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Enhanced photon-pair generation under coherent control
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The generation of the narrowband strong-correlated biphotons via spontaneous four-wave mixing can be
effectively controlled and enhanced by an additional driving field which drives a transition with its upper level
being a Rydberg state. We study the properties of the noise of the generated biphotons and show that in the
region of weak pumping and low atomic density, a high degree of the photon correlation is maintained with the
photon-pair generation rate significantly enhanced.
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I. INTRODUCTION

Four-wave mixing is the cornerstone of a wide range of
fascinating applications, such as one-atom laser [1], entan-
glement [2–4], nonlinear optical amplification [5], squeezed
light [6], non-Hermitian optical systems [7], and microwave-
to-optical conversion [8]. Specifically, the spontaneous four-
wave mixing (SFWM) that generates a pair of time-correlated
photons in virtue of a third-order nonlinearity [9–12] has
driven considerable research efforts. Since the detection of
the first photon heralded the arrival of the second one, which
was employed in further quantum operation, they have been
studied in numerous quantum applications, such as quantum
communication [13,14] and quantum memory [15–17].

Improving the pair-generation rate has been a longstand-
ing research focus. It was shown that the efficiency can be
effectively increased using the nanostructures [18–20] which
confine light resonantly, or by introducing other coherent ef-
fects to strengthen the light-matter interaction. For instance, in
Ref. [21] the authors proposed a scheme with double pumping
fields to construct a quasidark state [21,22] that controlled
the ground population to perform the SFWM process near
resonance while the Raman process was suppressed. How-
ever, such a system supported two sets of SFWM processes
that were mixed together and breaks the one-to-one relation
between the Stokes and anti-Stokes photons. In another ex-
ample [23], the interaction between the Rydberg atoms was
utilized to enhance the generation efficiency via the nonlocal
FWM nonlinearity [24–26]. One potential problem is that
the Rydberg interaction needs certain atomic density and the
high atomic density usually leads to larger decoherence rates
via collisions. This could be fatal to the electromagnetically
induced transparency (EIT) [27,28] that suppresses the anti-
Stokes photons and reduces the degree of the correlation.

Both of the mentioned works use perturbation theory to
model the SFWM process [29], where the evolution oper-
ator acts on a vacuum to produce the Stokes–anti-Stokes
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two-photon state. The absorption of the anti-Stokes pho-
ton and the Raman enhancement of the Stokes photon are
phenomenologically included as the imaginary parts of the
(complex) wave vector. In addition, the fluctuations of the
generated photons are neglected. In this paper, we present
a theoretical investigation of a modified model with an addi-
tional applied driving field forming a “ladder” system together
with the pumping field, see Fig. 1(a). We use the field oper-
ators to model the generated field, and interaction between
the fields and the atoms are depicted by a set of differential
equations, rather than the evolution operator in perturbation
theory. In this frame which is widely used in the related
studies [30–32], the operators of the fluctuations can be easily
accounted for and allow us to investigate the noise property
of the generated photons. Similar to the model discussed in
Ref. [23], a Rydberg state is also included, being the upper
level of the transition that the driving field couples. However,
we only take advantage of the long-lived time of the level, so
that the photons generated by the transitions down from the
Rydberg state onto other levels are rare and only one set of
SFWM process is supported. As for atomic correlation from
the Rydberg-Rydberg interaction, it is negligible due to the
weak pumping effect and low Rydberg atomic density that we
assume.

The result shows that the presence of the driving field not
only provides an effective way to tune the SFWM process, but
also significantly increases the generation rate even without
atomic correlation. Since the efficiency of the Raman gain and
the absorption increase much slower than that of the SFWM
nonlinearity, the noises of the generated photons remain at the
safe level and the photon correlation is considerably high.

Our paper is organized as follows. In Sec. II we describe
our system and derive the dynamical equations for the field
operators, with the coefficients of which corresponding to
the effects of Raman enhancement, linear absorption, four-
wave mixing nonlinearity, and fluctuations. The properties
of the coefficients are examined as well. In Sec. III, the in-
fluence of the driving field on the generation rate and the
correlation between the Stokes and anti-Stokes photons are
investigated. We conclude in Sec. IV and the full set of
Heisenberg-Langevin equation modeling the properties of the
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FIG. 1. (a) Energy-level diagram and (b) schematic for sponta-
neous paired photon generation controlled by a driving field. The
sample represented by cylinder is assumed to be a cell of ultra-cold
atomic gas 87Rb. The chosen energy levels are |1〉 = |5S1/2, F =
1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P1/2, F = 1〉, |4〉 = |5P1/2, F = 2〉,
and |5〉 is a Rydberg level |60 S1/2〉.

atomic gas and the expression of coefficients are presented in
Appendixes A, B, and C.

II. MODEL AND EQUATION

Let us consider a group of ultracold five-level atoms, as
shown in Fig. 1(a), in the magnetooptical trap where the
thermal motion is effectively suppressed so that we do not
need to include Doppler broadenings in the following calcula-
tion. The pumping field at frequency ωp drives the transition
|1〉 ↔ |4〉, while the coupling field at frequency ωc, travels
in the opposite direction of the pumping [see Fig. 1(b)], and
drives |2〉 ↔ |3〉. The corresponding Rabi frequencies of the
applied fields are �α = μmnE+

α /2h̄(α ∈ {c, p}) where μmn is
the dipole moment of the corresponding transition and E+

α is
the positive-frequency part of the electric field. In virtue of the
third-order nonlinearity, a pair of photons is generated sponta-
neously from the transition |2〉 ↔ |4〉 and |1〉 ↔ |3〉, and we
refer to them as the Stokes photon (the one at freqeuncy ωs)
and anti-Stokes photon (at ωas). To suppress the generation of
impurity photons from the spontaneous decays and the Raman
process, the pumping field is tuned largely off the resonance,
i.e., the detuning of the pumping �p = ω41 − ωp is much
larger than the decoherence rate γ41. In this way, the Stokes
photons are also far away from their resonance and the cor-
responding absorptions are effectively limited. The coupling
field resonates with its transition and creates a window due
to electromagnetically induced transparency and allows the
anti-Stokes photons to pass through the atomic medium. Tra-
ditionally, only the pumping and coupling fields are applied.

In our system, an additional driving field with Rabi
frequency �d and frequency ωd are introduced to couple the
transition between |4〉 and an even higher atomic level |5〉
which is assumed to be a Rydberg state. The detuning of
the driving field is �d = ω54 − ωd . We use ω denoting the
frequency difference between the pumping field and Stokes
photon, ω = ωp − ωs, then the interaction Hamiltonian reads
V̂ = −h̄

∑N
i=1 [�pσ̂

[i]
44 + (�p + �d )σ̂ [i]

55 − ωσ̂
[i]
22 + ωσ̂

[i]
33 +

gasâasσ̂
[i]
31 + gsâsσ̂

[i]
42 + �cσ̂

[i]
32 + �pσ̂

[i]
41 + �d σ̂

[i]
54 + H.c.] + 1

2

FIG. 2. The maximal atomic density allowed for neglecting the
atomic correlation under different driving Rabi frequencies. The
gray area and pink area are separated by a white vertical line
which indicates the point at �d = 17 γ31 with the correspond-
ing atomic density being N/V = 1 µm−3. Here �p = 24 γ31, �c =
0, �15 = 24 γ31, �p = 1.2 γ31, �c = 3.0 γ31, γ12 = 10−3 γ31, �42 =
�41 = �32 = �31 = γ31, �5,4 = �5,3 = 10−3γ31.

∑N
i, j=1 [σ̂ [i]

55 (C6/|ri − r j |6)σ̂ [ j]
55 ]. N is the number of atoms in

the sample. σ̂ [i]
mn = |m〉ii〈n| is the transition operator for the ith

atom. Note that the conservation of energy in the four-wave
mixing process is already applied in the Hamiltonian. This
means the frequency difference between the coupling field
and anti-Stokes photon are ωc − ωas = −ω.

For the generated photons, the coupling constant gβ =
(μmnE+

β )/(2h̄) (β ∈ {s, as}) and E+
β = √

(h̄ωm)/(2ε0V ) is the

electric field of a single photon. The last term in V̂ depicts the
interaction between the Rydberg atoms, where |ri − r j | is the
distance between the ith and jth atom, and C6 is the strength
coefficient.

A Rydberg atom prevents the other atoms within a distance
of Rb from excited up a Rydberg level. Rb normally referred
to as the blockade radius [33] is Rb = (C6/δEIT)1/6 with δEIT

being the linewidth of EIT transmission spectrum. In our case
with �p � γ41, δEIT = |�d |2/�p. In addition to the Ryd-
berg blockade, the long-range interaction induces correlation
(〈σ̂ [i]

αβσ̂
[ j]
μν 〉) between the states of the two Rydberg atoms, con-

sequently, the nonlocal nonlinearity of the medium [24,25,34].
Such nonlinearity can modify the optical responses of the
medium. However, If the Rydberg population is low enough,
the modification is negligible. Specifically, if the probability
of finding a Rydberg atom in the sphere of 3Rb is less than
unity, that is,

4

3
π (3Rb)3 N

V
〈σ̂55〉 � 1, (1)

with V being the volume of the atomic cell represented by the
cylinder in Fig. 1(b), then we can keep the atomic correlation
out of our consideration. Here 〈σ̂55〉 is the population on |5〉,
and it can be obtained from the dynamical equation related
to V̂ (see the later discussions). Equation (1) can be satisfied
if we set a reasonably low atomic density and weak coupling
from �p and �d . In Fig. 2 we show the relation between the
N/V and �d when the equal sign is taken in the above con-
dition. With the other parameters fixed, the boundary atomic
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density is reduced as the driving field becomes stronger. For
every point below the curve, the atomic density is safe for ne-
glecting the atomic correlation and our following calculations
are valid.

Under such circumstances, the Rydberg atoms are far from
each other, and it is reasonable to use mean-field treatment
(essentially 〈σ̂ [i]

αβ σ̂
[ j]
μν 〉 � 〈σ̂ [i]

αβ〉〈σ̂ [ j]
μν 〉) to replace the Rydberg-

Rydberg interaction by an effect shift on the level |5〉, see
Fig. 1(a). The amount of the shift [35,36] is determined by the
overall effect of the influence from other nearby excited atoms
s � N

V

∫ ∞
Rb

C6
r6 〈σ̂55〉4πr2dr. Thus the effective double-photon

detuning of the transition |1〉 ↔ |5〉 is denoted by �15 = s +
�p + �d . In this way, we can neglect the Rydberg-Rydberg
interaction in the Hamiltonian and the collective slowly
varying atomic operators σ̂mn = N−1 ∑N

i=1 |m〉ii〈n| evolve ac-
cording to the Heisenberg-Langevin equation

∂

∂t
σ̂mn = i

h̄
[V̂ , σ̂mn] − L̂(σ̂mn) + F̂mn(z, t ), (2)

where L̂(σ̂mn) is the relaxation matrix including the atomic
decay rates of the spontaneous emission and dephasing. F̂mn is
the collective atomic δ-correlated Langevin noise operators.
Here L̂(σ̂mn) and F̂mn are added phenomenally [37]. F̂mn is
subject to

〈F̂mn(z, t )F̂m′n′ (z′, t ′)〉 = L

N
Dmn,m′n′δ(t − t ′)δ(z − z′), (3)

with L being the length of the sample along the propagation
of the field. The Langevin diffusion coefficient Dmn,m′n′ is
determined by the generalized fluctuation-dissipation theorem
and Einstein relation, and we list them in Appendix C.

Equation (2) corresponds to a set of differential equa-
tions which are presented in Appendix A. Investigating the
properties of, e.g., the generation rate of Stoke photons relies
on simulating its coupling effect with the anti-Stokes field
(nonlinearity of four-wave mixing) and the Raman gain it
experienced due to the pumping field. To this end, we need to
solve the steady-state equations (∂σ̂i j/∂t = 0) using the stan-
dard linearization method [38,39], which in nature is separat-
ing the fluctuation from their mean value σ̂i j = 〈σ̂i j〉 + δσ̂i j .

Considering that 〈âs〉 = 〈âas〉 = 0, symbols δâs and δâas

are not introduced. The mean-value equations only depend
on the Rabi frequencies of applied lasers. Also the Rydberg
population in the condition (1) and the expression of s, is
estimated by the solution 〈σ̂55〉.

For the atomic transitions that generate the Stokes and
anti-Stokes photons, the mean valve of σ24 and σ31 are zeros.
Their fluctuations lead to the generation of the biphotons.
The polarization corresponding to, e.g., the Stokes field is
P̂s = 2Nμmn δσ̂24. Then the generation and propagation of the
Stokes photons is subject to the Maxwell equation whose
Fourier transform reads [40]

∂ âs

∂z
+ gRâs + κsâ

†
as =

∑
α

ξ s
αF̂α, (4a)

where gR(ω) depicts the effect of Raman gain corresponds
to the part of δσ̂24 that is proportional to âs. In addition,
κs(ω) is the coefficient of the interaction between the Stokes
and anti-Stokes photons; it is derived from the part of δσ̂24

proportional to â†
as. The rest of the δσ̂24 is composed of six

FIG. 3. The (a) coefficient of absorption �, (b) Raman enhance-
ment gR, (c) Stokes and anti-Stokes nonlinear coefficients κs, and
(d) κas plotted as the functions of the double photon detuning ω.
Here �d = 1.2 γ31, N = 1.0 × 1012 cm−3, σ = 10−9 cm2, and L =
0.01 cm. The other parameters are identical with those in Fig. 2.

parts that are respectively proportional to the noise operators
F̂21, F̂31, F̂24, F̂34, F̂25, and F̂35. Their contributions to the
evolution of the Stokes photons are collected in the right-hand
side of Eq. (4) with summation with respect to α is taken over
α ∈ {21, 31, 24, 34, 25, 35}. A similar equation can be written
for the anti-Stokes photons

∂ â†
as

∂z
+ �asâ

†
as + κasâs =

∑
α

ξ as
α F̂α. (4b)

Here �as(ω) is the coefficient linear absorption and κas(ω)
is the coupling coefficient. The coefficients appearing in
Eqs. (4a) and (4b) are listed in Appendix B. Note that the
coupled equations are not suitable for photon pairs gener-
ated by a single Rydberg atom due to the fact that they are
derived from Maxwell equation, rather than the Heisenberg
equation of motion.

In Fig. 3 we show the value of �, gR, κs, and κas for differ-
ent ω. As we can see � has a typical profile of EIT created by
the resonant coupling field. Similar patterns are manifested
in the other three coefficients as well. For example, when
the absorption of the anti-Stoke photon is large (minimum of
Re �), the Raman enhancement is severe as well. The valuable
region is around the double-photon resonance (ω ∼ 0) where
the absorption and Raman enhancement is limited and the
FWM strength (|κs|, |κas|) is still considerable.

The effect of the driving field can be examined by fixing
the other parameters and only varying it alone. |κs| and |κas|,
as shown in Fig. 4(a), always take the same value for a given
value of �d . They increase as �d increases. This implies
that the efficiency of the paired-photon generation should be
increased as well. However, the absorption and Raman en-
hancement are enhanced as well. Fortunately, they grow much
more slowly.

Such monotonic increments of the four coefficient with
respect to �d are better understood if we plot them over a
larger range of �d , which are shown in Figs. 4(b) to 4(e). The
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FIG. 4. The relation between the four coefficients and the driving
Rabi frequency. (a) |�|, |gR|, |κs| and |κas| under different driving
Rabi frequencies. The real and imaginary parts of the coefficients are
shown in (b)–(e) where a wider range of �d is adopted. Here ω = 0,
and other parameters are identical with those in Fig. 3.

stronger driven field dynamically shifts the energy level of
|2〉, and makes the coefficients exhibit approximate Lorentz
lineshapes as resonances at a particular value of �d , in our
case they happen at �d = 24γ31. The increment we show in
Fig. 4(a) happens on the left-hand side of the resonance. Note
that increasing �d causes the population on |5〉 to increase
as well. This might lead to the situation that the influence
of the atomic correlation is not negligible anymore due to
the enlarged Rydberg interaction. Considering that these four
coefficients shown in Figs. 4(b) to 4(e) are proportional to the
atomic density, one can always reduce the atomic density to
make the atomic correlation reasonably small. This simply
scales down the values shown in the figures but the lineshape
remains unchanged.

III. GENERATION RATES AND THE CORRELATIONS
OF THE BIPHOTONS

The generation rate and the correlation of the biphotons can
be obtained from the solution of the Eqs. (4a) and (4b). In the
scheme shown in Fig. 1(b) the coupling and pumping fields
travel in opposite directions. Thus, according to the phase
matching condition (kc + kp = ks + kas) which is assumed
to satisfied, the Stokes photon also travels along the opposite

direction of the anti-Stokes photon. Thus, [âs(0), â†
as(L)]T

should be treated as the boundary condition. The solutions
relate to an “evolution” operator

exp[−ML] =
[

a b
c d

]
, M =

[
gR κs

κas �as

]
. (5)

The solution of [âs(L), â†
as(0)]T is[

âs(L)
â†

as(0)

]
=

[
A B
C D

][
âs(0)
â†

as(L)

]
+

∑
α

∫ L

0
dz

[
Pα

Qα

]
F̂α, (6)

with [
A B
C D

]
=

[
a − bc/d b/d

−c/d 1/d

]
, (7)

[
Pα

Qα

]
=

[
1 −b/d
0 −1/d

]
eM(z−L)

[
ξ s
α

ξ as
α

]
. (8)

Then the generation rate of the Stokes photon can be written
as

Rs = c

L
〈â†

s (L, t )âs(L, t )〉, (9)

where âs(L, t ) is the Fourier transform of the âs(L)
[see Eq. (6)]. The frequency dependence of the lat-
ter on ω is not explicitly shown. Using the com-
mutation relation [aj (z j, ω), a†

j (z j, ω
′)] = L/(2πc)δ(ω − ω′)

with j ∈ {s, as} and the correlation 〈F̂ ∗
α (ω, z)F̂α (ω′, z′)〉 =

L/(2πN )Dα,α∗δ(ω − ω′)δ(z − z′), we can rewrite the gen-
eration rate as Rs = ∫

dω
2π

R̃s(ω), with spectral generation
rate R̃s based on the solution (6) is R̃s(ω) = |B(ω)|2 +∫ L

0

∑
α,α∗ P∗

αDα∗,αPαdz. Then the generation rate can be writ-
ten as

Rs = RD
s + RF

s , (10)

with the deterministic part

RD
s =

∫
dω

2π
|B(ω)|2 (11a)

and the contribution of the fluctuations is

RF
s =

∫
dω

2π

∫ L

0

∑
α,α∗

P∗
αDα∗,αPαdz. (11b)

The summation with respect to α∗ in the above equation orig-
inates from â†

s (L, ω) and âas(0, ω), and it is taken over α∗ ∈
{12, 13, 42, 43, 52, 53}. For the generation of the anti-Stoke
photons, the generation rate is

Ras = RD
as + RF

as, (12)

with

RD
as =

∫
dω

2π
|C(ω)|2, (13a)

RF
as =

∫
dω

2π

∫ L

0

∑
α,α∗

QαDα,α∗Q∗
αdz. (13b)

Figure 5 shows the generation rates based on Eqs. (11) and
(13), plotted as functions of the double-photon detuning ω.
If we fix the frequencies of the pumping and coupling field,
then ω represents the frequency of the Stokes or anti-Stokes
photons. The deterministic part for the Stokes and anti-Stokes
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FIG. 5. The relation between the generation rates (GR) and the
double-photon detuning. The value of RD

s and RD
as are approximately

equal. The parameters are identical with those in Fig. 3.

take the same value, and the result of fluctuation for the
anti-Stokes photon is slightly smaller than that of the Stokes
photon at resonance. The linewidth of the biphoton is of the
same order as that of optical decoherence rate (e.g., several
MHz for Rb atoms), which is quite narrow as compared with
that of the spontaneous parametric down-conversion [41].

Since the coefficients of four-wave mixing increase with
respect to �d , one would naturally expect that the generation
rates should be enhanced when stronger driving field is ap-
plied. Such behavior is shown in Fig. 6(a). When �d = 0,
which is marked by the black vertical line, the generation

FIG. 6. (a) Generation rates (GR) plotted against the driving Rabi
frequency. (b) The normalized cross-correlation function for three
particular values of �d which are indicated by the vertical line in (a).
The parameters are chosen to be the same as those in Fig. 3.

rates corresponds to the common scheme without the driving
field [29,42]. The existence of the driving field certainly in-
creases the generation rate, see RD

s and RD
as increasing with

�d . In addition, the generation rates without fluctuations,
remain identical until the driven field gets too strong. Com-
paring with the previous studies, such as [21] and [23], the
current generation rate is at least three orders of magnitude
higher. This is because when exploiting the other effect in the
biphoton generation, that is the dark-state effect in Ref. [21]
and the Rydberg-Rydberg interation in Ref. [23], the reso-
nant fields are favored. In such a case, the intensity of the
applied field should be limited down to certain values to
suppress the other unwanted nonlinear process, such as the
Raman gain and scattering. Certainly the generation rates are
reduced, although increasing the driving field can enhance
the biphoton generation. However, the stronger fields also
lead to the relatively large Rydberg population and consid-
erable atomic correlation. Suggested by Fig. 2, our theory
is valid for �d less than 17 γ31, and the data corresponding
to the larger driving Rabi frequency are still informative, but
inaccurate.

The correlation between the generated photons can be
represented by Glauber’s second-order correlation function
which is defined as

G(2)
as,s(τ ) = 〈â†

as(0, t )â†
s (L, t + τ )âs(L, t + τ )âas(0, t )〉

= RsRas + |�as,s(τ )|2,
(14)

with

�as,s(τ ) = L

c
F

⎛
⎝∑

α,α∗

∫ L

0
dzPαDα,α∗Q∗

α + AC∗

⎞
⎠. (15)

Here F stands for the Fourier transformation. The quantity
that we are interested in is the normalized correlation function
g(2)

as,s = 1 + |�as,s(τ )|2/(RsRas) which is the degree of corre-
lation between Stokes and anti-Stokes photons. The condition
for biphoton generation is g(2)

as,s � 1.
We choose three different cases with �d = 0 (transitional

four-level system), 12 γ31, and 17 γ31 (boundary where the
theory applies) to show in Fig. 6(b) the variation of g(2)

as,s with
respect to the driving field. The larger values of g(2)

as,s appear
in the case of weaker driving field (�d → 0). The trade-off
between the generation rate and the degree of correlation is
clear: overall, g(2)

as,s is reduced as �d increases.
Within the scope that our calculations remain reason-

able, the degree of the correlation between the Stokes and
anti-Stokes photons is considerably high, indicating that the
Stokes photon and anti-Stokes photon are strongly correlated.
The correlation function oscillates at the frequency of the
�c which is a typically effect of EIT-based interaction. The
envelope curve of oscillation shows the reduction of the corre-
lation, however the coherence time tcoh, that is, the time delay
at which g(2)

as,s decays twice remain approximately the same
(∼10γ −1

31 ).
For relatively weak driving, it appears that RF

s = RF
as. This

is a result of small decoherence rate between the ground levels
(γ21 = 10−3 γ31 in Fig. 6) that we assume. If a hotter atomic
gas is used as the sample, then γ21 is increased. This leads to
imperfect EIT, meaning severe absorption on the anti-Stokes
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FIG. 7. Generation rates plotted as functions of the driving Rabi
frequency with γ21 = 0.1 γ31 and N/V = 1 µm−3 (a1). The vertical
line corresponds to �d = 17γ31 at which the degree of the photon
correlation function is shown in (b1). In (a2) and (b2), γ21 = 10−3 γ31

and N/V = 0.5 µm−3. The parameters are chosen to be the same as
those in Fig. 3.

photons. In turn, the generation rate due to fluctuation is
enhanced. In Fig. 7(a1) we show the generation rates in the
case of γ21 = 0.1γ31, As we can see, under the relatively
larger decoherence rate, RF

s deviates from RF
as significantly.

This results in an approximately ten times smaller amplitude
of the photon correlation in Fig. 7(a2) as compared with the
result shown in Fig. 6.

Another noticeable feature in Fig. 6 (N = 1.0 µm−3) is
that RF

s and RF
as are larger than RD

s and RD
as. The difference

between them depends on the atomic density. In Fig. 7(a2)
we show the generation rate when a lower atomic density
(N = 0.5 µm−3) is chosen. The difference of the generation
rate between the noise and the deterministic photon pair
gets larger, especially when a larger driving field is applied.
One can attribute this property to the relations between the

coefficients in Eqs. (4a) and (4b) and the atomic density.
κs, κas, gR, and �, see Eqs. (B1) to (B4) in Appendix B
are proportional to N , where the coefficient related to the
fluctuation ξ s/as

α (listed in Appendix B as well) depends on√
N . The degree of correlation is dramatically reduced, as

shown in Fig. 7(b2). The feature of suppression of noise by
increasing atomic density is manifested in the traditionally
four-level system as well. In our system with the enhanced
generation rate by the coupling field, it is clear that the
atomic density should be increased accordingly to suppress
the noise. Increasing the length of the atomic sample, leads to
the similar result as increasing the atomic density since more
atoms participate in generating the biphotons.

IV. CONCLUSION

In this paper, we present a theoretical investigation of the
coherent control on the SFWM-based biphoton generation by
a driving field. Such a driving field forms a ladder-style three-
level subsystem together with the pumping field. To avoid
the dark state, the transition between the ground and Rydberg
states is largely detuned from its double-photon resonance. By
assuming the weak coupling effect of the driving and pumping
field, and a relatively law atomic density, we investigate the
enhancement and control of the photon pairs in a region where
the Rydberg atomic correlation is negligible. Due to the dy-
namical shift of the intermediate state, the third-order SFWM
nonlinear coefficient is enhanced by the driving field and the
rate of the increment is larger than that of the Raman gain and
absorption. Thus the noise of the generated photons is still
under control, although it is increased with the driving field as
well. This leads to an enhanced generation rate with relatively
high degree of the correlation. For an ever higher intensity of
the driving, the effects of the fluctuation become severe, then
one need a correspondingly higher atomic density to suppress
the noise to maintain the strong photon correlation.

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China (Grant No. 12074061).

APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS

Let �m stand for the total decay rate from state |m〉 and �mn is the decay rate from state |m〉 to state |n〉. The corresponding
dephasing rate γmn can be written as γ54 = γ45 = (�5 + �4)/2, γ53 = γ35 = (�5 + �3)/2, γ31 = γ32 = �3/2, γ41 = γ42 = �4/2,
and γ43 = γ34 = (�4 + �3)/2. Then the atomic transition operators, based on Eq. (2) satisfy the following equations:

∂t σ̂11 = F̂11 + �41σ̂44 + �31σ̂33 − i(gasâasσ̂31 + �pσ̂41 − gasâ
†
asσ̂13 − �∗

pσ̂14);

∂t σ̂22 = F̂22 + �42σ̂44 + �32σ̂33 − i(�cσ̂32 + gsâsσ̂42 − �∗
c σ̂23 − gsâ

†
s σ̂24);

∂t σ̂33 = F̂33 − (�32 + �31)σ̂33 + �53σ̂55 − i(gasâ
†
asσ̂13 + �∗

c σ̂23 − gasâasσ̂31 − �cσ̂32);

∂t σ̂44 = F̂44 − (�42 + �41)σ̂44 + �54σ̂55 − i(�∗
pσ̂14 + �d σ̂54 + gsâ

†
s σ̂24 − �pσ̂41 − �∗

d σ̂45 − gsâsσ̂42);

∂t σ̂55 =F̂55 − (�53 + �54)σ̂55 − i(�∗
d σ̂45 − �d σ̂54);
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∂t σ̂54 = F̂54 − (γ54 − i�d )σ̂54 − i(�∗
d σ̂44 − �pσ̂51 − gsâsσ̂52 − �∗

d σ̂55);

∂t σ̂51 = F̂51 − (γ51 − i�15)σ̂51 − i(�∗
d σ̂41 − gasâ

†
asσ̂53 − �∗

pσ̂54);

∂t σ̂41 = F̂41 − (γ41 − i�p)σ̂41 − i(�∗
pσ̂11 + gsâ

†
s σ̂21 + �d σ̂51 − gasâ

†
asσ̂43 − �∗

pσ̂44);

∂t σ̂32 = F̂32 − (γ32 − i�c)σ̂32 − i(gasâ
†
asσ̂12 + �∗

c σ̂22 − �∗
c σ̂33 − gsâ

†
s σ̂34);

∂t σ̂25 = F̂25 − [γ25 + i(�15 + ω)]σ̂25 − i(�cσ̂35 + gsâsσ̂45 − �d σ̂24);

∂t σ̂35 = F̂35 − [γ35 + i(�15 + ω − �c)]σ̂35 − i(gasâ
†
asσ̂15 + �∗

c σ̂25 − �d σ̂34);

∂t σ̂24 = F̂24 − [γ24 + i(�p + ω)]σ̂24 − i[�cσ̂34 + gsâs(σ̂44 − σ̂22) − �pσ̂21 − �∗
d σ̂25];

∂t σ̂34 = F̂34 − [γ34 + i(�p + ω − �c)σ̂34] − i(gasâ
†
asσ̂14 + �∗

c σ̂24 − �pσ̂31 − �∗
d σ̂35 − gsâsσ̂32);

∂t σ̂21 = F̂21 − (γ21 + iω)σ̂21 − i(�cσ̂31 + gsâsσ̂41 − gasâ
†
asσ̂23 − �∗

pσ̂24);

∂t σ̂31 = F̂31 − [γ31 + i(ω − �c)σ̂31] − i[gasâ
†
as(σ̂11 − σ̂33) + �∗

c σ̂21 − �∗
pσ̂34].

APPENDIX B: COEFFICIENTS IN THE STOKES-ANTI-STOKES COUPLED EQUATIONS

The coefficients that appear in Eqs. (4a) and (4b) are quite complex. However, they can be written in relatively compact forms
if expressed in terms of the mean values

� = −iNσγ31�
−1(A1〈σ̂22〉 + A2〈σ̂32〉 + A5〈σ̂41〉 − A1〈σ̂44〉 + A3〈σ̂45〉); (B1)

κs = −iNσγ31�
−1(B1〈σ̂22〉 + B3〈σ̂32〉 + B5〈σ̂41〉 − B1〈σ̂44〉 + B4〈σ̂45〉); (B2)

κas = −iNσγ31�
−1(A6〈σ̂11〉 − A2〈σ̂14〉 + A4〈σ̂15〉 − A5〈σ̂23〉 − A6〈σ̂33〉); (B3)

gR = −iNσγ31�
−1(B6〈σ̂11〉 − B3〈σ̂14〉 + B2〈σ̂15〉 − B5〈σ̂23〉 − B6〈σ̂33〉), (B4)

where N = N/V is the atomic density and σ is the absorption cross section of the atom. We define complex
quantities g1 = γ21 + iω, g2 = γ24 + i(ω + �p), g3 = γ25 + i(ω + �15)g4 = γ31 + i(ω − �c), g5 = γ34 + i(−�c + ω + �p),
g6 = γ35 + i(−�c + ω + �15) to collect decoherence rate and detunings together. After introducing a symbol to represent
the product of those quantities gαβγ ... = gαgβgγ . . ., then �, Aα , and Bα in the above equations can be expressed
as follows: � = g23|�c�d |2 − 2|�c|4|�d |2 + g25|�c|4 + g2356|�c|2, A1 = ig3|�c�d |2 + ig5|�c|4 + ig356|�c|2,A2 =
−�c|�c�d |2 + g36�c|�c|2 + |�c|4�c, A3 = g56|�c|2�d − |�c|4�d + |�c�d |2�d ,A4 = −ig3|�c|2�c�d − ig5|�c|2�c�d ,
A5 = |�c�d |2�p − g36|�c|6|�p|2 + g3456�p,A6 = −ig3�c|�d |2�p − ig5|�c|2�c�p − ig356�c�p, B1 = ig3�c�

2
d�p +

ig5|�c|2�c�p + ig356�c�p,B2 = −ig3|�c|2�d�p − ig5|�c|2�d�p, B3 = −|�c�d |2�p + g36|�c|2�p + |�c|4�p,B4 =
g56�c�d�p, B5 = −g23�c|�d |2 − g25|�c|2�c − g2356�c,B6 = −ig356|�p|2,

The coefficient of the noise operators are

ξ as
21 = 2i

√
Nσγ31�

−1(−ig56�c|�d |2 − ig25|�c|2�c − ig2356�c ) ξ as
31 = 2i

√
Nσγ31�

−1(g5|�c�p|2 + g356|�p|2)

ξ as
24 = 2i

√
Nσγ31�

−1(g5|�c|2�c�p + g356�c�p), ξ as
34 = 2i

√
Nσγ31�

−1(i|�c�d |2�p − ig36|�c|2�p)

ξ as
25 = 2i

√
Nσγ31�

−1(ig56�c�d�p + i�c|�d |2�d�p), ξ as
35 = 2i

√
Nσγ31�

−1(g3|�c|2�d�p + g5|�c|2�d�p)

ξ s
21 = 2i

√
Nσγ31�

−1(ig3456�p − ig36|�c|2�p), ξ s
31 = 2i

√
Nσγ31�

−1(g3�c|�d |2�p + g356�c�p)

ξ s
24 = 2i

√
Nσγ31�

−1(g3|�c�d |2 + g356|�c|2), ξ s
34 = 2i

√
Nσγ31�

−1(i|�c|2�c�
2
d − ig36|�c|2�c )

ξ s
25 = 2i

√
Nσγ31�

−1(ig56|�c|2�d + i|�c|2|�d |2�d ), ξ s
35 = 2i

√
Nσγ31�

−1(g5|�c|2�c�d + g3|�c|2�c�d ).
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APPENDIX C: DIFFUSION COEFFICIENTS

The collective Langevin noise operators are defined, in the similar way of the collective slowly varying atomic operators, as

F̂mn(z, t ) = 1

N

∑
i∈N

F̂ [i]
mn(t ), (C1)

where F̂ [i]
mn(t ) is the Langevin noise operator for the ith atom. F̂mn(z, t ) is subject to the correlation of

〈F̂mn(t, z)F̂m′n′ (t ′, z′)〉 = L

N
Dmn,m′n′ (t, z)δ(t − t ′)δ(z − z′). (C2)

In the frequency domain the noise correlation is

〈F̂mn(ω, z)F̂m′n′ (ω′, z′)〉 = L

2πN
Dmn,m′n′δ(ω − ω′)δ(z − z′). (C3)

The diffusion coefficients Dmn,m′n′ , based on the generalized fluctuation-dissipation theorem and Einstein relation, can be
obtained from the relation

Dmn,m′n′ = D (σ̂mnσ̂m′n′ ) − D (σ̂mn)σ̂m′n′ − σ̂mnD (σ̂m′n′ ). (C4)

The notation D (σ̂mn) denotes the deterministic part of the Heisenberg equation of motion for σ̂mn (equations in Appendix A
without the fluctuation operators). Then those for the noise of the Stokes photons are

D12,24 = γ12〈σ̂14〉, D12,25 = γ12〈σ̂15〉, D13,31 = �41〈σ̂44〉 + �31〈σ̂33〉 + (�31 + �32)〈σ̂11〉,
D13,34 = (�31 + �32)〈σ̂14〉, D13,35 = �31 + �32〈σ̂15〉, D42,21 = γ21〈σ̂41〉,
D42,24 = �54〈σ̂55〉, D43,31 = (�31 + �32)〈σ̂41〉, D43,34 = �54〈σ̂55〉 + (�31 + �32)〈σ̂44〉,
D43,35 = (�31 + �32)〈σ̂45〉, D52,21 = γ21〈σ̂51〉, D53,31 = (�31 + �32)〈σ̂51〉,
D53,34 = (�31 + �32)〈σ̂54〉, D53,35 = (�31 + �32)〈σ̂55〉.

Those for the anti-Stokes photons are

D21,12 = �32〈σ̂33〉 + �42〈σ̂44〉 + 2γ21〈σ̂22〉, D21,13 = γ21〈σ̂23〉,
D31,12 = γ12〈σ̂32〉, D31,13 = �53〈σ̂55〉,
D24,42 = γ32〈σ̂33〉 + γ42〈σ̂44〉 + (�41 + �42)〈σ̂22〉, D24,43 = (�41 + �42)〈σ̂23〉,
D25,52 = �32〈σ̂33〉 + �42〈σ̂44〉 + (�53 + �54)〈σ̂22〉, D25,53 = (�53 + �54)〈σ̂23〉,
D35,52 = (�53 + �54)〈σ̂32〉, D35,53 = �53〈σ̂55〉 + (�53 + �54)〈σ̂33〉,
D34,43 = �53〈σ̂55〉 + (�41 + �42)〈σ̂33〉, D34,42 = (�41 + �42)〈σ̂32〉.
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