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Light storage in a wavy dielectric grating with Kerr nonlinearity
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Periodical corrugation in the dielectric slab transforms the two waveguide modes at zero Bloch wave number
into a leaky resonant mode and symmetry-protected bound states in the continuum (BIC) with a small frequency
detuning. The leaky resonant mode can be directly excited by a weakly linearly polarized normally incident
optical field. In the presence of Kerr nonlinearity, BIC can be indirectly excited by an optically bistable response.
Two types of bistable operations were considered. For the first type, the intensity of the incident field was
gradually increased to exceed the critical value and then decreased to zero. For the second type, the intensity was
fixed, while the linear polarization angle of the incident field was gradually increased to exceed a critical value
and then decreased to 0◦. Theoretically, the indirectly excited BIC can store optical energy without loss, even
when the intensity of the incident field decreases to zero. The incidence of an optical field with double frequency
or orthogonal linear polarization can erase the stored optical field by destroying BIC. The proposed system can
function as an optical storage and switching device.
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I. INTRODUCTION

Kerr optical materials exhibit a third-order nonlinear op-
tical effect, whose reflective index is a linear function of
the intensity of the optical field [1,2]. As the power of the
incident optical field changes, the optical response of photonic
structures consisting of Kerr materials also changes, owing
to the change in the relative permittivity. The Kerr effect
in the bulk is weak because the third-order susceptibility is
small. Photonic structures, such as photonic crystals [3–11],
dielectric gratings [12,13], metallic thin films [14,15], semi-
conductor thin films [16–20], and graphene [21], can enhance
the local density of states of the optical field, which in turn
enhances the Kerr effect. Optical bistability is one of the most
extensively studied Kerr effects [22–29]. For a given incident
power, bistable optical devices can exhibit two bistable states
with different optical responses. Optical devices can switch
between two bistable states as the incident power increases or
decreases beyond a critical value [10,17,18,21,30–35]. These
two bistable states can be considered as ON and OFF states for
all-optical switching devices in an integrated photonic system.

The mechanism of optical bistability in photonic structures
is based on the excitation of the optical resonant mode with
a Lorentz line shape [14,15], whose peak wavelength is ap-
proximately a linear function of the refractive index of Kerr
materials. The refractive index of Kerr materials is a linear
function of the intensity of the local optical field (i.e., |E|2),
such that the peak wavelength is a linear function of |E|2.
For a given power of the incident field, |E|2 is proportional to
the incident power and Lorentz function at the incident wave-
length. Because the Lorentz function is inversely proportional
to the quadratic function of the difference between the peak
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wavelength and the incident wavelength, the self-consistent
function gives a cubic function of |E|2. If the value of the
incident wavelength minus the peak wavelength is a decreas-
ing function of |E|2, the local optical field pulls the peak
wavelength toward the incident wavelength, so that the cubic
function can have three nondegenerated solutions. Two of the
three solutions were in a stable state. Bistable solutions exist
if the difference between the incident wavelength and the peak
frequency with |E|2 ≈ 0 is larger than a critical value and the
incident power is between two critical values. In other words,
when the incident power is smaller (larger) than the lower
(higher) critical value, |E|2 has only one branch of the solution
that is connected to the lower (higher) branch of the bistable
solutions. As the incident power increases (decreases) across
the higher (lower) critical value, |E|2 switches from a lower
(higher) branch to a higher (lower) branch. Optical responses,
such as reflectance and transmittance, were proportional to
|E|2. The optical resonant mode can be a leaky resonant
mode [14] or a quasi bound state in the continuum [36].

In this paper, we consider a situation in which a leaky res-
onant mode is nearly degenerated with a symmetry-protected
bound state in the continuum (BIC), which occurs in the wavy
dielectric grating [37] with small corrugation under a normal
incident plane wave. The incident frequency was smaller than
the resonant frequency of the BIC, and the resonant frequency
of the BIC was smaller than that of the leaky resonant mode.
At a low incident power, only the leaky resonant mode is
excited, and the BIC cannot be excited by the incident plane
wave owing to the symmetry mismatch. As the incident power
increases across the higher critical value, the solution of |E|2
switches to the higher branch. In this case, BIC can be excited
by the scattered field owing to the modification of the spatial
distribution of the refractive index. As the incident power sub-
sequently decreases across the lower critical value, the energy
in the leaky resonant mode is released, whereas the energy
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in the BIC remains stored. As the incident power decreases
further, the energy is still stored in the BIC without loss
because the BIC is not coupled with the radiative mode. Thus,
the local optical field does not decrease, and the refractive
index remain modified. As the incident power reaches zero,
the self-consistent solution of the BIC of the system with the
modified refractive index is still lossless. To release the stored
energy in the BIC, an incident optical field with different
frequency or polarization is applied to destroy the symmetry
mismatching between the modified refractive index and BIC.
This bistable procedure can be applied to light storage devices.

Another type of bistable procedure with a fixed incident
power was considered, which was driven by tuning the lin-
ear polarization angle. In the previous case, both the leaky
resonant mode and BIC were transverse electric (TE) polar-
ized. At the same incident frequency, the transverse magnetic
(TM)-polarized wave is far from any resonant mode. Thus,
the incident TM-polarized plane wave induces a weak local
optical field. If the linearly polarized angle of the incident
plane wave is between the TE and TM polarizations, only
the TE component can excite a large local optical field and
induce a significant Kerr effect. Thus, the effective incident
power is given by the TE component of the incident field.
Consequently, tuning the linearly polarized angle is equivalent
to tuning the effective incident power. The effective incident
power is smaller than the incident power; therefore, to switch
to the higher branch of the bistable solution, the incident
power must be larger than the higher critical value. After
exceeding the higher critical value, BIC is excited. When the
linearly polarized angle is further tuned, if the effective inci-
dent power remains nonzero, the modification of the refractive
index is maintained so that the energy remains stored in the
BIC. When the linearly polarized angle is exactly equal to the
TM polarization, the effective incident power is zero. In this
case, the TM-polarized incident field induces the spatial dis-
tribution of the refractive index, which destroys the symmetry
mismatching between the modified refractive index and BIC,
which in turn releases the stored energy in the BIC.

The remainder of this paper is organized as follows: In
Sec. II, the linear response of the wavy dielectric grating was
discussed. In Sec. III, the bistable procedure of tuning the
incident power is discussed. In Sec. IV, the bistable procedure
of tuning the linearly polarized angle is discussed. In Sec. V,
the conclusions are presented.

II. LEAKY RESONANT MODE
AND SYMMETRY-PROTECTED

BIC OF WAVY DIELECTRIC GRATING

The structure of the wavy dielectric grating is illustrated
in Fig. 1(a). A dielectric slab with finite thickness along the z
direction is periodically corrugated along the x direction. The
thickness of the original dielectric slab was h. The structure
is uniform along the y direction and has discrete translational
symmetry along the x direction, with the period being a. The
top and bottom surfaces of the wavy dielectric grating are
defined by the function z = ±h/2 − w sin(2πx/a), where w

is the corrugation amplitude. A linearly polarized plane wave
is normally incident on the wavy dielectric grating from the z
direction. We consider TE polarization with the electric field
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FIG. 1. (a) Structure of the wavy dielectric grating. (b) TE re-
flectance spectra around f a/c = 0.775 of the wavy dielectric grating
for different values of w under normal incidence. The field pattern
of |E| of the leaky resonant modes and the symmetry-protected BICs
are plotted in (c), (e) and (d), (f), respectively. In (c), (d) and (e), (f),
w = 3 nm and w = 30 nm, respectively. The resonant frequencies of
the modes in (c)–(f) are 0.774 279c/a, 0.774 263c/a, 0.776 241c/a,
and 0.774 668c/a, respectively. The Q factor of the modes in (c)–(f)
are 2.3×104, ∞, 2.3×102, and ∞, respectively.

along the y direction. In the region with z � 0, the electric
field of the incident wave in the frequency domain is given as
Einc = ŷEince−i2π f z/c, where f and Einc are the frequency and
amplitude of the incident plane wave, respectively, and c is the
speed of light. If f < c/a, the reflected and transmitted fields
in the regions with z � 0 and z � 0 are Eref = ŷEincei2π f z/c

and Etra = ŷEince−i2π f z/c, respectively. For a specific example
of the numerical simulation, the parameters were assumed to
be a = 800 nm, h = 380 nm, and w between 3 and 30 nm. Air
was used as the background medium. The relative permittivity
of the dielectric medium with Kerr nonlinearity is assumed to
be εr = 2.2 + χ (3)|E|2, where χ (3) = 4.4×10−18 m2/V2, and
|E| is the magnitude of the electric field [1,2]. Materials with
a sufficiently large value of χ (3) can be obtained by doping
the semiconductors or engineering the conjugation length of
polymers [38]. The incident power, designated as Iinc, is pro-
portional to the intensity of the incident electric field, which

is given by Iinc = 1
2

√
ε0
μ0

|Einc|2. The electromagnetic field

was numerically calculated by solving the two-dimensional
Helmholtz equation of the y-component electric field, which
is given as

∇×{∇×[Ey(x, z)ŷ]} −
(

2π f

c

)
2εr (x, z)Ey(x, z)ŷ = 0, (1)

where ∇ = x̂ ∂
∂x + ẑ ∂

∂z , Ey = E · ŷ. The spectral element
method (SEM) [39–44] was used to obtain a solution with
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high accuracy and efficiency. The computational domain was
selected as a rectangular region of one period in the x̂-ẑ plane
with y = 0. Periodic boundary conditions are applied to the
left and right boundaries. The top and bottom boundaries were
truncated by a perfectly matched layer (PML). The total field-
scattered field formula was applied to simulate incident plane
waves. The self-consistent solution was obtained by iteratively
calculating Ey(x, z) and εr (x, z).

When Iinc is small, the nonlinear term in εr can be ne-
glected. Thus, we first discuss the linear response of the wavy
dielectric grating without the Kerr nonlinearity. A flat dielec-
tric slab with w = 0 hosts waveguide modes whose dispersion
relations are under the light cone. When a periodic boundary
condition is imposed on the system, the dispersion relations
are folded into the first Brillioun zone, forming a band struc-
ture. Band crossings occur at the � point of the first Brillioun
zone, where the Bloch wave number is zero. The modes at the
� point were twofold degenerate. Although the modes at the
� point are above the light cone, they are nonradiative because
they are in the waveguide mode. When a periodic perturbation
appears, that is, w �= 0, the band structure is modified and the
degeneracy of each pair of modes at the � point is broken.
One of the modes is coupled with the radiative traveling waves
(Eref and Etra), so that the mode becomes a leaky resonant
mode. The other mode is symmetry mismatched with the
radiative traveling wave, such that the mode is not coupled
with any radiative traveling wave. The latter mode is the
symmetry-protected BIC, which cannot be directly excited
by a normally incident plane wave [45]. The resonant fre-
quencies of the two modes were slightly different. Under
normal incident TE waves with a low intensity, the reflectance
spectrum has a resonant peak around the resonant frequency
of the leaky resonant mode. As w decreased, the full width
at half maximum (FWHM) of the peak decreased, as shown
in Fig. 1(b). Thus, the Q factor of the leaky resonant mode
is inversely proportional to w. At the resonant frequency, the
magnitude of the electric field within the dielectric medium is
enhanced owing to excitation of the leaky resonant mode. The
enhancement factor is inversely proportional to w.

In the absence of an incident field, the resonant modes can
be calculated by solving the eigenvalue problem in Eq. (1).
The leaky resonant modes and BICs of the system with w = 3
nm and w = 30 nm were calculated. The corresponding field
patterns are plotted in Figs. 1(c)–1(f) with the resonant fre-
quencies and the Q factors provided in the caption. As w

increases from 3 to 30 nm, the Q factor of the leaky res-
onant mode decreases from 2.3×104 to 2.3×102. The field
patterns of the leaky resonant modes and BICs have nodal
lines along the y direction at x = 0 (x = a/2) and x = a/4
(x = 3a/4), respectively, where |E| is zero. For the leaky
resonant modes, the points with the maximum value of |E|
are located at x = a/4 (x = 3a/4) where | sin(2πx/a)| = 1, as
shown in Figs. 1(c) and 1(e), such that the adjacent points have
staggered y coordinates. This feature induces scattering by the
boundary of the wavy dielectric slab such that the Q factors
are finite. For the BICs, the points with the maximum value of
|E| are located at x = 0 (x = a/2) where | sin(2πx/a)| = 0,
as shown in Figs. 1(d) and 1(f), such that the points have the
same y coordinates. The energy only flux along ±x direction,
but not along the y direction, so that the energy loss is absent.

FIG. 2. (a) The sketch map of the far-field calculation of the ra-
diation field from the electric polarization vector of a resonant mode.
(b) and (c) are the spatial distribution of Py of the leaky resonant
mode and BIC, respectively. The black dots mark the location with
maximum value of |Py|.

The symmetry mismatch between BIC and the radiative
mode can be interpreted by calculating the far-field radiation
of the polarization current in the dielectric slab. The radiated
field from a resonant mode can be calculated by integrating
the radiation from polarization current within the dielectric
slab. At an observation point R = Rxx̂ + Rzẑ, the vector po-
tential of the radiated field from the nth unit cell, An

y , is given
as

An
y (R) = μ0

4π

∫
Vn

JP,y(r′)eikr

r
dr′, (2)

with JP,y = −i2π f Py being the polarization current and Py =
(εr − 1)ε0Ey being the electric polarization vector within
the dielectric slab at the local coordinate r′ = x′x̂′ + z′ẑ′,
as shown in Fig. 2(a). The integral cover the dielectric
slab region within the nth unit cell designated as Vn,
and r = |R − r′| =

√
(na + x′ − Rx )2 + (Rz − z′)2. Consid-

ering the far-field limit with Rz � a, so that r ≈ Rn − en
xx′ −

en
z z′ with Rn =

√
(na − Rx )2 + (Rz )2, en

x = (Rx − na)/Rn, and
en

z = Rz/Rn, the integral can be approximated as

An
y (R) = ωμ0eikRn

4πRn

(−i〈Py〉 − ken
x〈xPy〉 − ken

z 〈zPy〉 + · · · ),
(3)

with 〈Py〉 = ∫
Vn

Py(r′)dr′, 〈xPy〉 = ∫
Vn

x′Py(r′)dr′, 〈zPy〉 =∫
Vn

z′Py(r′)dr′. Because of the periodic condition, 〈Py〉, 〈xPy〉,
and 〈zPy〉 are independent of n. The total vector potential is
given as Ay = ∑+∞

n=−∞ An
y . The spatial distributions of Py for

the leaky resonant mode and BIC are plotted in Figs. 2(b)
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FIG. 3. The hysteresis loop of the optical bistable operation of the wavy dielectric grating with w = 3 nm. The normally incident optical
plane wave has out-of-plane polarization, whose frequency is f a/c = 0.774 255. The parameters of the incident power variation are I0 =
6.25×10−4 kW/cm2, �I = 6.25×10−3 kW/cm2, and N = 50. The evolution of the (a) total energy in the computational domain, (b) maximum
magnitude of the electric field, (c) reflectance, and (d) averaged permittivity in the dielectric slab are plotted as small solid dotted lines. Eight
selected steps along the hysteresis loop are marked by large solid dots with serial number (1)–(8) with the same sequence as the direction of
the evolution. The field pattern of |E| at the steps (1), (4), (6), and (8) are plotted in (e)–(h), respectively. The field pattern of |E| for the erasing
step with double frequency and incident power being I0 is plotted in (i).

and 2(c), respectively. Because the structure of the wavy di-
electric grating have inversion symmetry about the point at
(x′, z′) = (0, 0), and mirror symmetric about the vertical axis
with x′ = ±a/4, the patterns of Py have the same symmetries.
For the leaky resonant mode, Py is odd under the inversion
transformation (x′, z′) → (−x′,−z′), so that 〈Py〉 equates to
zero. xPy and zPy are even under the inversion transforma-
tion, so that 〈xPy〉 and 〈zPy〉 are nonzero. Thus, the radiation
field is nonzero. By contrast, for the BIC, Py is even under
the inversion transformation (x′, z′) → (−x′,−z′), then xPy

and zPy are odd under the inversion transformation, so that
〈xPy〉 and 〈zPy〉 equate to zero. In the left (right) half of the
unit cell with −a/2 < x′ < 0 (0 < x′ < a/2), Py is an odd
function about the mirror plane at x′ = −a/4 (x′ = a/4), so
that the integral of 〈Py〉 equates to zero. Thus, the radiation
field is zero. These inference were confirmed by numerical
calculation of 〈Py〉, 〈xPy〉, and 〈zPy〉 of the leaky resonant
mode and BIC. The evanescent field of the BIC in the region
with |z| > h/2 is approximately equal to e(|z|−h/2)/δz , with δz

being the penetration depth into the vacuum. Because the
BIC mainly consists of the superposition of two waveguide
modes with propagating constants being ±2π/a, δz is ap-
proximately equal to δBIC

z = a/(2π
√

1 − a fBIC/c) with fBIC

being the eigenfrequency of the BIC. By fitting the evanescent
field with the numerical result, δz of the BICs in Figs. 1(d)
and 1(f) are around 220 nm, which is slightly larger than the
corresponding theoretical value δBIC

z .

III. BISTABILITY BY TUNING INCIDENT POWER

In this section, we study the bistability of the optical
response, when Iinc is adiabatically increased and then de-
creased. The first step of the simulation starts with a frequency
domain calculation with ultralow Iinc, designated as I0, so that
Kerr nonlinearity can be neglected. The subsequent steps of
the simulation are the frequency domain calculations with
Iinc being increased with a small value �I in each step. In
each step, the initial value of the electromagnetic field is
the convergent solution of the previous step, and the self-
consistent solution is obtained through numerical iteration.
After N steps, Iinc reaches a maximum value Imax = I0 + N�I .
For the other N subsequent steps, Iinc was decreased by �I
in each step. After the simulation of the 2N + 1 steps, Iinc

returned to the initial value I0.
When Imax exceeded a certain critical value, the evolu-

tion entered a hysteresis loop. An example of w = 3 nm
is shown in Fig. 3. The frequency of the incident plane
wave is f a/c = 0.774 255, and the corresponding linear re-
flectance is 0.4542, which is on the climbing slope of the
resonant peak in Fig. 1(b). The critical value of Iinc was
0.21 kW/cm2. The optical field is characterized by the total
energy of the entire computational domain, the maximum
value of the amplitude of the electric field (designated as
|E|max), reflectance, and the spatially averaged value of the rel-
ative permittivity within the dielectric slab (designated as ε̄r),
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which are plotted in Figs. 3(a)–3(d), respectively. Eight typi-
cal steps are marked in the evolution curve with the indices in
sequence.

In the initial step [step (1)], the incident plane wave excited
the leaky resonant mode, as shown in Fig. 3(e). Because
Iinc is equal to 6.25×10−4 kW/cm2 in the initial step, the
amplitude of the electric field of the incident plane wave is
2.17×103 V/m. The incident plane wave excites the leaky
resonant mode with a significantly high Q factor, such that
the resonant optical field in the wavy dielectric slab is en-
hanced 82 times, as shown in Fig. 3(e). The field pattern is
a superposition of the incident plane wave and the excited
leaky resonant mode with a large amplitude, such that the
field pattern is nearly the same as that of the leaky resonant
mode in Fig. 1(c). In steps (2) and (3), the field pattern is the
same as that shown in Fig. 3(e), except that the amplitude is
larger.

In step (4), Iinc exceeds the critical value and the field
pattern changes sharply, as shown in Fig. 3(f). The nodal
lines at x = 0 (x = a/2) are filled with a sizable optical field,
implying that the field pattern is a superposition of the incident
plane wave, leaky resonant mode, and BIC. Thus, BIC is
excited because of the spatial modification of εr . The sharp
change in the field pattern can be characterized by the sharp
change of the total energy, |E|max, reflectance, and ε̄r . When
Iinc further increases and reaches step (5), the optical field at
x = 0 (x = a/2) remains nearly the same and that at x = a/4
(x = 3a/4) increases. Meanwhile, the total energy, |E|max, and
ε̄r were nearly proportional to Iinc. These phenomena imply
that the stored energy in the BIC remains the same, and that
the stored energy in the leaky resonant mode is proportional
to Iinc. As Iinc decreases to be smaller than the critical value,
the field pattern does not sharply change back to that of step
(3), but remains similar to that of step (4) because the stored
energy in the BIC locks the spatial pattern of εr .

As Iinc reaches step (6), the field pattern becomes nearly
uniform along the x direction, as shown in Fig. 3(g), which
implies that the amplitudes of the leaky resonant mode and
BIC are nearly the same. As Iinc further decreases and reaches
steps (7) and (8), the stored energy in the BIC is larger than
that in the leaky resonant mode, so that the total energy con-
tinues to decrease, while |E|max and ε̄r hardly change. In step
(8), the energy in the leaky resonant mode is much smaller
than that in the BIC. Therefore, the field pattern is nearly the
same as that of the BIC in Fig. 1(d), as shown in Fig. 3(h).
If Iinc is tuned to zero, the two-dimensional Helmholtz equa-
tion becomes a nonlinear eigenvalue equation. With the spatial
distribution of E and εr in step (8) as the initial condition,
the self-consistent solution of the nonlinear eigenvalue equa-
tion yields a resonant mode, whose field pattern and amplitude
are nearly the same as those in Fig. 3(h), and the Q factor
is infinitely large. The eigenfrequency of the resonant mode
is slightly different from that of the BIC in Fig. 1(c). Thus,
the resonant mode is designated as a modified BIC of the
wavy dielectric grating with nonuniform εr . Although εr be-
comes nonuniform, the condition of the symmetry mismatch
is preserved; thus, the stability of the BIC is preserved in the
modified BIC. At this stage, optical energy is theoretically
stored in the modified BIC without loss. Applying the same in-
cident plane wave by increasing Iinc can only drive the system

FIG. 4. The critical value of Iinc, where the optical field pattern
sharply change, vs w are plotted. For each system with the corre-
sponding w, f is chosen from the left part of the resonant peak in
Fig. 1(b) with the reflectance being 0.46.

back to steps (8)–(5), but cannot return to the initial state in
step (1).

For applications in optical storage devices, in addition to
storing optical energy, the ability to release stored energy is
required. To release the stored energy, the spatial pattern of
εr has to be changed, which breaks the symmetry mismatch
between the modified BIC and the radiative traveling wave.
This objective can be achieved through the incidence of plane
waves with different frequencies. Using the field pattern in
Fig. 3(h) and the corresponding εr as the initial condition, an
iterative solution of the optical field under the incidence of a
plane wave with a frequency of 2 f and I = I0 is plotted in
Fig. 3(i). The amplitude of the field pattern in Fig. 3(i) is
much smaller than that in Fig. 3(h), implying that the stored
energy in the modified BIC is completely released. The field
pattern in Fig. 3(i) has an interference fringe above the top
and bottom surfaces of the wavy dielectric grating, which
is due to the interference between the incident and reflected
fields above each surface. The field pattern below the bottom
surface was uniform and mainly consisted of the transmit-
ted plane wave. With the spatial distribution of E and the
corresponding εr in Fig. 3(i) as the initial condition, the self-
consistent solution of the nonlinear eigenvalue equation does
not provide any resonant mode with an infinite Q factor near
frequency f . The numerical results indicate that the incident
field with frequency 2 f destroys the BIC near frequency f .
With the field pattern in Fig. 3(i) as the initial condition, the
iterative solution of the optical field under the incidence of a
plane wave with the original frequency f and I = I0 is the
same as that in step (1). Thus, the system enters another cycle
of bistable operations.

The critical value of Iinc between steps (3) and (4), des-
ignated as Iinc,c, depends on w. For a system with a larger
w, the Q factor of the leaky resonant mode is smaller, and
the enhancement of the optical field within the wavy dielec-
tric grating is weaker. As a result, a larger Iinc is required
to induce a sufficient modification of εr . For systems with
varying w, Iinc,c are plotted in Fig. 4. By fitting the data,
we found that Iinc,c is a quartic polynomial function of w as
Iinc,c = w4/403.43.
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FIG. 5. The hysteresis loop of the optical bistable operation of
the wavy dielectric grating with w = 3 nm. The frequency of the nor-
mally incident plane optical wave is f a/c = 0.774 255. The incident
power is fixed to be 0.3125 kW/cm2. The linear polarization angle
firstly increases from 0◦ to 90◦ with step size being 1◦, and then de-
creases back to 0◦, with 0◦ (90◦) representing in-plane (out-of-plane)
linear polarization. Along the hysteresis loop, the (a) total energy in
the computational domain, (b) |E|max, (c) reflectance, (d) ε̄r , vs the
linear polarization angle are plotted as small dotted lines. The arrows
along the hysteresis loop guide the direction of the bistable operation.

IV. BISTABILITY BY TUNING LINEARLY
POLARIZED ANGLE

The hysteresis loop can also be driven by the variation
in the linearly polarized angle, which is designated as αinc,
while keeping the incident power of the normally incident
plane wave unchanged. The mechanism of bistable operation
is the same as that in Fig. 3, except that the incident power is
replaced with the effective incident power. The frequencies of
the resonant modes of TE and TM polarizations are generally
different. When the frequency of the incident plane wave is
chosen to be at the middle of the climbing slope of the TE-
polarized resonant peak in Fig. 1(b), the frequency is far from
any TM-polarized resonant peak. Thus, at the same frequency,
the TM-polarized incident plane wave with incident power
being Iinc = Imax does not induce a sufficient modification
of εr for a nonlinear response. The electric field of the in-
cident plane wave can be designated as Einc = (cos αincx̂ +
sin αincŷ)Eince−i2π f z/c, such that αinc = 0◦ and 90◦ corre-
spond to the TM- and TE-polarized incident plane waves,

respectively. For a system with the same parameters as those
in Fig. 3 and Iinc = 0.3125 kW/cm2, the evolution of the
characteristic parameters versus αinc is plotted in Fig. 5. The
effective incident power for each αinc can be defined as the
incident power of the TE component of the incident plane
wave, that is, Ieff = Iinc sin 2αinc. The critical angle at which
the optical field pattern changes sharply is αinc = 68.5◦, where
Ieff = 0.2705 kW/cm2. The critical value of Ieff is slightly
larger than the critical value of Iinc in Fig. 3 because the
modification of εr by the TM component of the optical field
suppresses the excitation of BIC. After αinc exceeded the criti-
cal angle, the evolution of the bistable state was similar to that
shown in Figs. 3(a)–3(d). As αinc reaches zero, the field pattern
sharply changes to be the same as the initial state because the
incident TM-polarized plane wave releases the stored energy
in the modified BIC. Consequently, a complete hysteresis loop
is obtained by tuning only αinc without changing the frequency
and incident power.

V. CONCLUSION

In conclusion, the bistable processes of the optical field in
a wavy dielectric grating consisting of a material with Kerr
nonlinearity under normally incident plane waves were stud-
ied. For an incident field with TE polarization, by selecting
the frequency at the climbing slope of the line shape of the
leaky resonant mode and tuning the incident power, the BIC
with a frequency near the leaky resonant mode is excited.
After exciting the BIC and tuning off the incident field, optical
energy is stored in the system without loss. The incident of a
weak optical field with different frequencies or polarizations
can release the stored energy and switch the system back to its
initial state. For an incident field with a fixed incident power,
the system could enter a hysteresis loop by tuning the linear
polarization angle. Bistable operation can be applied to the
design of optical storage devices and switches.
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