
PHYSICAL REVIEW A 109, 063523 (2024)

Nonlinearity-enabled localization in driven-dissipative photonic lattices
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Recent experimental work has demonstrated the ability to achieve reconfigurable photon localization in lossy
photonic lattices by continuously driving them with lasers strategically positioned at specific locations. This
localization results from the perfect destructive interference of light emitted from different positions and, because
of that, occurs only at very specific frequencies. Here we examine this localization regime in the presence of
standard optical Kerr nonlinearities, such as those found in polaritonic lattices, and show that they stabilize
driven-dissipative localization in frequencies different from those observed in the linear regime. Moreover,
we demonstrate that, contrary to intuition, in most situations this driven-dissipative localization does not enhance
nonlinear effects like optical bistabilities, due to a concurrent reduction in overall intensities. Nevertheless, we are
able to identify certain parameter regions where nonlinear enhancement is achieved, corresponding to situations
where emission from different spots constructively interferes.
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I. INTRODUCTION

Localization of waves is a ubiquitous interference phe-
nomenon present in various fields, including solid-state
physics [1,2], acoustics [3,4], and photonics [5–7]. In the
photonic context, beyond its fundamental interest, local-
ization can be exploited to increase light-matter coupling
strengths, with applications in quantum information [8], quan-
tum communication [9–11], and quantum simulation [12,13].
To achieve such photon localization, several strategies have
been explored, including the use of highly reflective mirrors
in vacuum [8], exploiting the confinement of light in materi-
als with high refractive indices [14,15], employing photonic
crystals with a nontrivial topology leading to localized modes
at their boundaries [16,17], and, perhaps the most exotic,
engineering bound states in the continuum. The latter appear
when the localized waves coexist with a continuum spectrum
of propagating modes protected by symmetry or separabil-
ity [18,19], and they have recently been predicted to arise also
in the many-body regime [20,21]. In all these cases, however,
the spatial nature of the localization is fixed by design and
cannot be easily altered once the structure is built, limiting its
versatility.

A recent experimental work [22] has demonstrated a new
way forward to achieve reconfigurable photon localization in
lossy photonic lattices by exploiting the interplay of contin-
uous local drivings and nontrivial energy dispersions. The
idea consists in placing several coherent pumps in judi-
ciously chosen positions so that the light emitted from them
destructively interferes and localizes within the region be-
tween them, being able to obtain highly nontrivial spatial
patterns through appropriate laser modulation [23]. As so far
considered, the method presents two limitations: First, it only
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works for specific laser frequencies where the perfect de-
structive interference takes place; second, it was designed and
tested in the linear regime [22,23], so that whether it works in
the presence of nonlinearities is still an open question.

In this work we address both limitations by investigat-
ing driven-dissipative localization in photonic lattices with
Kerr nonlinearities [13,24]. Our analysis reveals two coun-
terintuitive conclusions. First, nonlinearities do not hinder
driven-dissipative localization despite the nonhomogeneous
spatial distribution of the localization; in fact, they enable
its existence at different frequencies from those observed in
purely linear lattices. Second, in spite of such localization,
nonlinear effects, like optical bistabilities, are weaker than in
nonlocalized situations due to the smaller overall intensity in
the former case. On the contrary, our study suggests that it
is the opposite driving regime, in which the emission between
the coherent pumps interferes constructively, that leads to an
enhancement of nonlinear optical effects.

The paper is organized as follows. In Sec. II we in-
troduce the driven-dissipative setups considered throughout
this paper, along with the theoretical tools used to model
them. Sections III and IV focus on a one-dimensional lattice
with first-neighbor couplings. In Sec. III we characterize the
phenomenon of driven-dissipative localization in the linear
regime, providing analytical expressions for the local and total
intensities. In Sec. IV we analyze the nonlinear regime, con-
centrating on the stability of the localization and the potential
enhancement or diminishment of optical bistability. In Sec. V
we demonstrate the generality of our results by considering
a two-dimensional square lattice. We summarize our conclu-
sions and provide an outlook for future work in Sec. VI.

II. DRIVEN-DISSIPATIVE PHOTONIC LATTICES

Here we study the driven-dissipative steady states of one-
dimensional (1D) and 2D photonic lattices formed by coupled
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FIG. 1. (a) Scheme of a one-dimensional lattice of semiconduc-
tor micropillars hosting exciton polaritons, featuring first-neighbor
couplings J and photon cavity decay rate γ , and driven by two
coherent pumps with the same amplitude F . Localization takes place
between two sites separated a distance d when there is destructive
interference between the coherent light injected at the pumped sites.
For instance, when d = 2 this results in a single site labeled n = L
concentrating all the intensity in the lattice |aL|2. (b) Analogous
scheme for a two-dimensional square lattice. In this case, lasers of
equal amplitude F pump four sites of the lattice encircling a single
site in which localization takes place.

optical cavities with Kerr nonlinearities. Our mathematical
description is quite general and does not assume any specific
implementation. However, a key aspect of our work is that
it applies to driven-dissipative photonic resonators. As exam-
ples of physical systems where our ideas could be realized,
we can mention arrays of semiconductor micropillars hosting
exciton polaritons [13,17,25,26] [like the ones depicted in
Figs. 1(a) and 1(b) for the 1D and 2D cases, respectively] and
lattices of coupled superconducting cavities in the microwave
regime [27–30]. More information about the experimental
implementation of our ideas can be found in Appendix A.
In general, the temporal dynamics and stationary states of
these systems are described by the set of coupled-mode equa-
tions governing the amplitude of the electric field at each site

an [31,32],

iȧn = ωaan − iγ an + U |an|2an −
∑

〈m �=n〉
Jn,mam + Fne−iωPt ,

(1)

where the latin letters n and m indicate the lattice site in-
dices running 1, . . . , N and 1, . . . , N2 in the 1D and 2D
cases, respectively, with N the system size in one dimension
(throughout the paper we consider lattices with open boundary
conditions); each site of the lattice corresponds to a single-
mode resonator of bare resonance frequency ωa and decay
rate γ , which we assume to be equal for every site; Jn,m is
the tunneling rate between sites m and n (taken as a real
number, since in this work we are not dealing with gauge
fields [16]), which we restrict here to first-neighbor terms (in
which J〈n,m〉 ≡ J); Fn is the coherent pump amplitude at site
n that oscillates in time t with a frequency ωP, which we
consider to be the same for all n; and finally U is a Kerr-type
nonlinear frequency shift that can appear, e.g., in polaritonic
lattices due their matter component [13] and that we also
assume to be equal at all sites.

To find the steady states of Eq. (1) we use a fourth-order
Runge-Kutta routine to solve the dynamics and run it until
converged results are obtained. Codes to reproduce the fig-
ures of the paper are available in [33].

III. LOCALIZATION IN A ONE-DIMENSIONAL
PHOTONIC LATTICE WITHIN THE LINEAR REGIME

Let us start by reviewing and extending the results obtained
in Refs. [22,23] in the linear regime for one-dimensional pho-
tonic lattices [i.e., taking U = 0 in Eq. (1)]. To analyze the
emergence of driven-dissipative localization in such scenario,
it is convenient to choose a rotating frame with the laser
frequency ωP. Therefore, one can write the field amplitudes in
Eq. (1) as an → ane−iωPt . Then it is also convenient to assume
periodic boundary conditions to expand an in its Fourier com-
ponents, i.e., an = (1/

√
N )

∑
k ake−ikn, with k the associated

momenta. Putting together these two considerations, Eq. (1)
can be written as

iȧk = [ω(k) − ωP]ak − iγ ak + Fk, (2)

with Fk = (1/
√

N )
∑

n Fne−ikn the k dependence of the co-
herent pump and ω(k) the energy dispersion of the photonic
lattice which reads

ω(k) = ωa − 2J cos(k). (3)

The steady-state solution of Eq. (2) can be found by setting
ȧk = 0, obtaining

ak (t → ∞) = Fk

ωP − ω(k) + iγ
. (4)

In the equation above, we can see that the most populated
modes in momentum space will be those satisfying

ω(ka) = ωP → ka = ± arccos

(−�

2J

)
, (5)

where � = ωP − ωa is the pump-resonator detuning. The pre-
dominance of such values of momentum makes it possible
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FIG. 2. Analysis of localization in a linear (U = 0) one-dimensional photonic lattice with first-neighbor couplings featuring two local
pumps with equal amplitude. (a) and (c) Localization λ and (b) and (d) total intensity in the lattice IT (in units of the tunneling J and the pump
intensity |F |2) as a function of the detuning � for interpump distances (a) and (b) d = 2 and (c) and (d) d = 6. The intensity |an|2 at each site
n of the lattice is plotted for � = 0 and (e) d = 2 and (f) d = 6. (g) Localization λ and (h) total intensity IT for a fixed � = 0 and as a function
of d . In all panels, blue circles are the results of numerical simulations to find the steady state of Eq. (1), while dashed lines correspond to the
analytical results obtained with Eqs. (9) and (10). The parameters are the cavity decay rate γ = 5 × 10−2J , N = 500 sites with open boundary
conditions, and n1 = 250.

that, when several pumps drive the photonic lattice at dif-
ferent sites, they can interfere constructively or destructively
depending on their relative position. For instance, if one drives
the lattice at two positions n1,2, the emission from each spot
will acquire a phase eikad after traveling through the interpump
distance d = n1 − n2. Thus, if the drivings are equal in ampli-
tude and phase, when the distance d and momentum ka are
such that

1 + eikad = 0, (6)

destructive interference occurs at all sites to the left and to
the right of both spots and therefore the emission remains
fully localized in between the two drivings. This mechanism is
schematically depicted in Fig. 1(a). For instance, at a detuning
� = 0 where the resonant pump momenta given by Eq. (5) are
ka = ±π/2, localization occurs at distances d = 2(2� + 1),
where � ∈ Z. As shown in Refs. [22,23], localization can
be perfect in the limit of small losses, i.e., when γ → 0.
However, even in that case, dephasing effects can destroy the
coherence of the light emitted by each site, thus precluding
perfect localization [34].

In Fig. 2 we illustrate this localization for two different
distances between the pumping spots, d = 2 and 6, in the left
and middle columns, respectively. To quantify localization,
we define the parameter

λ =
∑

n1<n<n2
|an|2

IT
, (7)

which accounts for the fraction of intensity in the region
between the pumps with respect to the total intensity inside
the lattice IT = ∑

n |an|2. In Figs. 2(a) and 2(c) we plot as

blue circles the localization parameter λ and the total inten-
sity [Figs. 2(b) and 2(d)] as a function of the detuning �

for d = 2, 6, obtained by solving numerically the coupled-
mode equations (2). There one can observe that for d = 2
[Fig. 2(a)] λ has a single maximum (at � = 0), whereas for
d = 6 [Fig. 2(c)] several maxima appear. This can be under-
stood by substituting the value of the resonant momentum ka

given by Eq. (5) into the localization condition in Eq. (6).
This implies that the values of detuning at which localization
maxima appear are given by

�� = −2J cos

(
(2� + 1)π

d

)
, (8)

where � ∈ Z. For d = 2 the equation above only allows a
localization maximum at � = 0. However, for d = 6 there are
three integers (� = 0, 1, 2) leading to localization maxima at
three different values � 
 −1.73J , 0, and 1.73J .

For both d = 2 and 6, when one takes a value of � leading
to a localization maximum, the steady-state spatial popula-
tion is localized between the pumping spots. As an example,
Figs. 2(e) and 2(f) show the intensity distribution in real space
|an|2 with interpump distances d = 2, 6, respectively, both
for a fixed detuning � = 0 in which λ features a maximum
for both distances. Interestingly, these localization maxima
appear in frequency regions where the total intensity IT is
minimum, as shown in Figs. 2(b) and 2(d). This minimum
was inadvertently passed in previous works and will have im-
portant consequences in the appearance of nonlinear effects,
as we will see in Sec. IV. We note that, although close to zero,
IT features a finite value at � = 0 in Figs. 2(b) and 2(d).
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To gain insight into the interplay between localization and
total intensity, we obtain approximate analytical expressions

for both the spatial profiles of the populations, |an|2, as well as
the total intensity IT, which read (see Appendix B for details)

|an|2 =
⎧⎨
⎩

2π2|F |2D(�)2e−πγ D(�)(n1+n2−2n){cosh[πγ D(�)d] + cos(k0d )} if n � n1

2π2|F |2D(�)2e−πγ D(�)d{cosh[πγ D(�)(n1 + n2 − 2n)] + cos[k0(n1 + n2 − 2n)]} if n1 � n � n2

2π2|F |2D(�)2eπγ D(�)(n1+n2−2n){cosh[πγ D(�)d] + cos(k0d )} if n � n2

(9)

and

IT = 2π |F |2D(�)

γ

[
1 + cos(k0d )e−πγ D(�)d], (10)

respectively, where D(�) is the density of states of the one-
dimensional photonic lattice:

D(�) = 1

N

∑
k

δ(� + 2J cos k) = 1

π

1√
4J2 − �2

. (11)

These expressions provide a very clear picture of the de-
pendence of the results on some relevant photonic lattice
figures of merit, like the density of states or photon-decay rate.
Plotted as dashed lines in Figs. 2(a)–2(d), we see that they
feature perfect agreement with the numerical results. The only
significant deviations appear near the band edges, � = ±2J ,
where the approximations used to derive Eqs. (9) and (10) are
not valid (see Appendix B for details).

From the analytical expression of the total intensity
[Eq. (10)], we can obtain two conclusions. First, we can
immediately see that the localization condition of Eq. (6)
implies at the same time a diminished total intensity. In Ap-
pendix C we explain that in terms of the analogy put forward
in Ref. [23] and show that IT is just proportional to the local
density of states [35–37] of two emitters coupled to the bath
at sites n1 and n2. Thus, this decrease of the total intensity
can be understood as an inefficient coupling of the ensemble
of the two pumping spots to the photonic lattice. Second, the
total intensity is maximized due to two effects: by the increase
of the density of states D(�) in slow light regions, i.e., at the
band edges of our 1D lattice, where the group velocity vg =
∂ω/∂k = [πD(�)]−1 vanishes [38,39], and, complementar-
ily, at the regions corresponding to constructive interference,
i.e., 1 − eikad = 0 for this choice of pumping spot phases,
where there is a collective enhancement of the intensity.

This condition of constructive interference allows us to
calculate an expression similar to Eq. (8), but in this case
accounting for the values of detuning where IT features a
maximum,

�� = −2J cos

(
2�π

d

)
, (12)

where � ∈ Z. This is in agreement with the results of our
numerical simulations shown in Figs. 2(b) and 2(d), where
maxima of IT can be found at � = −2J and 2J for d = 2 and
at � = −2J , −J , J , and 2J for d = 6. These values of � also
correspond to minima of λ.

Finally, apart from explaining such an interplay between
localization and total intensity, Eqs. (9) and (10) allow un-
derstanding the dependence of both λ and IT for different
interpump distances d . Since both d and γ appear in the
exponential function of Eq. (10), we expect that increasing

one of such quantities will spoil perfect localization and con-
versely produce an increase in IT. This is indeed observed in
Figs. 2(g) and 2(h): For a fixed detuning � = 0 the localiza-
tion (total intensity) decreases (increases) for growing d . Such
results are confirmed by the numerical simulations shown as
blue circles.

IV. NONLINEAR DRIVEN-DISSIPATIVE LOCALIZATION
EFFECTS: STABILITY AND ENHANCEMENT

In this section we study how the driven-dissipative lo-
calization scenario changes when one includes sizable Kerr
nonlinearities, i.e., U �= 0. Without loss of generality, we
restrict our study to positive values of U . As can be seen
in Eq. (1), we consider local nonlinearities that modify the
on-site energy of each site by a factor U |an|2. A priori, since
the steady-state population profiles |an|2 are not uniform [see
Figs. 2(e) and 2(f)], it is unclear whether localization survives
in the nonlinear regime and if it does whether it enhances
nonlinear phenomena such as optical bistabilities. We answer
these two questions in Secs. IV A and IV B, respectively.

A. Stability of driven-dissipative localization

Let us start by analyzing the behavior of the localization
parameter λ and the total intensity IT for a growing nonlinear-
ity. For that we produce contour plots of λ and IT as a function
of the adimensional quantities �/J and U |F |2/J3 in Figs. 3(a)
and 3(c) and Figs. 3(b) and 3(d), respectively. Figures 3(a)
and 3(b) are calculated for an interpump distance d = 2, while
Figs. 3(c) and 3(d) correspond to d = 6.

Focusing first on the localization parameter, we observe
that, contrary to intuition, localization survives for nonzero
values of U in frequency regions forbidden in the linear
regime. Let us consider, for example, the case of d = 2, where
localization in the linear regime occurs only at � = 0. In
the nonlinear regime, however, the value of � leading to
the maximum localization follows the relation � = U |F |2/J2

[indicated by the red dashed line in Figs. 3(a) and 3(b)] up
to a point where it suddenly decreases due to dynamical
instabilities induced by the parametric couplings introduced
by the Kerr nonlinearity [13,40–43] (more information about
this phenomenon can be found in Appendix D). Neverthe-
less, the driven-dissipative localization remains very high, i.e.,
λ � 0.9, for values of detuning approximately in the region
� ∈ (0, 0.5J ), something that would be impossible within the
linear regime. We refer to this phenomenon as nonlinearity-
enabled localization.

In Figs. 3(c) and 3(d) a similar analysis is carried for an
interpump distance d = 6. In agreement with the results of
Sec. III, we observe that in the linear regime, i.e., for U = 0,
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FIG. 3. Localization in the nonlinear 1D lattice. The localiza-
tion parameter λ is plotted for interpump distances (a) d = 2 and
(c) d = 6 as a function of the pump amplitude |F |2 (normalized in
units of the Kerr nonlinearity strength U and the tunneling rate J)
and the detuning �. The analogous plot for the total intensity inside
the lattice IT is calculated for (b) d = 2 and (d) d = 6. In all panels,
red dashed lines signal the dependence � = �� + α�U |F |2/J2 of
the detuning at which localization maxima (and IT minima) appear
(see the text). The simulation parameters are the cavity decay rate
γ = 5 × 10−2J , N = 500 sites with open boundary conditions, and
n1 = 250.

the localization features maxima for three detunings given
by Eq. (8), which are shifted towards higher values of �

when U �= 0, following the relation � = �� + α�U |F |2/J2,
with α� a constant that depends on �. While for the central
localization region given by �1 we can take α1 = 1 (thus
recovering the dependence of the d = 2 case), α� is larger
than 1 for the other two localization regions appearing for
�0 (which is fitted by α0 
 1.2) and �2 (for which we esti-
mate α2 
 2.8). This is evident from Fig. 3(c), where we plot
� = �� + α�U |F |2/J2 as red dashed lines for � = 0, 1, 2.
Furthermore, another difference with respect to d = 2 is that
the dynamical instabilities appear for smaller values of � than
in the d = 2 case.

We now focus on the behavior of the total intensity. In
both cases d = 2 and 6, the nonlinear regime inherits the
inverse relation between the localization parameter λ and the
total intensity IT found in Sec. III for the linear case. This
is evidenced by Figs. 3(b) and 3(d), which display analogous
contour plots of the total intensity IT as a function of �/J
and U |F |2/J3 for d = 2 [Fig. 3(b)] and d = 6 [Fig. 3(d)].
Comparing these results with those of Figs. 3(a) and 3(c) for
the localization parameter, we see that, also in the nonlinear
regime, a large value of λ is accompanied by a small IT. To
further clarify this point, the red dashed lines indicating the
regions of maximum λ in Figs. 3(a) and 3(c) are also plotted
in Figs. 3(b) and 3(d) and demonstrate that these regions
correspond to minima of IT.

Finally, to analyze in more detail the limits of the non-
linear enabled localization, in Fig. 4 we plot the maximum

FIG. 4. Maximum values of (a) detuning �max (normalized in
units of the tunneling rate J) and (b) pump intensity |Fmax|2 (nor-
malized in units of the Kerr nonlinearity strength U and J) as a
function of the interpump distance d , for the central localization
region with detuning � = 0 at F = 0. The cavity decay rate is fixed
at γ = 5 × 10−3J . Blue dots are numerical results, while dashed
lines correspond to exponential fits (see the text for details). (c) and
(d) Analogous plots for γ = 5 × 10−2J . The simulation parameters
are N = 500 sites with open boundary conditions and n1 = 250.

values of � and |F |2 in which localization drops below
λ = 0.9 as a function of d , considering always the central
localization region that appears at � = 0 when U = 0. We
label such maximum values as �max and |Fmax|2, respectively.
Figures 4(a) and 4(b) are calculated for a cavity decay rate
γ = 5 × 10−3J , while Figs. 4(c) and 4(d) show analogous
plots for γ = 5 × 10−2J . For the two values of γ , we observe
that both �max and |Fmax|2 follow an exponential decay and
then saturate, reaching constant values that are independent of
d . This is indicated by the dashed lines, which correspond to
a fit to an exponential law, f (x) = ae−bx + c, where a, b, and
c are the fit parameters. However, this saturation occurs for a
smaller value of d (around d 
 10) for γ = 5 × 10−2J , while
for γ = 5 × 10−3J it takes place around d 
 14. Moreover,
for the same d , the values of �max and |Fmax|2 are larger in
the former case. This can be related to the role played by the
cavity decay rate in stabilizing the steady-state solution of the
coupled-mode equations (1).

B. Enhancement of optical bistabilities

In principle, one would expect that driven-dissipative lo-
calization enhances nonlinear effects due to the concentration
of light into a small number of sites [see Figs. 2(e) and 2(f)].
However, the trade-off between localization and total intensity
in the linear and nonlinear regimes that we demonstrated in
the preceding section points to the opposite direction. In this
section we study the emergence of optical bistable behavior
as a signature of optical nonlinear effects and demonstrate
that, actually, the appearance of bistabilities is linked to the
enhancement of the total intensity due to slow light and con-
structive interference rather than localization regions.

To show that, in Figs. 5(a)–5(c) we plot the bistability
curves of the total intensity IT for two pumps separated by a
distance d = 6 and increasing values of the adimensional pa-
rameter U |F |2/J3 quantifying the Kerr nonlinearity strength.
The cyan circles (blue squares) represent the intensity for a
rightward (leftward) ramp, i.e., for � going from negative
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FIG. 5. (a)–(c) Total intensity inside the lattice IT normalized in units of the tunneling rate J and the pump intensity |F |2 as a function of
the detuning �, for an interpump distance d = 6. Each panel corresponds to a different value of the Kerr nonlinearity strength U . To make
optical bistabilities visible, squares are the results of a rightward ramp (in which � is increased starting from the lower band edge), while
circles belong to a leftward ramp (in which � is decreased starting from the upper band edge). The intensity |an|2 at each site n of the lattice
is plotted for values of � in which IT reaches the (d)–(f) maximum and (g)–(i) minimum indicated by the vertical (d)–(f) solid and (g)–(i)
dashed lines in (a)–(c), calculated for (d) and (g) U |F |2/J3 = 0, (e) and (h) U |F |2/J3 = 0.1, and (f) and (i) U |F |2/J3 = 0.8. The simulation
parameters are the cavity decay rate γ = 5 × 10−2J , N = 500 sites with open boundary conditions, and n1 = 250.

(positive) to positive (negative) values. In Fig. 5(a) we plot the
situation with U = 0, i.e., the linear regime. In this case, there
are obviously no bistabilities and thus squares and circles
coincide. In Figs. 5(d) and 5(e) we plot the spatial patterns
at � = −2J and −1.73J , corresponding to the first maximum
and minimum of IT in Fig. 5(a) (starting from the bottom band
edge) and indicated with black solid and dashed lines, respec-
tively. There we see that the minimum (maximum) intensity
corresponds to the situation with (without) localization.

We now study the displacement of such a maximum and
minimum of IT for growing U |F |2/J3. In Fig. 5(b) we plot
the total intensity for a small value of U |F |2/J3 = 0.1. In this
case, the Kerr nonlinearity blueshifts the maxima and minima
of IT towards larger values of detuning. In particular, the slow
light enhancement of IT, which takes place at � = −2J in the
linear case, now generates a single bistability curve around
� 
 −1.59J . It makes sense that such a maximum is the first
one developing an optical bistability for growing U |F |2/J3,
as it is the one reaching the largest IT. On the other hand,
the first minimum of IT, located at � = −1.73J for U = 0,
is now displaced to � = −1.51J . In Figs. 5(e) and 5(h) we
plot the spatial patterns corresponding to such a maximum
(minimum) indicated by the solid (dashed) line in Fig. 5(b),

showing that when IT reaches its maximum light spreads over
all lattice sites, while when IT is minimum light is localized in
the region between the pumps.

This behavior continues up to a critical value of U |F |2/J3

at which a second hysteresis cycle opens at the second inten-
sity maximum (located at � = −J in the linear regime and
blueshifted for a finite U |F |2/J3). Figure 5(c) shows the total
intensity for U |F |2/J3 = 0.8, for which both optical bistabili-
ties can be observed (the second one is displayed in the inset).
At � � 0 a dynamical instability arises, in agreement with
Fig. 3(b). Such a large value of U |F |2/J3 further blueshifts
the first maximum (minimum) of IT, which now takes place
at � = −0.45J (� = −0.78J) and is indicated by the solid
(dashed) line. The spatial distribution of the intensity for these
values of � is plotted in Figs. 5(f) and 5(i). The results of
these figures confirm that a high intensity inside the lattice
corresponds to light spreading over several resonators, while
localization is found at values of detuning in which IT is
minimum. Actually, in Fig. 5(i) localization is not perfect,
as intensity leaks outside of the region between the pumps.
This can be related to the fact that for U |F |2/J3 = 0.8 there
is a larger value of IT at � = −0.78J in the lower bistability
branch [see Fig. 5(c)] compared, for instance, with the smaller
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FIG. 6. Localization in the linear (U = 0) square lattice. (a) Spatial distribution of the intensity |an,m|2 (normalized using the tunneling
rate J and the pump intensity |F |2) for an N × N lattice coherently driven at its central site (0,0), i.e., individual driving. The detuning is fixed
at � = 0. (b) Analogous plot for a lattice driven by four pumps located at (±1, 0) and (0,±1), i.e., collective driving, where the intersite
distance is 1. (c) Total intensity in the lattice IT in the individual driving configuration as a function of the detuning �. (d) Analogous plot
for the localization parameter λ. (e) Total intensity in the lattice IT in the collective driving configuration as a function of the detuning �. (f)
Analogous plot for the localization parameter λ. The simulation parameters are the cavity decay rate γ = 5 × 10−2J and N = 50, i.e., 50 × 50
sites, with open boundary conditions.

value of IT that appears for U |F |2/J3 = 0.1 at � = −1.51J
[see Fig. 5(b)]. This implies a better localization in the latter
case, with almost no intensity outside the region between the
pumps [see Fig. 5(h)].

Overall, the results of this section demonstrate that local-
ization is not linked to an enhancement of nonlinear effects.
Actually, it takes place at values of detuning for which the
total intensity IT features a local minimum. On the contrary,
nonlinear phenomena such as optical bistabilities appear when
the intensity inside the lattice is maximum. Such a situation
is associated with either slow light effects or a constructive
interference between the two pumps, implying a spreading of
light over the whole lattice.

V. EXTENSION TO TWO-DIMENSIONAL LATTICES

In this section we show that the previous conclusions of
the nonlinear driven-dissipative localization can also be ex-
tended to 2D lattices. In particular, we consider a square lattice
formed by N × N sites with first-neighbor couplings [depicted
in Fig. 1(b)]. We start by addressing the linear regime. This
was extensively studied in Refs. [22,23], where it was shown
that the driven-dissipative localization can also occur in 2D
geometries. However, this is again limited to specific frequen-
cies, as it was for 1D lattices.

As a first step, we reproduce the behavior of linear square
lattices observed in Ref. [23] as well as check that the inverse
relation between localization and total intensity revealed in the
1D case also holds in two dimensions. By setting U = 0, the
coupled-mode equations (1) for a square lattice in reciprocal
space and in the reference frame rotating at the frequency of
the coherent pumps can be written as

iȧkx,ky = [ω(kx, ky) − ωP]akx,ky − iγ akx,ky + Fkx,ky , (13)

where kx and ky are the momentum components in the x and y
directions, Fkx,ky = (1/N )

∑
n,m Fn,me−i(kxn+kym) is the Fourier

transform of the coherent drive, Fn,m is the pump amplitude
at site (n, m) (where the indices n, m = −N/2, . . . , N/2 − 1
label the lattice sites), and the dispersion relation is given by

ω(kx, ky) = ωa − 2J[cos(kx ) + cos(ky)], (14)

where J is the tunneling amplitude. In this case, the frequency
band extends from � = −4J to 4J .

By solving for the steady state of the coupled-mode equa-
tions, we can calculate the spatial distribution of the intensity
inside a 50 × 50 lattice. We choose a fixed value of detuning
� = 0, i.e., at the center of the frequency band. When a single
resonant pumping spot is placed at the central site (0,0) (we re-
fer to this configuration as individual driving), light is emitted
into the lattice in a collimated fashion, as depicted in Fig. 6(a).
This is due to the dispersion relation (14), which leads to a
nonuniform group velocity [35,36]. As shown in [23], such
collimated emission allows us to find a perfect localization
by coupling four pumps at positions (±1, 0) and (0,±1)
(we label this configuration collective driving). The resulting
spatial intensity distribution is shown in Fig. 6(b), where one
can clearly observe the localization of light in the central spot.

This behavior is in agreement with the results of [23]. We
now extend them by studying in detail the properties of the
total intensity IT as well as the localization parameter λ as
the detuning � is varied across the lattice spectrum. Both IT

and λ feature a very different behavior in the individual and
collective driving configurations. In the former case, the total
intensity [see Fig. 6(c)] exhibits a maximum at � = 0, i.e.,
when ωP = ωa, due to the saddle-point region appearing at
the center of the dispersion relation. This leads to a vanishing
group velocity in a single direction, which is associated with
a diverging density of states [44]. As we learned from the
1D case, this implies a peak in IT at the corresponding value
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FIG. 7. Localization in the nonlinear square lattice. (a) Local-
ization parameter λ as a function of the pump amplitude |F |2
(normalized in units of the Kerr nonlinearity strength U and the
tunneling rate J) and the detuning �. The red dashed line represents
the linear dependence � = U |F |2/J2. (b) Analogous plot for the
total intensity inside the lattice IT. The simulation parameters are
the cavity decay rate γ = 5 × 10−2J and N = 50, i.e., 50 × 50 sites,
with open boundary conditions.

of �. Regarding the localization parameter λ [see Fig. 6(d)],
it is negligible throughout the whole spectrum, except at its
edges, i.e., at � = ±4J , where a small increase is appreciated,
corresponding to the vanishing IT. On the other hand, in the
collective driving configuration the destructive interference
leads to a small (although finite) value of IT around � = 0,
irrespective of the vanishing group velocity at that value of
detuning [see Fig. 6(e)]. As in the 1D lattice, associated with
the minimum of IT, in Fig. 6(f) a maximum of localization in
which λ 
 1 appears at � = 0.

Overall, we can conclude that in the square lattice there
exists an analogous trade-off between localization and to-
tal intensity to the one that we already found for the 1D
lattice. This hints at a similar behavior when nonlinearities
are included in the 2D case. This is what we test in Fig. 7,
where we show contour plots of the localization parameter
λ [Fig. 7(a)] as well as the total intensity IT [Fig. 7(b)] as a
function of the adimensional parameters �/J and U |F |2/J3.
On the one hand, a finite Kerr nonlinearity enables localization
for a range of detunings �/J ∈ (0, 1.35)J , far beyond what
can be found in the linear regime, in which localization is
restricted to � = 0. Above the upper limit of the nonlinear
case, located at � 
 1.35J , dynamical instability suppresses
localization, which experiences a sudden drop. As for a 1D
lattice with interpump distance d = 2, the region of maxi-
mum λ follows a linear dependence � = U |F |2/J2, indicated
by the red dashed line in Fig. 7(a). In terms of intensity,
Fig. 7(b) shows that a nonzero localization is accompanied
by a decreasing IT. To show this, we have also plotted the
� = U |F |2/J2 dependence followed by the region with high
localization in Fig. 7(b), showing that the area in which IT is
minimum adheres to the same behavior.

We finish this section by noting that the same conclusions
we obtained for the 1D lattice also hold for this 2D lattice: A
finite nonlinearity stabilizes localization for a larger range of
frequencies than in the absence of nonlinearities. In addition,
a large localization is associated with a vanishing intensity
inside the lattice, which prevents the exploitation of this phe-
nomenon for the enhancement of nonlinear effects.

VI. CONCLUSIONS AND OUTLOOK

Summing up, we have studied the phenomenon of driven-
dissipative localization in one- and two-dimensional lattices
in the presence of optical nonlinearities. We found that the
nonlinearity allows us to obtain localization at frequencies
different from those observed in the linear regime. In addi-
tion, contrary to our initial intuition, such localization does
not enhance nonlinear effects due to the concomitant de-
crease of global intensity inside the lattice. In fact, nonlinear
effects such as optical bistabilities occur in regions where
the emission between the pumping spots interferes construc-
tively, maximizing the total intensity. We foresee that our
results will pave new ways of harnessing nonlinear effects in
driven-dissipative systems, e.g., as reconfigurable optical sim-
ulator [45–47]. Another direction is to consider the interplay
of such driven-dissipative nonlinear effects with topologically
nontrivial band structures [16].

Note added. Recently, we became aware of Ref. [48],
which features some overlapping results for the 1D photonic
lattice.
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APPENDIX A: PHYSICAL IMPLEMENTATION

In this Appendix we assess the experimental realization
of our proposal. In particular, we focus on a realistic imple-
mentation employing lattices of semiconductor micropillars
hosting exciton polaritons [13]. A previous experimental
work [22] demonstrated driven-dissipative localization in the
linear regime, employing a honeycomb array of micropillars
(separated by a distance of 2.3 µm) pumped by a 1.5-eV
laser (370 THz, i.e., in the near infrared), with a tunneling
rate of 328 µeV (i.e., 79.3 GHz) between nearest-neighbor
sites. A polariton lifetime of τ = 9 ps (i.e., γ = 70 µeV) is
small enough to allow one to observe localization with an
inverse participation ratio (IPR) of around 0.35 (due to an
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unintentional horizontal tilt of the incident laser beams; simu-
lations considering a perfect setup show that it could reach an
IPR equal to 0.9).

The crucial question regarding the experimental observa-
tion of the nonlinear localization revealed in our work is the
inclusion of Kerr nonlinearities. In the case of semiconduc-
tor micropillar arrays, the eigenmodes are mixed light-matter
quasiparticles called exciton polaritons. They arise from the
strong coupling between the photons trapped in the micropil-
lar resonator and the electronic excitations of a semiconductor
quantum well embedded in the center of the micropillar.
The electronic excitations are known as excitons and they
provide repulsive interactions between the polaritons. At the
microscopic level, the excitons are composite particles formed
by bound electrons and holes. However, when considering
polariton-polariton interactions, the complex Coulomb in-
teraction between electrons and holes can be replaced by
an effective two-body interaction involving polaritons as a
whole [13]. A mean-field approximation allows one to ef-
fectively describe the interactions between polaritons with a
Kerr-type nonlinearity such as the one employed in our work.
The strength of the polariton-polariton interaction can then be
regulated by the particle density, which is precisely adjusted
by varying the incident laser power.

The polariton interaction needs to be strong enough to
allow the adimensional parameter U |F |2/J3 to show the
blueshift of the localization frequencies. Previous works have
estimated the polariton interaction strength U to be about
10 µeV µm2 [49,50]. Taking the laser energy to be 1.5 eV
in a pumping spot 2.3 µm in diameter (as in Ref. [22]), we
get |F | = 0.67 eV/µm. Assuming J = 328 µeV, one gets an
U |F |2/J3 of the order of 105, much larger than necessary
to observe the displacement of the localization frequencies
[see Figs. 2(a), 2(c), and 7(a), where U |F |2/J3 reaches
maximum values around 1]. Therefore, we expect our find-
ings to be reproducible with state-of-the-art exciton-polariton
experiments.

An alternative implementation can make use of ar-
rays of coupled superconducting resonators working in the
microwave regime, where the Kerr nonlinearity is natu-
rally created by the nonlinear inductance of a Josephson
junction [51–53].

APPENDIX B: ANALYTIC EXPRESSIONS
FOR THE INTENSITY INSIDE THE 1D LATTICE

IN THE LINEAR REGIME

In this Appendix we derive analytical expressions for the
spatial distribution of the intensity |an|2 as well as for the total
intensity IT in the 1D lattice with nearest-neighbor tunnelings
explored in the main text. We first consider the case with
two coherent pumps (which can lead to localization) and then
for completeness we study a configuration featuring a single
pump (in which localization cannot be observed). In all cases,
we restrict ourselves to the linear regime, i.e., we set U = 0,
and consider a lattice formed by N sites.

1. Two pumps

Here we assume that the lattice is coherently driven at two
sites n1 and n2 > n1, separated by a distance d = n2 − n1.

a. Spatial distribution of the intensity

We now derive an analytical expression for the spatial
distribution of the intensity |an|2. We start from the coupled-
mode equations in reciprocal space for the electric-field
amplitudes

iȧk = −(� + 2J cos k)ak − iγ ak + Fk, (B1)

where k is the lattice momentum, ak = (1/
√

N )
∑

n ane−ikn

and Fk = (1/
√

N )
∑

n Fne−ikn are the Fourier transforms of
the field amplitude and the driving, respectively, � is the
laser-resonator detuning, J is the tunneling amplitude between
neighboring sites, and γ is the cavity decay rate. In the steady
state we have that ȧk = 0 and therefore

ak = Fk

� + 2J cos k + iγ
(B2)

is the steady-state solution of Eq. (B1). Now we explicitly
write the expression of Fk for two pumps located at n1 and n2,
which takes the shape Fk = (Fe−ikn1/

√
N )(1 + e−ikd ). Sub-

stituting this into Eq. (B2), transforming to real space, and
approximating the discrete sum in momenta by an integral,
we get

an = 1√
N

∑
k

akeikn 
 F

2π

∫ +π

−π

dk
eik|n−n1| + e−ik|n−n2|

� + 2J cos k + iγ
.

(B3)

Here we have assumed that n belongs in the region between
the pumps, i.e., n1 < n < n2. Although the following steps of
the derivation correspond to this case, analogous calculations
can be carried out for values of n outside that region. The
expressions for the two other situations n < n1 and n > n2 are
provided in Eq. (9).

We continue the derivation by expanding the denom-
inator of Eq. (B3) around the resonant momenta k0 =
± arccos(−�/2J ) up to first order in k, obtaining

an = F

2π

∫ +π

−π

dk

(
eik|n−n1| + e−ik|n−n2|

−√
4J2 − �2(k − k0) + iγ

+ eik|n−n1| + e−ik|n−n2|
√

4J2 − �2(k + k0) + iγ

)
. (B4)

Since the integrands above vanish outside the first Brillouin
zone, i.e., from −π to +π , the above integration limits can
be extended from −∞ to +∞. Using the residue theorem of
complex analysis, we finally obtain

an = −iπFD(�)
(
eik0|n−n1|e−πγ D(�)|n−n1|

+ eik0|n−n2|e−πγ D(�)|n−n2|), (B5)

where D(�) = 1/π
√

4J2 − �2 is the density of states. The
spatial distribution of the intensity |an|2 is now obtained by
simply taking the square modulus of Eq. (B5). The resulting
expression is

|an|2 = 2π2|F |2D(�)2e−πγ D(�)d

× {cosh[πγ D(�)(n1 + n2 − 2n)]

+ cos[k0(n1 + n2 − 2n)]}, (B6)

which also appears in Eq. (9).
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b. Total intensity

We now derive an analytic expression for the total intensity
IT = ∑

n |an|2. Together with Eq. (B6), this will allow us to
calculate the localization parameter λ = ∑

n1<n<n2
|an|2/IT.

We start by noting that the total intensity can be equivalently
written as IT = ∑

k |ak|2 in reciprocal space. Thus, we have
that

IT 
 |F |2
2π

∫ +π

−π

dk
2 + eikd + e−ikd

(� + 2J cos k)2 + γ 2
, (B7)

where we have employed Eq. (B2) to account for the steady
state of ak in the presence of two pumps separated by a
distance d and we have already transformed the discrete
sum in momenta to an integral. As we did for |an|2, we
expand the denominator around the resonant momenta k0 =
± arccos(−�/2J ) up to first order in k and we extend the
integral from −∞ to +∞, obtaining

IT 
 |F |2
2π

∫ +∞

−∞
dk

(
2 + eikd + e−ikd

(4J2 − �2)(k + k0) + γ 2

+ 2 + eikd + e−ikd

(4J2 − �2)(k − k0) + γ 2

)
. (B8)

The integral above can be calculated by applying the residue
theorem of complex analysis, which finally yields Eq. (10).

2. Single pump

Here we consider a single coherent pump driving the site n1

of the linear (U = 0) 1D lattice with first-neighbor couplings.
Below these lines we provide analytic expressions for the
spatial distribution of the intensity |an|2 as well as for the
total intensity IT. The calculations are analogous to those of
Appendix B 1 and therefore we skip some details.

a. Spatial distribution of the intensity

We start with the derivation of the spatial distribution of the
intensity |an|2. As in Appendix B 1 a, we use Eq. (B2) to ac-
count for the steady state of the coupled-mode equations (B1).
However, for a single pump we use Fk = (1/

√
N )Fe−ikn1

as the explicit expression for the coherent drive in Fourier
space. In the following, we assume n > n1. In spite of this,
a completely analogous calculation can be carried for n1 < n.
Overall, we get

an = 1√
N

∑
k

akeikn


 −FD(�)

2

∫ +∞

−∞
dk

(
eik|n−n1|

k − k0 − iπγ D(�)

× − eik|n−n1|

k + k0 + iπγ D(�)

)
, (B9)

where we have approximated the discrete sum by an integral
whose limits can be extended to ±∞. We have also expanded
the denominator of the steady-state solution � + 2J cos k +
iγ around the resonant momenta k0 = ± arccos(−�/2J ) up
to first order in k.

As a final step, we evaluate the integrals above using the
residue theorem of complex analysis. This gives

an = −iπFD(�)eik0|n−n1|e−πγ D(�)|n−n1|. (B10)

The intensity distribution |an|2 is simply the square modulus
of this equation. By replicating this calculation with n1 < n
we arrive at the expression

|an|2 =
{
π2|F |2D(�)2e2πγ D(�)|n−n1| if n � n1

π2|F |2D(�)2e−2πγ D(�)|n−n1| if n � n1.
(B11)

b. Total intensity

Finally, the total intensity IT when a single pump is coher-
ently driving the site n1 of the lattice is given by

IT =
∑

k

|ak|2 
 |F |2
2π

∫ +π

−π

dk
1

(� + 2J cos k)2 + γ 2


 |F |2
2π

∫ +∞

−∞
dk

(
1

(4J2 − �2)(k + k0)2 + [πγ D(�)]2

+ 1

(4J2 − �2)(k − k0)2 + [πγ D(�)]2

)
, (B12)

where we have employed the same approximations as in
Appendix B 2 a. After computing the integrals by means of
the residue theorem of complex analysis, the equation above
yields

IT = π |F |2D(�)

γ
. (B13)

APPENDIX C: ANALOGY BETWEEN MULTIPLE
DRIVINGS AND SPONTANEOUS EMISSION

OF MULTIPLE EMITTERS

Following the path opened by Ref. [23], in this Appendix
we provide more details on the analogy between probing the
properties of lossy photonic lattices by coherently driving
them and by means of quantum emitters. In particular, we note
that the total intensity IT inside a driven-dissipative lattice is
proportional to the local density of states (LDOS) when the
pumps are replaced by quantum emitters at the same spots.
The LDOS measures the number of electromagnetic modes
available at a given point in space and therefore contains
information about how the radiative properties of the emitter
are modified by its coupling to a structured bath [35–37].

Below we calculate the LDOS for the 1D and 2D lattices
studied in the main text. We consider quantum emitters cou-
pled to the same spots in which coherent drives would be able
to produce localization. In the two cases, we restrict ourselves
to the linear regime, i.e., U = 0.

1. 1D lattice

Here we consider a 1D photonic lattice formed by N
sites with first-neighbor couplings. This is coupled to two
quantum emitters at sites n1 and n2, separated by a distance
d = n2 − n1. To calculate the LDOS we first need to compute
the self-energy of the quantum emitter �e(� + iγ ) for an
emitter-resonator detuning � and a photonic cavity decay rate
γ . Such a quantity captures the effect of the coupling to the
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lattice on the quantum emitter. If we assume an emitter-photon
coupling of strength g, the self-energy reads

�e(� + iγ ) = 1

N

∑
k

|ge−ikn1 + ge−ikn2 |2
� + 2J cos k + iγ

. (C1)

The LDOS is then given by twice its imaginary part, i.e.,


e = −2 Im[�e(� + iγ )]


 |g|2γ
2π

∫ +π

−π

dk
2 + eikd + e−ikd

(� + 2J cos k)2 + γ 2
. (C2)

This integral is the same as the one calculated in Eq. (B7)
to compute the total intensity of a 1D lattice driven by two
pumps. Therefore, we get


e(�) = 4π |g|2D(�)[1 + cos(k0d )e−πγ D(�)d ]. (C3)

The above expression follows the same functional dependence
of Eq. (10) but makes the substitution g ↔ F/

√
2γ .

Therefore, the light-matter coupling in the quantum emit-
ter picture plays the role of the coherent pump amplitudes
in the driven-dissipative setup. Although this was already
demonstrated by Ref. [23], in this Appendix we revealed the
connection between the total intensity and the LDOS. Such a
connection can be employed to measure the LDOS by means
of the total intensity, which is more experimentally accessible.
In addition, the correspondence between these two quantities
allows us to regard the vanishing total intensity which accom-
panies a high localization parameter as an inefficient coupling
of the coherent drivings to the photonic lattice.

2. 2D lattice

We now consider a 2D square lattice with N × N sites and
first-neighbor couplings. Four quantum emitters are coupled
sites (±1, 0) and (0,±1), where the intersite distance is 1
and (0,0) is the central site. The self-energy of the quantum
emitters reads

�e(� + iγ ) = 1

N2

∑
kx,ky

|ge−ikxd + geikxd + ge−ikyd + geikyd |2
� + 2J (cos kx + cos ky) + iγ

.

(C4)

Although it is difficult to analytically perform the calculation
above, even by transforming the sum into an integral, we can
still calculate the self-energy numerically. As in the 1D case,
the LDOS is then evaluated as 
e = −2 Im[�e(� + iγ )].

The resulting LDOS is shown in Fig. 8, where we compare
it with the total intensity IT of a driven-dissipative square
lattice with four coherent pumps located at the same positions
as the emitters, as was studied in Sec. V. The total intensity
is rescaled using a proportionality factor α 
 0.11 in order to
show that, as in the 1D case, the LDOS of the square lattice is
proportional to IT.

Finally, Fig. 8 also compares the LDOS of the square lattice
with the one of the 1D lattice [given by Eq. (C3)]. As we can
see, the main difference between them is that the LDOS of
the 1D lattice diverges at its band edges (� = ±2J), while
that of the square lattice reaches a constant value at the corre-
sponding band edges (� = ±4J). We note that this provides
some intuition behind the fact that the dynamical instability

FIG. 8. The black solid line shows the LDOS 
e (normalized
in units of the tunneling rate J and the pump intensity |F |2) for
two quantum emitters coupled at two different sites separated by a
distance d = 2 in a 1D lattice. Blue circles show the LDOS for four
quantum emitters coupled to sites (±1, 0) and (0, ±1) of a 2D square
lattice. Both LDOSs are plotted as a function of the detuning �. The
blue dashed line shows the total intensity IT in the driven-dissipative
2D lattice [under coherent pumping at sites (±1, 0) and (0, ±1)]
multiplied by a proportionality factor α 
 0.11. The simulation pa-
rameters are the cavity decay rate γ = 5 × 10−2J and the number
of sites 100 × 100 to calculate the LDOS of the square lattice and
50 × 50 to compute its IT.

observed in the calculations shown in Figs. 3 and 7 appears for
a smaller value of detuning in the 1D lattice compared to the
2D one. As a larger number of states (given by the diverging
LDOS) is available in the former situation, parametric terms
coupling different momenta are more important and thus drive
the dynamical instability sooner than when the 2D lattice is
considered. More information on the role of parametric terms
is provided in Appendix D.

APPENDIX D: DYNAMICAL INSTABILITY
IN MOMENTUM SPACE

In this Appendix we perform a Bogoliubov analysis of
the dynamical stability in the 1D lattice. Our intuition is that
the parametric terms coupling different momenta give rise to
dynamical instability for large values of detuning � and pump
intensity |F |2, thus destroying localization. We consider a
driving configuration with two pumps separated by a distance
d = 2.

We begin by transforming the nonlinear coupled-mode
equations (1) into reciprocal space

iȧk = −(� + 2J cos k)ak + U

N

∑
q,q′

a∗
q+q′−kaqaq′ − iγ ak + Fk,

(D1)

where ak=(1/
√

N )
∑

n ane−ikn and Fk=(1/
√

N )
∑

n Fne−ikn

are the Fourier transforms of the electric-field amplitude and
the coherent driving, respectively, and the lattice momentum
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k runs from −π to π with steps 2π/N . Parametric terms
appear due to the Kerr nonlinearity and they couple different
momenta while satisfying the conservation law for such a
quantity.

In principle, we need to take into account all terms ap-
pearing in the double sum of Eq. (D1). However, to study
the appearance of instability in more detail we start by con-
sidering independently all the different coupling terms in k.
Although these approximations are by no means justified (a
localized intensity in real space results in the population of all
momenta in reciprocal space), we use them as a first step to
understand better the role of the different parametric terms.

We start by considering the self-Kerr interaction, which
results in the coupled-mode equations

iȧk = −(� + 2J cos k)ak + U

N
|ak|2ak − iγ ak + Fk . (D2)

In order to study the stability of small fluctuations around
the steady state, we make the substitution ak → a(ss)

k + δak

in Eq. (D2), where a(ss)
k is the steady state reached at t → ∞

and δak are the small fluctuations around it. We then linearize
the resulting equations with respect to δak , obtaining the Bo-
goliubov coupled-mode equations for the small fluctuations

iδȧk = −(� + 2J cos k)δak + 2U
∣∣a(ss)

k

∣∣2
δak

+ Ua(ss)
k

2
δa∗

k − iγ δak, (D3)

iδȧ∗
k = (� + 2J cos k)δak − 2U

∣∣a(ss)
k

∣∣2
δa∗

k

− Ua(ss)
k

2
δak − iγ δak . (D4)

Using the vector form δa = [δa−π , . . . , δaπ ]T, we can write
the linear system of equations above in the more compact form

i
d

dt
δa = Aδa. (D5)

To assess the dynamical stability of the steady state against
small fluctuations, we can diagonalize the matrix A and look
at the sign of the imaginary part of its eigenvalues Im(w).
Dynamical instability arises whenever there is at least one
eigenvalue featuring a positive imaginary part [13,54].

Figure 9(a) plots Im(w) as a function of � across the path
� = U |F |2/J2 where localization appears. For comparison,
we also show Im(w) in the linear regime (i.e., by setting
U = 0) as a yellow dashed line. As expected, in the linear
case Im(w) = −γ regardless of �, meaning that the system
can never become dynamically unstable. However, when a
finite value of U is added, the self-Kerr interaction makes the
imaginary part of some eigenvalues depart from their linear
values, effectively broadening Im(w). This takes place near
the upper band edge, located at � = 2J , which agrees with
the fact that dynamical instability is observed for growing �

when all terms in Eq. (D1) are taken into account. However, as
we see from Fig. 9(a), dynamical instability cannot be induced
by self-Kerr terms alone.

The next order in our expansion is parametric terms cou-
pling neighboring momenta, i.e., each value of k with its
corresponding k ± 2π/N . The coupled-mode equations read,

FIG. 9. Dynamical stability in the 1D lattice coherently driven
by two pumps separated by a distance d = 2. The imaginary part of
the eigenvalues Im(w) of the Bogoliubov matrix A (see the text for
details) is plotted as a function of the detuning � (both quantities are
normalized in units of the tunneling rate J) along the � = U |F |2/J2

path, where U is the Kerr nonlinearity strength and |F |2 is the
pump intensity for (a) self-Kerr interaction and (b) first-neighbor
Kerr interaction. In both plots the yellow dashed line represents
the linear solution Im(w) = −γ . The simulation parameters are the
cavity decay rate γ = 5 × 10−2, N = 500 sites with open boundary
conditions, and n1 = 250.

in that case,

iȧk = −(� + 2J cos k)ak + U

N
|ak|2ak + 2

U

N
|ak+2π/N |2ak

+ 2
U

N
|ak−2π/N |2ak + 2

U

N
a∗

k ak+2π/N ak−2π/N − iγ ak

+ Fk . (D6)

An analogous Bogoliubov analysis can be performed in this
case as well. The imaginary part of the eigenvalues of the
matrix A governing the dynamics of linearized fluctuations
is shown in Fig. 9(b) as a function of � across the � =
U |F |2/J2 path. Even though the system is still dynamically
stable along the whole path, some imaginary parts depart
from the linear solution Im(w) = −γ sooner than when only
self-Kerr terms are present, and they even reach Im(w) = 0 at
the upper band edge, i.e., at � = 2J .

In conclusion, parametric couplings between different val-
ues of k result in some Im(w) departing from their linear value
and approaching zero. Our intuition is that the inclusion of
the rest of the parametric terms in Eq. (D1) results in the ap-
pearance of a dynamical instability near the upper band edge,
which is what we observe when we solve the coupled-mode
equations in real space (1), as it is shown in Figs. 3 and 7.
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