, ω) = �w(z)� · �β(x, ω), (79)

where

�w(z) =

⎛
⎜⎝

u1(z)
u1(z0 )

...
un(z)
un (z0 )

⎞
⎟⎠. (80)

In this notation, the equations of motion read

�β(x, ω) = �βin(x, ω) − i
ζ

2
F (ω)

×
∫ x

0
dx′ exp(i(Q − ω/c)(x − x′)) · � · �β(x′, ω),

(81)

where Q is the diagonal matrix of wave numbers,

Qλλ′ = qλδλλ′ , (82)

while � is the dimensionless rank-1 matrix describing the
resonant scattering,

� = �ξ ⊗ �w(z0)�, = �ξ ⊗ 1�, (83)

�1 =

⎛
⎜⎝1

...

1

⎞
⎟⎠, (84)

where �ξ is the column vector of dimensionless relative
coupling strengths for each mode, and we note that w(z)
becomes a uniform vector when evaluated at z0. Compared
with (77), we see that the bulk medium wave number nk0

is replaced with the mode wave-number matrix Q, while the
effective coupling strength in the bulk medium n is replaced
with the matrix �. We can then take a spatial derivative
to obtain

∂x �β(x, ω) = iQ · �β(x, ω) − i
ζ

2
F (ω)� · �β(x, ω). (85)

We note that in transforming to the differential form of the
equations of motion, since B̂in is the homogeneous solution,
we have

∂x �βin − iQ · �βin = 0. (86)

III. SOLUTION OF THE EQUATIONS OF MOTION

In this section, we will solve the equations of motion (85),
first for a single mode waveguide, and then for the general
case of multiple modes.

A. Single mode solution

For realistic layer materials, the leaky modes lying above
the cutoff wave number have a very small amplitude in the
waveguide core compared with the guided modes, which lie
below the cutoff. Thus we can adjust the waveguide thickness
appropriately, such that the desired number of modes are
supported, and neglect the rest due to their small amplitudes.
In this section, we will consider the simplest system, which
consists of a single mode waveguide with a thin layer of
resonant nuclei placed in the center.

For simplicity, we will neglect hyperfine interactions, such
that [73]

←→
F (ω) = ←→

1
γ /2

ω + iγ /2
. (87)

In this regime, the incident beam polarization is pre-
served, and we can treat the problem as scalar. The
equation of motion for the single supported mode B̂1 is then
given by

B̂1(x, ω) = B̂in(x, ω) − iξ1
ζ

2
F (ω)

∫ x

0
dx′eiq1(x−x′ )B̂1(x′, ω).

(88)

We can see that this is of the same form as the equation for
ordinary nuclear forward scattering, (77), with the attenuation
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length scaled by ξ1 and the bulk material wave vector nk0

replaced by the mode wave vector q1.
As in ordinary nuclear forward scattering, the driving

pulse is far shorter in duration than the lifetime of the nu-
clear transition. We can therefore approximate the driving
pulse as

〈Bin(x = 0, t )〉 → B0

�0
δ(t ), (89)

where �0 is the bandwidth of the driving pulse, δ(t ) the Dirac
delta distribution, and B0 the peak amplitude of the pulse.

Therefore Eq. (88) can be solved in the same manner as
in ordinary nuclear forward scattering. Applying the Kagan
Fourier transform method [67], we then obtain

〈B1(x, t )〉 = B0

�0
eiq1x

(
δ(t ) − �(t )e−γ t/2 γ τ1

2

J1(
√

τ1γ t )√
τ1γ t

)
,

(90)

ξ1 = k0Lu1(z0)2

q1
, (91)

τ1 = ξ1ζx. (92)

Here, τ1 is the effective optical depth, which differs from the
bulk material optical depth τ = ζx by the relative coupling
strength ξ1. In the limit q1 → nk0, ξ1 → n, we recover the or-
dinary nuclear forward scattering solution for a bulk material.

B. Multimode solution

Next, we will consider the case of multiple guided modes.
As we will be considering the expectation value of the field
from this point forward, we will drop the angled brackets for
convenience, and simply notate this as a hat-less B(x, ω) etc.
This can be done using the matrix equation (81). As a first-
order vector differential equation, the formal solution is the
following matrix exponential:

�β(x, ω) = exp(iQx − i
ζ

2
F (ω)�x) · �β(0, ω). (93)

For analytic Fourier inversion purposes, this solution has the
drawback that each term in the series expansion of the matrix
exponential is not homogeneous in powers of F (ω). For these
purposes, we will proceed to instead express the solution as a
path ordered exponential.

To begin, we eliminate the wave vectors from the equa-
tion of motion by taking the exponential of Q, giving the
diagonal propagation matrix S, that accounts for the mode
attenuation and phase as x is varied,

S(x f − xi ) = exp(iQ(x f − xi )). (94)

We then make the substitution

�β(x, ω) = S(x) · β̃(x, ω). (95)

Note that we have taken the input face of the waveguide to be
at the position x = 0. Under this substitution, the transformed
equation of motion is

∂xβ̃(x, ω) = −i
ζ

2
F (ω)�̃(x) · β̃(x, ω), (96)

where

�̃(x) = S−1(x) · � · S(x), (97)

which has the matrix elements

�̃λλ′ (x) = ei(qλ−qλ′ )xξλ. (98)

The formal solution to (96) is then the path ordered exponen-
tial

β̃(x, ω) = P exp

(
−i

ζ

2
F (ω)

∫ x

0
dx′�̃(x′)

)
· β̃(0, ω). (99)

The full solution can then be obtained via

B(x, ω) = �1� · S(x) · β̃(x, ω), (100)

where we note that since S(0) = 1, the initial condition
for both the transformed and original mode vector are the
same,

β̃(0, ω) = �β(0, ω). (101)

This can be further simplified by defining the geometric
factors

U (x, x′) = 1

tr{�} tr{� · S(x) · S−1(x′)} (102)

= 1

tr{�} tr{� · exp(iQ(x − x′))} (103)

= U (x − x′), (104)

where in the last line we have noted that again due to trans-
lation symmetry the geometric factor U depends only on the
difference of its arguments. These can be interpreted as the
field envelope of the scattered field from position x′, evaluated
at position x, normalized to unit magnitude at x′. The solution
can then be expressed as the following Dyson series,

B(x, ω) = Bin(x, ω)

− i
ζ

2
tr{�}F (ω)

∫ x

0
dx1U (x − x1)Bin(x1, ω)

− ζ 2

4
tr{�}2F (ω)2

∫ x

0
dx1

∫ x1

0
dx2U (x − x1)

×U (x1 − x2)Bin(x2, ω)

+ . . . , (105)

where

Bin(x, ω) = �1� · exp(iQx) · �β(0, ω) (106)

is the usual free-field solution in the absence of the resonant
nuclei. In this form, the solution’s nature as a multiple scatter-
ing series becomes transparent; each term is given by the sum
of all scattering amplitudes to a given order, with the overall
frequency dependence for a given order m simply given by
F (ω)m.

The spatial coefficients can be readily obtained using a
recurrence relation and the Laplace transform: writing the
series as

B(x, ω) =
∞∑

n=0

(
−i

ζ

2
tr{�}F (ω)

)n

tn(x), (107)
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we have the following recurrence relation:

tn(x) =
∫ x

0
dx′U (x − x′)tn−1(x′), (108)

t0(x) =Bin(x, ω). (109)

Applying a Laplace transform gives us

t̃n(s) = Ũ (s)t̃n−1(s), (110)

where we have denoted the Laplace transformed variables
with a tilde. The solution in Laplace space is therefore simply
given by

t̃n(s) = Ũ (s)nB̃in(s, ω). (111)

In particular, the exact form of Ũ (s), B̃in(s) are readily evalu-
ated from their definition, and given by

Ũ (s) = 1∑
i ξi

∑
i

ξi

s − iqi
, (112)

B̃in(s, ω) =
∑

i

βi(ω)

s − iqi
. (113)

As each Laplace transformed coefficient is a rational function,
the inverse transform will be a sum of polynomials multiplied
by plane wave envelopes for each mode, with explicit closed-
form expressions given in Appendix C.

IV. SPATIAL PATTERNING

So far we have considered only a single uniform resonant
layer. While the wavelength of the resonant transition is very
small, on the order of angstroms, this largely contributes to
an overall phase factor on the order of eik0x, which will be
uniform across the sample. Any deviation from this overall
plane wave phase factor can be expressed as a slowly varying
envelope and phase, with length scales on the order of

δx ≈ 1

qλ − k0
(114)

for any mode λ. In practice, these can be fairly large, with
interference beats on the order of m and attenuation lengths up
to cm in scale. As such, this is on a scale at which it is practical
to use techniques such as photolithography during sample
preparation. Therefore, in this section, we will consider layers
that are spatially structured on the micrometer scale and their
interaction with the guided modes.

A. Microstrips

The simplest system to consider is dividing the layer along
the propagation direction into micrometre sized strips, Fig. 2.
If the strip is made sufficiently thin, such that the envelope
of the scattered field is uniform across the strip dimension, it
will scatter super-radiantly. To begin with, let us consider the
response of a single strip. In the uniform envelope regime, the
density can be taken to be

ρ(�r) = ρN LxLzδ(z − z0)δ(x − x0), (115)

where Lx is the strip x extent, Lz its z extent, and x0, z0 the
strip coordinates in the x, z plane.

FIG. 2. Front coupling geometry, with resonant layer split into
microstrips with extent Lx, Lz, and spacing x.

The equation of motion (81) of a single microstrip then
becomes

�β(x, ω) = �βin(x, ω) − i
τ

2
F (ω)

× exp(iQ(x − x0)) · � · �β(x0, ω), (116)

where as before we have

� = �ξ ⊗ �1�, (117)

ξλ = k0Lz
uλ(z0)2

qλ

, (118)

and τ = Lxζ is the bulk optical depth of the microstrips x
extent.

B. Super-radiance of a single microstrip

To solve (116), we must solve for the self-interaction of the
field. This is found by evaluating at x = x0, giving

�β(x0, ω) = �βin(x0, ω) − i
τ

2
F (ω)� · �β(x0, ω). (119)

The solution to this equation is given by

�β(x0, ω) =
(
1 + i

τ

2
F (ω)�

)−1
· �βin(x0, ω). (120)

This can be further simplified however, by noting that � is a
rank one matrix, and thus we can apply the Sherman-Morrison
formula [81] to the inverse to obtain(

1 + i
τ

2
F (ω)�

)−1
= 1 − i τ

2 F (ω)�

1 + i τ
2 F (ω)tr{�} , (121)

where we have noted

tr{�} = �1� · �ξ =
∑

λ

ξλ. (122)

Thus we have

�β(x0, ω) = �βin(x0, ω) − i τ
2 F (ω)�

1 + i τ
2 F (ω)tr{�} · �βin(x0, ω).

(123)
Evaluating the total field then gives

B(x0, ω) = Bin(x0, ω) − i τ
2 F (ω)tr{�}

1 + i τ
2 F (ω)tr{�}Bin(x0, ω). (124)
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This allows us to directly read off the relative susceptibility of

χ (ω) = − i τ
2 F (ω)tr{�}

1 + i τ
2 F (ω)tr{�} . (125)

C. Multiple scattering

The transfer matrix of an array of N microstrips of uniform
size, with strip i placed at position xi is given by

Wtot (xN , x1, ω) =
(
1 + χ (ω)

tr{�}�
) N−1∏

i=1

[
S(xi+1, xi )

× (1 + χ (ω)

tr{�}�)

]
. (126)

The total field can then be obtained via

B(x, ω) = �1� · S(x, xN ) · Wtot (xN , x1) · S(x1, 0) · βin(0, ω).
(127)

The transmission coefficient is then given by

T (x, ω) = B(x, ω)

Bin(0, ω)
. (128)

We will now proceed to expand the transmission coefficient
into a multiple scattering series. At each scattering order, the
overall frequency dependence is path independent, given by

χ (ω)m (129)

for a term corresponding to m scattering events. The expan-
sion coefficient for this order is given by the sum over the
geometric factors involving m distinct sites,

Vm(x) =
∑

i1<i2...im−1<im

U (x − xim ) (130)

×
m−1∏
j=1

[U (xi j+1 − xi j )]
Bin(xi1 , ω)

Bin(0, ω)
, (131)

where we note that only sites between x, x′ are to be consid-
ered. We note at this stage that the transmission is dependent
on the spatial profile of the incident field: for each scattering
path the resultant amplitude depends on the input field at
the first site in the path, which is sensitive to the relative
weightings of the two modes in the incident field.

The final transmission coefficient is then given by the sum
over all scattering orders,

T (x, ω) =
N∑

m=0

χ (ω)mVm(x). (132)

We can see that while a given scattering order always gives
rise to the same frequency spectrum independent of the ge-
ometry of the microstrips, the superposition of pathways of
different scattering order results in interference that is greatly
geometrically dependent. In the following section, we will
examine specific forms of the transmission coefficient for
periodic arrangements coupled to two guided modes.

V. TWO MODE SOLUTION: STRUCTURED
AND UNSTRUCTURED LAYERS

In this section, we will investigate in detail the case of two
resonant modes, for both solid and micropatterned resonant
layers.

The relevant parameters for such a system are the relative
coupling strengths of each mode, ξ1, ξ2, and the complex wave
numbers q1, q2. To simplify the analysis, we will divide these
into mean and difference, and further decompose the resonant
lengths into modulus and phase, and the wave numbers into
real and imaginary parts, as follows:

q1 = q̄ + δq + iκ̄ + iδκ, (133)

q2 = q̄ − δq + iκ̄ − iδκ, (134)

q̄ = 1

2
Re(q1 + q2), (135)

κ̄ = 1

2
Im(q1 + q2), (136)

δq = 1

2
Re(q1 − q2), (137)

δκ = 1

2
Im(q1 − q2), (138)

ξ1 = |ξ1|eiφ1 = |ξ1|ei(φ̄+δφ), (139)

ξ2 = |ξ2|eiφ2 = |ξ2|ei(φ̄−δφ), (140)

φ̄ = 1

2
(φ1 + φ2), (141)

δφ = 1

2
(φ1 − φ2). (142)

For an ideal lossless waveguide, ξ1, ξ2 are purely real, and thus
φ1, φ2 = 0. However, for a realistic waveguide, they are small
but nonvanishing.

A. Scattered field

To begin, we will examine the geometric factor for the
scattered field, given by

U (x) = 1

ξ1 + ξ2
(ξ1eiq1x + ξ2eiq2x ). (143)

The common phase can be factored out, giving

U (x) = 1

|ξ1|eiδφ + |ξ2|e−iδφ
ei(q̄+iκ̄ )x+iφ̄

× (|ξ1|ei(δq+iδκ )x+iδφ + |ξ2|e−i(δq+iδκ )x−iδφ ), (144)

|U (x)|2 = e−2κx

|ξ1 + ξ2|2 [|ξ1|2e2δκx + |ξ2|2e−2δκx

+ 2|ξ1||ξ2|Re(ei[(δq+iδκ )x+iδφ] )]

= e−2κx

|ξ1 + ξ2|2 [|ξ1|2e2δκx + |ξ2|2e−2δκx

+ 2|ξ1||ξ2| cos(δqx + δφ) cosh(δκx)]. (145)
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In practice, as we shall see in the following section, it is
possible to design waveguides such that imaginary parts of
q1, q2 are close. We will therefore assume δκ ≈ 0, valid for
sufficiently short distances. For distances long enough for the
mismatch in attenuation to be an issue, the overall attenuation
will be strong regardless, so in practice the effect is negligible.

Thus, for negligible attenuation mismatch, (145) reaches
an extremum for positions

δqx + δφ = πn n ∈ Z. (146)

Consider a strip placed at x0 = 0. Let the strips ahead of it be
placed at locations

xn = πn − δφ

δq
, n > 0. (147)

The field reaches its maximum amplitude of

|U (xn)/U (0)|2 = e−2κxn (|ξ1| + |ξ2|)2. (148)

However, consider now the scattered field from x1. The path
difference is then given by

xn − x1 = π (n − 1)

δq
, (149)

which is off target with the antinodes of the scattered field
from x1 by a distance of δφ/δq. Therefore it is impossible to
place all the microstrips to be completely constructive with
each other unless δφ = 0. In practice, as we shall see, for re-
alistic waveguides this effect is small, and over the attenuation
length of the cavity modes we can consider all microstrips to
be perfectly constructive.

Let us turn our attention now to destructive interference.
This occurs when the beat term is zero,

δqx + δφ = π

(
n + 1

2

)
n ∈ Z. (150)

Thus the scattered field from a strip at x = 0 is completely out
of phase with strips placed at locations

xn = π
(
n + 1

2

) − δφ

δq
, n > 0. (151)

At these locations, the unattenuated scattered amplitude
reaches its minimum value of

|U (xn)/U (0)|2 = e−2κxn (|ξ1| − |ξ2|)2. (152)

As we shall see, it is possible in practice to engineer |ξ1|, |ξ2|
very close to each other, and thus achieve a high level of
destructive interference. However, note it is not possible to
get total destructive interference at all positions in a periodic
array: consider three microstrips placed π/2δq apart. The
second strip is transparent to the first, due to the fact that the
scattered field of the first strip is completely destructively in-
terfered. The third strip is transparent to the second. However,
the third strip is located π/δq from the first, and thus the first
strips field is maximal. Nevertheless, this demonstrates an in-
triguing subradiant phenomenon: a period array of microstrips
at π/2δq spacing can be divided into two noninteracting en-
sembles.

B. Transmission coefficients for microstrips

We will now examine the transmission coefficients for
two cases: placing the strips a whole beat and half beat
wavelength, which we will refer to as constructively and de-
structively interfering ensembles, respectively. To understand
the qualitative behavior, we will consider the idealized case
of no attenuation mismatch (δκ = 0), and equally coupled
modes (ξ1 = ξ2 = ξ ).

We first note that the overall envelope of ei(q̄+iκ̄ )x can be
factored out, giving us

Vm(x) =ei(q̄+iκ̄ )xV̄m(x), (153)

V̄m(x) =
∑

i1<i2...im−1<im

Ū
(
x − xim

) m−1∏
j=1

[
Ū

(
xi j+1 − xi j

)]

× B̄in(xi1 , ω)

B̄in(0, ω)
, (154)

Ū (x) =1

2
(eiδqx + e−iδqx ) = cos(δqx), (155)

B̄in(x, ω) = β1eiδqx + β2e−iδqx. (156)

In the case of placing the strip locations a beat wavelength
apart, xn = (n−1)π

δq , we have

Ū (xi − x j ) = cos[(i − j)π ] = (−1)i− j . (157)

The geometric factors then evaluate to

V̄m(x) = cos(δqx)
∑

i1<i2...im−1<im

= cos(δqx)

(
N
m

)
, (158)

where we note that all the intermediate phase factors
cancel, and the sum evaluates to the number of m
combinations of the first N natural numbers. We then
simply have

T (x, ω) = ei(q̄+iκ̄ )x cos(δqx)
N∑

m=0

(
N
m

)
χ (ω)m

= ei(q̄+iκ̄ )x cos(δqx)[1 + χ (ω)]N . (159)

We note that this is the same as the transmission of N mi-
crostrips interacting with a single mode, with wave vector
q̄ + iκ̄ .

On the other hand, for the destructively interfering strips,
we have xn = (n−1)π

2δq . We have

∀m ∈ Z : U (xi+2m+1 − xi ) = cos

[(
m + 1

2

)
π

]
= 0, (160)

and therefore any scattering events involving both even and
odd positions are vanishing. We can therefore divide the
ensemble into even and odd subensembles, with the total
transmission given by the independent transmissions of each
subensemble,

T (x, ω) = ei(q̄+iκ̄ )x

(
Todd(x, ω) + Teven(x, ω)

i(β1 − β2)

β1 + β2

)
.

(161)
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Here, we have used
Bin(x1, ω)

Bin(0, ω)
=1, (162)

Bin(x2, ω)

Bin(0, ω)
= i(β1 − β2)

β1 + β2
. (163)

The even and odd transmission coefficients are themselves
sensitive to whether the chain ends on an even or odd strip,
with the even transmission given by

Teven(x, ω) =
{

sin(δqx)[1 + χ (ω)]N/2 N is even,

sin(δqx)[1 + χ (ω)](N−1)/2, N is odd.

(164)
In particular, we note that if the symmetric state is driven,

β1 = β2, that the even transmission will be completely van-
ishing, due to the fact that both the incident and scattered
field would have their nodes at the even positions. The odd
transmission is given by

Todd(x, ω) =
{

cos(δqx)[1 + χ (ω)]N/2, N is even,

cos(δqx)[1 + χ (ω)](N+1)/2, N is odd.

(165)
The temporal evolution of these solutions can be obtained ana-
lytically, and we give the derivation of the necessary response
function in Appendix D. Specifically, in terms of the delayed
response of n microstrips,

Rn(ω) = [1 + χ (ω)]n − 1, (166)

the Fourier inverse of this expression is given by

Rn(t ) = iν0e−γ t/2+iν0t L(1)
n−1(−iν0t ), (167)

where L(1)
n−1 is a generalized Laguerre polynomial, and

ν0 = iτ tr{�}γ /4. (168)

An intriguing phenomenon is that for the case of even N ,
both the even and odd transmissions have the same number
of strips and therefore frequency dependence, and thus the
overall frequency dependence is simply that of a single mode
waveguide with N/2 microstrips. On the other hand, for odd
N , the odd subensemble has one more strip than the even
subensemble, which will give rise to further interference in
the time spectrum due to the superposition of two spectra with
different dynamical beats.

As such, the resulting temporal spectrum is sensitive not
only to the number of strips in the ensemble, but the parity as
well. For N even, both subensembles have the same temporal
response, and adjusting the position x at which the spectrum is
evaluated results in only an overall rescaling of the spectrum,
Fig. 3. However, for odd N , the odd subensemble has one
more strip than the even, and the two spectra have different
beat times. Adjusting the position x interpolates between these
two spectra, visible as a shift in the beat, Fig. 4.

VI. NUMERICAL EXAMPLE: TWO MODE WAVEGUIDE

As a numerical study, we will consider a waveguide with
molybdenum cladding layers, a 1 nm iron layer, and 15.8 nm
of B4C filler on either side of the resonant layer. This wave-
guide illustrates all the features developed in our model, and

0 1 2 3 4
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c
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Lx = 10µm, n = 12

0 π/4 π/2

FIG. 3. Example of temporal response of an even numbered in-
terfering microstrips, in a waveguide with parameters considered in
Sec. VI. The idealized case is considered by neglecting the attentua-
tion mismatch and the mismatch in relative coupling strengths. Three
time spectra are compared at different observation points δx relative
to the last microstrip position, measured in terms of the interference
beat phase φ = πδxδq. Due to the even parity, both subensembles
have the same time spectrum, and therefore shifting the observation
point only scales the spectrum.

thus we will use it as our illustrative example. The numerically
obtained parameters for this waveguide are summarized in
Table I.

A. Mode structure

First, we illustrate the guided and leaky mode profiles in
Figs. 5 and 6, as a function of layer depth. This waveguide
supports three guided modes, but only the even modes, i.e.,
those that are symmetric upon reflections about z0, have ap-
preciable magnitude when evaluated at the nuclear layer. The
leaky modes have similar magnitudes to the guided modes,
however their attenuation is far larger, which can be observed
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0 π/4 π/2

FIG. 4. Odd parity case of Fig. 3. Due to the odd parity, the dif-
ferent subensembles have different beat times, and therefore shifting
the observation point results in a noticeable shift of the time spectra.
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TABLE I. Summary of two-mode coupling parameters, for the
dominant modes λ = 1 and 3 in a molybdenum waveguide. All quan-
tities are evaluated at resonant layer center. Waveguide structure is
as follows: Mo (∞)/B4C (15.8 nm)/57Fe(1 nm)/B4C (15.8 nm)/Mo
(∞).

Parameter Value

δq 152.12 mm−1

π/δq 20.65 µm
δκ −1.88 mm−1

Qbeat = |δq/δκ| 80.78
Qatten = |δq/κ̄| 45.91
Q̄ = √

QbeatQatten 60.90
q̄ − k0 −0.3832 µm−1

κ̄ 3.31 mm−1

ξ1 2.7311×10−04 + 2.6046 × 10−06i
ξ3 2.7425×10−04 − 4.3168 × 10−06i
B1(0, ω)/Bin 5.4906×1000 − 1.9194 × 10−03i
B3(0, ω)/Bin 0.61461−1.8194 × 10−02i
δφ 0.0252 rad
|ξ1/ξ3| 0.99576
ν0/γ 6.4056×10−04 + 0.20477i

in Fig. 7. This figure illustrates the location of the guided
modes, leaky modes and branch cut in the complex q plane.
Due to the larger attenuation of the leaky modes, their corre-
sponding residues are suppressed by a proportional factor. To
illustrate this, in Fig. 8, we present the Fourier transformed
Green’s function along the real q axis. The dominant contri-
bution by far is that of the two even guided modes, λ = 1
and 3, and the rest can be treated as a constant background,
renormalizing the single particle decay rate.

To evaluate the expansion coefficients for the input field of
each mode, we assume a broadband, collimated input, with
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FIG. 5. Normalized amplitudes of the guided modes of a molyb-
denum waveguide. Only the first two even modes, λ = 1 and 3 couple
to the thin nuclear layer, giving us a two mode geometry. The layer
widths have been optimized for the two modes to couple almost
exactly equally to the resonant layer, giving a strong interference beat
in their collective radiation field.
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FIG. 6. Normalized amplitudes of the first few leaky modes of
a molybdenum waveguide, which correspond to resonances of the
radiative modes. Superimposed, and dashed, is the amplitude of the
first guided mode, λ = 1. The exponential divergence of the leaky
modes is clearly visible, demonstrating their nature as an asymptotic
expansion for the near field. Although the leaky modes have ampli-
tudes of similar magnitude to the guided modes at the resonant layer
(red shading), Figures 7 and 8 demonstrate how the overall coupling
strength is suppressed by their large attenuation.

the free space field given by

Bfree(x, z, t ) = B0

�0
δ
(

t − x

c

)
. (169)
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FIG. 7. Relative mode wave numbers and radiative mode branch
cut for molybdenum waveguide. One can clearly see that leaky
modes and guided modes are separated by the branch cut. The leaky
modes are significantly attenuated compared to the guided modes,
and as such are only relevant at very close range, on the order of
1 µm.
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FIG. 8. Fourier transformed Green’s function of a molybdenum
clad waveguide, evaluated at resonant layer position. One can clearly
see that only the two guided modes couple with any appreciable
amplitude to the nuclei, with the leaky modes heavily suppressed by
attenuation.

The Fourier transformed input field at the interface x = 0 is
then given by

Bin(0, z, ω) = B0

�0
, (170)

with the initial conditions for the mode expansions simply
given by

Bλ(0, ω) = B0

�0

∫ ∞

−∞
dz

1

μ(z)
uλ(z). (171)

The resultant input field intensity evaluated at the resonant
layer is illustrated in Fig. 9. Clearly visible is the beat pattern
resulting from the interference of the two modes. The first
guided mode has a larger relative amplitude due to the fact
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FIG. 9. Amplitudes of input fields, evaluated at the layer depth
z0, as they propagate through the waveguide. Note the long atten-
uation lengths. The interference between the two modes is visible
as a beat pattern with a wavelength of approximately 20 µm. Field
is normalized by total field at beginning of resonant layer; as the
input fields are initially out of phase, peak values with this choice of
normalization are greater than one.
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FIG. 10. On-resonance scattered field for a single microstrip,
both scaled to remove the overall attenuation (top), and unscaled
(bottom). One can observe the interference beat of the two partici-
pating modes. As the collective mode is the symmetric superposition
of the two participating modes, a mismatch in the attenuation lengths
causes the scattered field to gradually drift out of the collective mode,
clearly visible as the reduced visibility of the interference beats.

that it oscillates less within the waveguide core, and as such
has a larger component in the uniform input profile. From
Table I, we can see that the wavelength of the interference
beat between the two guided modes is approximately 20 µm.
On the other hand, the attenuation lengths are much smaller,
on the millimetre scale. This motivates the definition of two Q
factors for the system. The first is the “beat Q factor,”

Qbeat = δq

δκ
. (172)

This is to be qualitatively interpreted as the number of beats
that occur before the attenuation mismatch causes visibility to
diminish significantly. For this waveguide, it has a value of
approximately 81. The second is the “attenuation Q factor,”

Qatten = δq

κ̄
, (173)

which measures the number of beats that occur before overall
attenuation dissipates the field. For this waveguide, it is lower
than Qbeat, with a value of approximately 46. We take the
overall Q factor for the collective mode to be the geometric
mean of these two Q factors, as both the overall attenuation
and attenuation mismatch should be minimized to optimize
the cavity for long range sustained collective interference.
For this waveguide, the geometric mean gives an overall Q
factor of approximately 61. The overall effect of attenuation is
clearly illustrated in Fig. 10, which illustrates how the attenu-
ation mismatch causes the relative strengths of the constituent
fields to diverge throughout the waveguide, and thus reduces
the visibility of the interference beat.
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FIG. 11. Scattered intensity as a function of both propagation
coordinate x and time t . Clearly visible are the approximately hor-
izontal minimum contours, corresponding to the interference beats
of the symmetric superposition of the two guided modes. For longer
times, the minima are shifted closer together. White dotted horizontal
and vertical lines illustrate the particular spatial and temporal slice
considered in Figs. 13 and 14, respectively.

To evaluate the effect of the phase mismatch between
the guided modes, which evaluates to approximately δφ =
0.0252 rad, we consider the difference between perfect con-
structive interference, and one that is slightly off target by δφ.
This gives

1 − cos(0.0252) ≈ 0.03%. (174)

As such, this is negligible, especially compared with the ef-
fects of attenuation mismatch.

B. Bulk layer

First, we will examine the scattered response of a bulk
layer. Figure 11 gives the intensity of the scattered field as
a function of propagation coordinate x, as well as time. For
comparison, in Fig. 12, we show that overall scattered in-
tensity resembles that of a single mode with wave number
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Single mode, q = (q1 + q2)/2, ξ = (ξ1 + ξ2)/2
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FIG. 12. Scattered intensity for the mean of the two guided
modes wave numbers and optical depths, as a function of both prop-
agation coordinate x and time t . This gives the overall envelope of
Fig. 11, without the modulation of the interference beat.
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FIG. 13. Scattered intensity as a function of time, for a fixed
spatial extend of waveguide (blue, solid). The overall envelope some-
what resembles that of the symmetric superposition of the two modes
(orange, dashed), however the interference results in a reduced am-
plitude and shift for the third interference beat.

(q1 + q2)/2 and optical depth (ξ1 + ξ2)τ/2, where τ is the
bulk material optical depth. The resemblance indicates that
the resonant scattering largely occurs in the symmetric mode.

The interference of the scattered field is visible in the
periodic, approximately horizontal minima, which disrupt the
dynamical beat of the symmetric mode. This affects both the
temporal and spatial responses in different ways, with Fig. 13
demonstrating that the temporal response is affected in the
form missing beats. In contrast, Fig. 14 demonstrates the
scattered intensity as a function of the propagation coordinate,
at a fixed time slice. Visible are the interplay of two, almost
periodic oscillations, the shorter wavelength corresponding to
the interference beats, with the larger wavelength correspond-
ing to the spatial pattern of the dynamical beats.

C. Microstrips

Let us now compare the constructive and destructive
scattering ensembles, for an equivalent total combined strip
thickness. To begin with, in Fig. 15, we illustrate the
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FIG. 14. Scattered intensity as a function of propagation coordi-
nate, for a fixed scattering time (blue, solid). The overall envelope
strongly resembles that of the symmetric superposition of the two
modes (orange, dashed), however the interference of the two modes
is visible in a rapid modulation of the amplitude.
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FIG. 15. Comparison of on-resonance scattered intensity for
super-radiant (blue) and subradiant (orange) geometries, with identi-
cal combined strip thickness. The super-radiant state reaches a higher
peak scattered intensity, but displays the pronounced beat of the col-
lective interference. The subradiant geometry displays a suppressed
beat, due to the out of phase emission of the two subensembles.
Shading displays strip locations for constructive (top) and destructive
(bottom) geometries.

on-resonance scattered intensity along the propagation axis,
in a realistic, nonideal waveguide. One can clearly see that
the constructive ensemble reaches a larger maximum, while
the destructive ensemble has a greatly suppressed interference
beat due to the out of phase emission of the two subensembles.
However, due to the attenuation mismatch, the effect is not
perfect, and the contrast in peak field strength between the
two ensembles is not as high as the ideal case.

Due to the narrow strip width, and the relatively large
wavelength of the interference beat, the field envelope is very
uniform over the strip’s longitudinal extent. For a 1 µm strip,
the change in amplitude is approximately

1 − cos(1/20) ≈ 0.12%. (175)
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FIG. 16. Comparison of absorption spectra for 30 constructively
interfering microstrips of 1 µm width, with a single mode forward
scattering spectrum with the same effective optical depth. One can
see that both are qualitatively very similar.
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FIG. 17. Comparison of scattered intensity in time domain for
the microstrip Laguerre polynomial solution (solid) and solid layer
Bessel function limit (dashed), for equivalent total resonant length.
The responses match for short times. For larger numbers of strips, the
dynamical beat of the Bessel function response matches the Laguerre
response qualitatively for longer durations, however the decay of a
Bessel response is more rapid.

Thus we can consider the strip to follow Dicke model dynam-
ics. This can easily be seen by the susceptibility of a single
strip,

χ (ω) = − i τ
2 F (ω)tr{�}

1 + i τ
2 F (ω)tr{�} = − ν0

ω + iγ /2 + ν0
, (176)
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FIG. 18. Example of temporal response of an even numbered
interfering microstrips, for realistic parameters considered in Sec. VI.
Three time spectra are compared at different observation points δx
relative to the last microstrip position, measured in terms of the
interference beat phase φ = πδxδq. Because of the attenuation and
coupling strength mismatch of the two modes, the subensembles
are not completely noninteracting, and a small shift in the beat is
observed (compare with Fig. 3).
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FIG. 19. Odd parity case of Fig. 18, equivalent to Fig. 4 with the
full consideration of attenutation mismatch. Due to the odd parity,
the different subensembles have noticeably different beat times, and
therefore shifting the observation point results in a larger shift of the
time spectra.

where ν0 = iγ τ tr{�}/4. This is identical in form to the
collective response of a grazing incidence Dicke mode
[65,66,82]. Compared to the response of a single nucleus,
this results in an additional overall collective Lamb shift and
broadening, however the effect is small, approximately 0.2γ

for the broadening, and negligible Lamb shift.
Qualitatively, the transmission spectra resemble those of

nuclear forward scattering for an equivalent optical depth, as
illustrated in Fig. 16. As we saw in Eqs. (167) and (90), the
nuclear forward scattering spectrum is reached as the limit of
large strip number. This is illustrated in Fig. 17, which com-
pares the Laguerre polynomial response of a finite number
of strips, to the large-N Bessel function limit. One can see
that for larger strip numbers the Bessel function limit and the
Laguerre response match for longer times.

Due to both the attenuation mismatch and the mismatch of
the relative coupling strengths of the two modes, the even-odd
interference phenomenon seen in Eqs. (164) and (165) are
somewhat suppressed. This is illustrated in Figs. 18 and 19,
which show the temporal response of the destructively inter-
fering ensemble for the case of 12 and 13 strips, respectively.
Compared to the idealized case considered in Figs. 3 and 4,
the attenuation mismatch causes a small shift in the beat time
even for the case of an even number of strips.

VII. CONCLUSION

We have shown that by changing the boundary conditions
to forward incidence, thin film nano-structures can act as x-
ray waveguides with embedded Mössbauer nuclei. In contrast
to the grazing incidence boundary condition, in the forward
incidence regime the explicitly broken translational symmetry
results in propagation characteristics analogous to forward
scattering. As a result, dynamical beats are observed, in con-
trast to the single wave-vector response of grazing incidence.
We demonstrated that the interaction of multiple modes with

a thin resonant layer results in interference phenomena over a
significantly larger length scale than the wavelength of the nu-
clear transition, opening a new toolbox of geometrical design
for hard x-ray quantum optics.

As a particular example of the kinds of geometric effects
possible, we considered patterned microstrips and demon-
strated phenomena such as a temporal response that is
sensitive to the even-odd parity of the ensemble number,
with a reduced optical depth compared with the bulk layer.
The possible geometric designs are not limited to one di-
mension however, and we wish to examine two-dimensional
patterned ensembles in future works. In particular, ensem-
bles that couple in a direction transverse to the propagation
direction of the incident pulse do so via a transverse wave
number that is far smaller than k0. Thus backscattering in
these transverse directions is far more significant, and we hope
that this could be used to implement bidirectionally coupled
models that were otherwise unfeasible with ordinary forward
scattering.

While in this work we have considered only slab x-ray
waveguides explicitly, our approach applies to any waveguide
where the propagation is unidirectional, and the waveguide
has negligible dispersion across the resonant bandwidth of
the scatterer. In general, in this case, the guided modes will
propagate with some wave vector with respect to this coordi-
nate system, and the Green’s function will have a similar form
to the expression given in (59), with the substitution of the
z coordinate with the appropriate guided mode coordinate. As
such, our findings have general applicability, and could also be
applied to analogous systems, such as atomic gases in hollow
core fibres.

The linear nuclear response described via the linear suscep-
tibility equation (56) is completely justified for experiments
at current generation synchrotron sources, where only a
few resonant photons per shot are available. However, with
XFEL sources the available bandwidths are already orders
of magnitudes narrower than synchrotron sources, and with
the advent of seeded XFEL sources this is set to improve
even further. As such, we can expect that nonlinearity could
play a larger role in future experiments. In this regime, the
macroscopic Maxwell’s equations for the field, Eq. (49), will
still hold at the operator level, as long as the waveguide is
cooled sufficiently such that the electronic scattering remains
linear. However, the magnetization field will no longer be
described by a linear susceptibility, and the full Maxwell-
Bloch equations for the nucleus-field interaction will have to
be considered.
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APPENDIX A: EQUATION OF MOTION FOR MACROSCOPIC QUANTIZED FIELD

In this Appendix, we demonstrate that the quantized field obeys the operator form of the macroscopic Maxwell’s equations,

B̂(�r, ω) = B̂in(�r, ω) − μ0

∫
d3r′ρ(r′)

←→
Gmm(�r, �r′, ω) · m̂(�r′, ω). (A1)

We begin with the Heisenberg equation of motion for a given noise-frequency mode. Since the noise-frequency is a formal
parameter, we must explicitly keep track of both the noise frequency ν as well as the time dependence t ,

B̂+(�r, ν) → B̂+(�r, ν, t ). (A2)

To evaluate the equation of motion, we require the equal time commutator of magnetic field components. This is given by

[B̂+(�r, ν, t ), B̂−(�r′, ν ′, t )] = − h̄μ0

π
Im{←→Gmm(�r, �r′, ν)}δ(ν − ν ′). (A3)

We note that this holds even in the interaction picture. The equation of motion in interaction picture reads

∂t B̂+(�r, ν, t ) = − i

h̄
[B̂+(�r, ν, t ), HF − HF,T + HI ]

=i(ω0 − ν)B̂(�r, ν, t ) − iμ0

π
eiω0t

∫
d3r′ρ(�r′)Im{←→Gmm(�r, �r′, ν)} · m̂(�r′, t ). (A4)

The formal solution is given by

B̂+(�r, ν, t ) = ei(ω0−ν)t B̂(�r, ν,−∞) − iμ0

π
eiω0t

∫ t

−∞
dt ′e−iν(t−t ′ )

∫
d3r′ρ(�r′)Im{←→Gmm(�r, �r′, ν)} · m̂(�r′, t ′). (A5)

Recalling that the full field in interaction picture is given by

B̂(�r, t ) =
∫ ∞

0
dνe−iω0t B̂+(�r, ν, t ) + H.c., (A6)

we add (A5) and its Hermitian conjugate together, and integrate over the noise frequencies to obtain the following solution for
the total field,

B̂(�r, t ) = B̂in(�r, t ) + μ0

π

∫ ∞

0
dν

∫ t

−∞
dt ′(ieiν(t−t ′ ) − ie−iν(t−t ′ )) ∫

d3r′Im{←→Gmm(�r, �r′, ν)} · m̂(�r′, t ′). (A7)

Here, we have defined the input field

B̂in(�r, t ) =
∫ ∞

0
e−iνt B̂(�r, ν,−∞) + H.c. (A8)

It is the homogeneous solution for the free field equations of motion in the absence of the resonant nuclei. To simplify (A7), we
note that the Green’s function obeys the Schwarz reflection principle [72],

←→
Gmm(�r, �r′, ω)∗ = ←→

Gmm(�r, �r′,−ω∗), (A9)

and thus

Im{←→Gmm(�r, �r′, ν)} = −Im{←→Gmm(�r, �r′,−ν)}. (A10)

This then gives∫ ∞

0
dν

∫ t

−∞
dt ′(ieiν(t−t ′ ) − ie−iν(t−t ′ ))Im{←→Gmm(�r, �r′, ν)} = i

∫ ∞

−∞
dν

∫ t

−∞
dt ′eiν(t−t ′ )Im{←→Gmm(�r, �r′, ν)}. (A11)

We can then rewrite the scattered part of (A7) as

B̂sc(�r, t ) = iμ0

π

∫ ∞

−∞
dν

∫ ∞

−∞
dt ′�(t − t ′)eiν(t−t ′ )

∫
d3r′ρ(�r′)Im{←→Gmm(�r, �r′, ν)} · m̂(�r′, t ′), (A12)

where �(t ) is the Heaviside step distribution. Taking a temporal Fourier transform of (A12), we obtain

B̂sc(�r, ω) =
∫

dteiωt B̂sc(�r, t ) = μ0

π

∫ ∞

−∞
dν

1

ν − ω + i0+

∫
d3r′ρ(�r′)Im{←→Gmm(�r, �r′, ν)} · m̂(�r′, ω). (A13)

We can then use the Sokhotski-Plemelj formula [83]

1

ω + i0+ = −iπδ(ω) + P 1

ω
, (A14)
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where P denotes the Cauchy principle value, and the Kramers-Kronig relations

πRe
{←→

Gmm(�r, �r′, ω)
}

= P
∫ ∞

−∞
dν

1

ω − ν
Im{←→Gmm(�r, �r′, ν)}, (A15)

to obtain

B̂sc(�r, ω) = −μ0

∫
d3r′ρ(r′)

←→
Gmm(�r, �r′, ω) · m̂(�r′, ω), (A16)

as required.

APPENDIX B: OPTICAL BLOCH EQUATIONS FOR NUCLEAR TRANSITIONS

In this Appendix, we will evaluate the equation of motion for the nuclear transition operators, and derive the linear
susceptibility. We begin with the master equation for an arbitrary operator Ô,

∂t Ô = i

h̄
[ĤN + ĤF − ĤT + ĤI (t ), Ô] + LH [Ô], (B1)

where LH is the Heisenberg form of the Lindblad terms. For the transition operators, we find the following commutators with
the interaction Hamiltonian:

[ĤI (t ), �̂μν (�r, t )] = m0

∑
j

(
�̂μ j (�r, t ) �dν je

iω0t − �̂ jν (�r, t ) �d∗
μ je

−iω0t
)

· B̂(�r, t ), (B2)

[ĤI (t ), �̂ jk (�r, t )] = −m0

∑
μ

(
�̂μk (�r, t ) �dμ je

iω0t − �̂ jμ(�r, t ) �d∗
μke−iω0t

)
· B̂(�r, t ), (B3)

[ĤI (t ), �̂μ j (�r, t )] = m0

(∑
ν

�̂μν (�r, t ) �d∗
ν je

−iω0t −
∑

k

�̂k j �d∗
μke−iω0t

)
· B̂(�r, t ), (B4)

[ĤI (t ), �̂ jμ(�r, t )] = −m0

(∑
ν

�̂νμ(�r, t ) �dν je
iω0t −

∑
k

�̂ jk �dμkeiω0t

)
· B̂(�r, t ), (B5)

where μ, ν index excited states, j, k index ground states, and

B̂(�r, t ) = B̂+(�r, t )e−iω0t + B̂−(�r, t )eiω0t (B6)

is the total magnetic field in the rotating frame. The nuclear Hamiltonian commutators give

[ĤN − ĤT,N , �̂μν (�r, t )] = h̄(μ − ν )�̂μν (�r, t ), (B7)

[ĤN − ĤT,N , �̂ jk (�r, t )] = h̄( j − k )�̂ jk (�r, t ), (B8)

[ĤN − ĤT,N , �̂μ j (�r, t )] = h̄(μ −  j )�̂μ j (�r, t ). (B9)

The Lindblad terms acting on excited state transition operators give

LH [�̂μν (�r, t )] = −γ �̂μν (�r, t ), (B10)

where γ is the total line width, summed over all multipolarities.
For ground state transition operators, they give

LH [�̂ jk (�r, t )] = δ jk

∑
μ

�(μ → j)�̂μμ(�r, t ), (B11)

where the partial decay rate is given by

�(μ → j) =
∑

λ=E,M

∑
l

�(λl, μ → j). (B12)

Finally, for excited-ground state transition operators, they give

LH [�̂μ j (�r, t )] = − γ

2
�̂μ j (�r, t ). (B13)

Combined, we have the following nuclear Bloch equations, as required,

∂t�̂μν (�r, t ) = (i(μ − k ) − γ )�̂μν (�r, t ) + im0

h̄

∑
j

(
�̂μ j (�r, t ) �dν je

iω0t − �̂ jν (�r, t ) �d∗
μ je

−iω0t
)

· B̂(�r, t ), (B14)
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∂t�̂ jk (�r, t ) = i( j − k )�̂ jk (�r, t ) + δ jk

∑
μ

�(μ → j)�̂μμ(�r, t ) − im0

h̄

∑
μ

(�̂μk (�r, t ) �dμ je
iω0t − �̂ jμ(�r, t ) �d∗

μke−iω0t ) · B̂(�r, t ),

(B15)

∂t�̂μ j (�r, t ) =
(

i(μ −  j ) − γ

2

)
�̂μ j (�r, t ) + im0

h̄

(∑
ν

�̂μν (�r, t ) �d∗
ν je

−iω0t −
∑

k

�̂k j �d∗
μke−iω0t

)
· B̂(�r, t ), (B16)

∂t�̂ jμ(�r, t ) =
(
−i(μ −  j ) − γ

2

)
�̂ jμ(�r, t ) − im0

h̄

(∑
ν

�̂νμ(�r, t ) �dν je
iω0t −

∑
k

�̂ jk �dμkeiω0t

)
· B̂(�r, t ). (B17)

Finally, let us derive the linear response susceptibility. In the linear response regime, we can approximate the ground state
population as remaining fixed, and the excited state population as zero. At room temperature, the population is uniformly
distributed amongst the available ground states,

�̂μν (�r) ≈ 0, (B18)

�̂ jk (�r) ≈ δ jk

2Ig + 1
. (B19)

Using this approximation, and expanding the field into its positive and negative frequency components using (B6), we have

∂t�̂μ j (�r, t ) =
(

i(μ −  j ) − γ

2

)
�̂μ j (�r, t ) − im0

h̄(2Ig + 1)
�d∗
μ j · [B̂+(�r, t )e−2iω0t + B̂−(�r, t )], (B20)

∂t�̂ jμ(�r, t ) =
(
−i(μ −  j ) − γ

2

)
�̂ jμ(�r, t ) + im0

h̄(2Ig + 1)
�dμ j · (B̂+(�r, t ) + B̂−(�r, t )e2iω0t ). (B21)

We now apply the rotating wave approximation: the e±2iω0t factors oscillate very rapidly under integration and can be neglected.
We can then solve the response in Fourier space to obtain

�̂μ j (�r, ω) = m0

h̄(2Ig + 1)

1

ω + μ −  j + iγ /2
�d∗
μ j · B̂−(�r, ω), (B22)

�̂ jμ(�r, ω) = − m0

h̄(2Ig + 1)

1

ω − μ +  j + iγ /2
�dμ j · B̂+(�r, ω). (B23)

Finally, using the definition

m̂+(�r, t ) = m0

∑
μ, j

�d∗
μ j�̂ jμ(�r, t ), (B24)

we find that

m̂+(�r, ω) = − m2
0

h̄(2Ig + 1)

∑
μ j

1

ω − μ +  j + iγ /2
�d∗
μ j ⊗ �dμ j · B̂+(�r, ω). (B25)

Finally, we can express m2
0 in terms of the decay rate as follows: the radiative decay rate is given in terms of the reduced transition

probability by

�rad(M1, Ie → Ig) = γ

1 + α
= k3

0μ0

3π h̄
B(M1, Ie → Ig). (B26)

Since we have

m2
0 = fLMB(M1, Ie → Ig), (B27)

it follows that

m̂+(�r, ω) = − 6π

μ0k3
0

1

1 + α

1

2Ig + 1

∑
μ, j

γ /2

ω − μ +  j + iγ /2
�d∗
μ j ⊗ �dμ j · B̂+(�r, ω). (B28)

Noting that the cross-section of elastic resonant scattering is

σres = 2π

k2
0

fLM

1 + α

2Ie + 1

2Ig + 1
, (B29)
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we have

m̂+(�r, ω) = − 3

2Ie + 1

σres

μ0k0

∑
μ, j

γ /2

ω − μ +  j + iγ /2
�d∗
μ j ⊗ �dμ j · B̂+(�r, ω). (B30)

Finally, defining the susceptibility ←→χm, we have

m̂+(�r, ω) = 1

μ0

←→χm · B̂+(�r, ω), (B31)

←→χm(ω) = − σres

k0

←→
F (ω), (B32)

←→
F (ω) = 3

2Ie + 1

∑
μ, j

γ /2

ω − μ +  j + iγ /2
�d∗
μ j ⊗ �dμ j, (B33)

as required. In the limit of vanishing hyperfine splitting, we have

←→
F (ω) = γ /2

ω + iγ /2

3

2Ie + 1

∑
me,mg

�d∗
memg

⊗ �dmemg, (B34)

where we note that since all excited and ground states are degenerate in their respective subspaces, we are free to use the angular
momentum eigenstates |me〉, |mg〉 as our basis. Using Eqs. (27) and (32), we then have

∑
me,mg

�d∗
memg

⊗ �dmemg = (2Ie + 1)
∑
q,q′

∑
me,mg

ê∗
q ⊗ êq′

(
Ie Ig 1

−me mg q

)(
Ie Ig 1

−me mg q′

)
. (B35)

Using the orthogonality relations of the Wigner 3j symbols, one can show that the sum evaluates to

(2Ie + 1)
∑
q,q′

∑
me,mg

ê∗
q ⊗ êq′

(
Ie Ig 1

−me mg q

)(
Ie Ig 1

−me mg q′

)
= 2Ie + 1

3
←→
1 , (B36)

giving us

←→χm(ω) = −σres

k0

γ /2

ω + iγ /2
←→
1 (B37)

as expected.

APPENDIX C: EXPLICIT EXPRESSIONS FOR DYSON SERIES

In this Appendix, we will derive the explicit expressions for the Dyson series describing the scattered field.
The Laplace transformed Dyson series is given by

B̃(s, ω) =
∞∑

n−0

(
− i

ζ

2
F (ω)

)n

Ũ (s)nB̃in(s, ω), (C1)

Ũ (s) =
∑

i

ξi

s − iqi
, (C2)

B̃in(s, ω) =
∑

i

βi

s − iqi
. (C3)

For each coefficient of the Dyson series, the Laplace transform is a rational function that only has poles located at each wave
vector qi. Therefore, to Laplace invert the coefficient, we can use the following Bromwich contour:

bn(x, ω) = 1

2π i

∫ i∞

−i∞
dsesxb̃n(s, ω), (C4)

b̃n(s, ω) =Ũ (s)nB̃in(s, ω). (C5)

To begin, we will expand Ũ (s) using the multinomial series. Letting N be the number of modes, we have

Ũ (s)n =
∑

k1,k2...kN ∈pN (n)

(
n

k1, k2, . . . kN

) N∏
i=1

ξ
ki
i

N∏
i=1

1

(s − qi )ki
, (C6)
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where (
n

k1, . . . kN

)
= n!

k1!k2! . . . kN !
(C7)

is a multinomial coefficient, and the sum is over all combinations of N natural numbers k1 . . . kN that sum to n,

pN (n) =
{

(k1, . . . kN ) : (ki � 0, i = 1, . . . N ) ∧
(

N∑
i=1

ki = n

)}
. (C8)

Next, we must evaluate the residues at each pole. These can be given by the limit formula,

R

(
q1 q2 . . . qN

k1 k2 . . . kN
; x

)
=

N∑
j=1

1

(k j − 1)!
lim

s→iq j

∂k j−1

⎛
⎝esx

N∏
i �= j=1

1

(s − iqi )ki

⎞
⎠, (C9)

where

∂m = ∂m

∂sm
. (C10)

To evaluate the derivatives, we may use the generalized product rule

∂m

(
n∏

i=1

fi(s)

)
=

∑
l1...ln∈pn (m)

(
m

l1, l2, . . . ln

) n∏
i=1

∂li fi(s). (C11)

Additionally, the mth derivatives of the remaining poles can be expressed using the falling factorial,

∂m
1

(s − iqi )ki
= (−ki )(m)

1

(s − iqi )ki+m
(C12)

= m!

(−ki

m

)
1

(s − iqi )ki+m
(C13)

= m!(−1)m

(
ki + m − 1

m

)
1

(s − iqi )ki+m
, (C14)

while for the exponential, we have

∂mesx = xmesx. (C15)

We then have

R

(
q1 q2 . . . qN

k1 k2 . . . kN
; x

)
=

N∑
j=1

eiq j x
∑

l1,l2...lN :pN (k j−1)

xl j

l j!

N∏
i �= j=1

(−ki

li

)
1

(iq j − iqi )ki+li
. (C16)

The inclusion of the incident field can be done in a similar fashion, giving us

B(x, ω) =
∞∑

n=0

n!

(
−i

ζ

2
F (ω)

)n N∑
i=1

βi

∑
k1,...kN ∈pN (n)

N∏
j=1

ξ
k j

j

k j!
R

(
q1 . . . qi . . . qN

k1 . . . ki + 1 . . . kN
; x

)
. (C17)

Finally, we perform the Fourier inversion of the frequency dependence,∫ ∞

−∞

dω

2π

(
γ /2

ω + iγ /2

)n

e−iωt = (γ /2)n (−i)ntn−1

(n − 1)!
�(t )e−γ t/2, n > 0. (C18)

This gives us the final expression

B(x, t ) = Bin(x)

�in
δ(t ) − ζγ

4�in
�(t )e−γ t/2

∞∑
n=1

n

(
−ζγ t

4

)n−1 N∑
i=1

βi

∑
k1,...kN ∈pN (n)

N∏
j=1

ξ
k j

j

k j!
R

(
q1 . . . qi . . . qN

k1 . . . ki + 1 . . . kN
; x

)
.

(C19)

1. Recovery of single mode expression

For the single mode limit, we note that

R

(
q1

k1
; x

)
= 1

(k1 − 1)!
lim

s→iq1

∂k1−1esx = xk1−1

(k1 − 1)!
eiq1x. (C20)
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We then have

B(x, t ) =Bin(x)

�in
δ(t ) − ζγ

4�in
�(t )e−γ t/2

∞∑
n=1

n

(
−ζγ t

4

)n−1

β1
ξ n

1

n!
R

(
q1

n + 1; x

)
(C21)

=Bin(x)

�in
δ(t ) − Bin(x)

�in

ξ1ζγ x

4
�(t )e−γ t/2

∞∑
n=1

(
−ξ1ζγ xt

4

)n−1 1

n!(n − 1)!
. (C22)

Here, we note that for a single mode,

Bin(x) = eiq1xBin(0). (C23)

This is the expected expression from single mode scattering, and with some manipulation gives the usual Bessel function
solution.

APPENDIX D: TEMPORAL RESPONSE FOR
CONSTRUCTIVELY INTERFERING MICROSTRIPS

In this section, we derive the temporal response of the case
of constructively interfering microstrips from Sec. V B.

The frequency domain response of the scattered field is
given by

R(ω) = (1 + χ (ω))n − 1 = 1(
1 + i τ

2 F (ω)tr{�})n − 1,

(D1)
where we have subtracted off the prompt input field response.
For a Lorentzian line shape, we have F (ω) = γ /2

ω+iγ /2 . We
therefore have

R(ω) = (ω + iγ /2)n

(ω + iγ /2 + iγ τ tr{�}/4)n
− 1. (D2)

Let us define ν = ω + iγ /2 + ν0, where ν0 = iγ τ tr{�}/4.
We then have

R(ν) = (ν − ν0)n

νn
− 1 =

n−1∑
m=0

(
n

m

)(
−ν0

ν

)n−m
. (D3)

The time domain response is then given by

R(t ) = e−γ t/2+iν0t
n−1∑
m=0

(
n

m

) ∫ iγ /2+ν0+∞

iγ /2+ν0−∞

dν

2π
e−iνt

(
−ν0

ν

)n−m
.

(D4)

The Fourier inversion gives

∫ iγ /2+ν0+∞

iγ /2+ν0−∞

dν

2π
e−iνt 1

ν l
= (−i)l t l−1

(l − 1)!
�(t ). (D5)

We then have

R(t ) = e−γ t/2+iν0t
n−1∑
m=0

(
n

m

)
1

(n − m − 1)!
(iν0t )n−m−1�(t )′

(D6)

= iν0e−γ t/2+iν0t
n−1∑
m=0

(
n

n − m − 1

)
1

m!
(iν0t )m�(t )′.

(D7)
In particular, we identify the sum with a generalized Laguerre
polynomial,

n−1∑
m=0

(
n

n − m − 1

)
1

m!
(iν0t )m = L(1)

n−1(−iν0t ). (D8)

We therefore have the compact expression for the temporal
response,

R(t ) = iν0e−γ t/2+iν0t L(1)
n−1(−iν0t ). (D9)
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