
PHYSICAL REVIEW A 109, 063519 (2024)
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Systems of coupled optical parametric oscillators (OPOs) forming an Ising machine are emerging as large-
scale simulators of the Ising model. The advances in computer science and nonlinear optics have triggered not
only the physical realization of hybrid (electrooptical) or all-optical Ising machines, but also the demonstration of
quantum-inspired algorithms boosting their performances. To date, the use of the quantum nature of parametri-
cally generated light as a further resource for computation represents a major open issue. A key quantum feature
is the non-Gaussian character of the system state across the oscillation threshold. In this paper, we perform an ab
initio analysis of the emergence of non-Gaussianity in the single quantum OPO with an applied external field. We
model the OPO by a Lindblad master equation, which is numerically solved by a first-principles method based
on exact diagonalization. Non-Gaussianity is quantified by means of three different metrics: the Hilbert-Schmidt
distance, quantum relative entropy, and photon distribution. Our findings reveal a nontrivial interplay between
parametric drive and applied field: (i) the increasing pump monotonically enhances non-Gaussianity and (ii) the
increasing field first sharpens non-Gaussianity, and then restores the Gaussian character of the state when above a
threshold value. We also report a first-principles computation in the Fock space of the distance from the mixture
of coherent states, a strongly nonclassical behavior that can play a significant role in the quantum parallel search
for optimization.
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I. INTRODUCTION

Hard optimization problems are permeating several areas
of modern science and society. Their rapidly increasing com-
putational complexity nowadays pairs with the evident limits
of conventional computer architectures, fostering the investi-
gation of innovative specialized paradigms and devices. In this
respect, optical systems are emerging as promising alternative
computing platforms [1]. Leveraging the mapping of complex
optimization to Ising Hamiltonians [2], the quest of solving
a large class of problems translates into building a system
capable of simulating the classical Ising model and efficiently
finding its lowest-energy configuration.

Specifically, systems of optical parametric oscillators
(OPOs) have emerged as a valuable platform to solve the
Ising model. When pumped by an external drive above the
oscillation threshold, an OPO undergoes phase-dependent am-
plification forcing the phase of the optically amplified signal
to be either 0 or π with respect to the phase of the pump.
These two states simulate the “spin-up” and “spin-down”
configurations of a classical Ising spin. This circumstance is
behind the use of networks of coupled OPOs as computing
machines (called Ising machines) to find the ground state of
the classical Ising model [3]. Recently, a significant effort has
been put in exploiting classical properties of OPOs to enhance
computational speed and efficiency [4–8].
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The question on whether quantum features of the para-
metrically generated light can be employed to further boost
OPO-based computing machines has also been raised [9–11].
However, no clear answer is available to date because of the
difficulty in the analytical and numerical description of quan-
tum OPO networks compared to their classical counterparts. A
major issue is the identification of specific quantum properties
that can enhance the computational performance.

One of such quantum features is the non-Gaussian na-
ture of the state [12], which is the focus of this work.
Previous work discussed the presence of non-Gaussianity
in OPOs close to the threshold [13,14] by observing
non-Gaussian statistics in the photon distribution. Since non-
Gaussianity signals the arising of a mixed state, specifically, a
quantum superposition of semi-classical states encoding
distinct Ising spin configurations, the emergence of non-
Gaussian correlations as the system is driven above the
oscillation threshold is one of the key features that is en-
visioned to improve quantum tunneling during the quantum
parallel search [15] and thus enhance the ability of OPO-based
Ising machines to identify the Ising ground state. However, a
first-principles, systematic study on the way non-Gaussianity
emerges is missing.

In this work, we report on an extensive analysis of
non-Gaussianity in the quantum OPO in different parameter
regimes. We model the OPO by a driven-dissipative open
quantum system described by a Lindblad master equation ac-
counting for two-photon gain (pump) and subject to one- and
two-photon dissipation (intrinsic loss and pump saturation,
respectively). We numerically obtain the full density matrix of
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the system by resorting to an ab initio method, by projection
of the master equation on the Fock (number) basis and subse-
quent exact diagonalization of the Liouvillian superoperator
[16]. Non-Gaussianity is first quantified as a function of
the pump amplitude by comparing three different metrics:
Hilbert-Schmidt distance [17–19], quantum relative entropy
[19–21], and photon distribution [13]. We then compute
the distance between the quantum state and the mixture of
coherent states as a function of pump amplitude, and compare
it to the degree of non-Gaussianity from the Hilbert-Schmidt
distance. Finally, non-Gaussianity is studied in the presence
of a one-photon drive (additive field, also known as signal
injection) by computing the quantum relative entropy as a
function of both pump amplitude and applied field strength.

We find that, while the quantum state is well described by
a Gaussian state for sufficiently low pump, and significantly
differs from the mixture of coherent states, non-Gaussianity
dominates above threshold, where correspondingly the state
approaches the mixed state. When the one-photon drive is
included, increasing pump causes a monotonic growth of
non-Gaussianity, while increasing additive field first makes
non-Gaussianity to grow, and then causes a steep decrease,
suggesting a restoration of the Gaussian nature of the state for
large additive field.

This paper is organized as follows. In Sec. II we introduce
the quantum model of the OPO and review the correspond-
ing classical model. In Sec. III, we discuss our numerical
procedure, first addressing the case of zero additive field.
We present our numerical results on the Wigner function
in Sec. IV. The measurements of non-Gaussianity and the
distance from the mixture of coherent states are discussed in
Sec. V. Then, the analysis of non-Gaussianity is extended to
the case of nonzero additive field in Sec. VI. The connection
between our model and optical experimental setups is dis-
cussed in Sec. VII. We draw our conclusions in Sec. VIII,
and report additional analytical and numerical details in the
appendices.

II. MODEL

In this section, we introduce our model of the degenerate
quantum optical parametric oscillator and review for the sake
of completeness its main properties in the classical (mean-
field) limit.

A. Quantum master equation

We describe the quantum OPO as a driven-dissipative open
quantum system by resorting to conventionally adopted mod-
els in the regime of weak pump depletion and large pump
mode intrinsic loss, where the pump mode is adiabatically
eliminated as detailed in Refs. [9,22–25]. The system is de-
scribed by a density operator ρ̂ involving the signal field only,
and it is governed by the following master equation (h̄ = 1),

d

dt
ρ̂ = Lρ̂(t ) = 1

i
[Ĥ0, ρ̂] + D1ph(ρ̂ ) + D2ph(ρ̂ ) , (1)

where L is the Liouvillian superoperator. In Eq. (1), we define

Ĥ0 = i
h

8
((â†)

2 − â2) , (2)

as the Hamiltonian describing two-photon gain (parametric
amplification) by a real field of amplitude h > 0, and

D1ph(ρ̂ ) = g

(
â ρ̂ â† − 1

2
{â†â, ρ̂}

)
, (3a)

D2ph(ρ̂ ) = β

2

(
â2 ρ̂ (â†)

2 − 1

2
{(â†)

2
â2, ρ̂}

)
, (3b)

are the dissipators representing one- and two-photon losses.
These processes describe the intrinsic cavity loss of the signal
field (quantified by g > 0) and the nonlinear saturation (quan-
tified by β > 0), respectively. In Eqs. (2) and (3), â (â†) is the
photon annihilation (creation) operator, obeying the bosonic
commutation relations [â, â†] = 1 and [â, â] = 0.

B. Classical limit

From Eq. (1), we obtain the equation of motion for â by the
adjoint master equation

dâ

dt
= h

4
â† − g

2
â − β

2
â†â2 . (4)

By taking the mean-field approximation â → 〈â〉 ≡ A in
Eq. (4), the classical equations of motion describing the dy-
namics of the complex OPO amplitude A are obtained [24,26]

dA

dt
= h

4
A∗ − 1

2
(g + β|A|2)A . (5)

When the pump amplitude h is below the classical oscillation
threshold value hth = 2g, the dynamics in Eq. (5) suppresses
both the real and imaginary part of A (or Re[A] and Im[A]).
The only fixed point of the dynamics (defined by the condition
dĀ/dt = 0, where the overline denotes the steady-state value)
is the origin of the complex plane, i.e., Re[Ā] = Im[Ā]=0.
When the pump amplitude is driven above threshold
(h > hth), the origin becomes a saddle point, giving raise
to two symmetric stable fixed points on the real axis by a
pitchfork bifurcation [27]. The amplitude at these nontrivial
fixed points from Eq. (5) is readily found

Re[Ā] = ±
√

1

β

(
h

2
− g

)
, Im[Ā] = 0 . (6)

Above threshold, the system converges to the fixed point in
Eq. (6) with sign determined by the initial condition A(t = 0),
a phenomenology that is reminiscent of the spontaneous Z2

(Ising) symmetry breaking.

III. MASTER EQUATION IN THE FOCK BASIS

We now discuss the numerical solution of the quantum
master equation in Eq. (1). Our goal is to find the exact density
operator ρ̂, from which any observable can be measured. To
this end, we proceed by using an ab initio method as follows.
We choose the basis of Fock (number) states for the bosonic
Hilbert space H = span{|n〉}∞n=0 to represent ρ̂ as a (infinite)
real positive-definite matrix with elements ρmn ≡ 〈m|ρ̂|n〉, so
that

ρ̂ =
∞∑

m,n=0

ρmn |m〉〈n| . (7)
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The projection of Eq. (1) onto the Fock states allows to ob-
tain the equations of motion for all the elements ρmn in the
following tensor form:

d

dt
ρmn =

∞∑
r,s=0

Lrs
mn ρrs , (8)

where the nonzero elements of the Liouvillian tensor Lrs
mn are

the projected right-hand side of Eq. (1) and are reported in
Appendix A.

While in general the Fock states are upper unbounded, in
our numerics, we truncate the Hilbert space up to nmax − 1
particles, i.e., H = span{|n〉}nmax−1

n=0 , to represent operators (su-
peroperators) as matrices (tensors) of finite size [22]. In
particular, ρmn and Lrs

mn are a nmax × nmax matrix and a
nmax × nmax × nmax × nmax tensor, respectively. The steady-
state density matrix ρ̄mn, found from Eq. (1) as customary by
imposing d ρ̄/dt = Lρ̄ = 0, is obtained by the exact diago-
nalization of Lrs

mn, reshaped as a matrix, as the eigenvector of
the Liouvillian associated to the zero eigenvalue [16,28].

Physically, the truncation of the Hilbert space is possible
thanks to the presence of the nonlinear saturation dissipator
D2ph(ρ̂ ) in Eq. (3), which naturally sets an upper bound for
the average number of photons 〈â†â〉 in the system that is
approximatively given by the squared classical fixed-point
amplitude in Eq. (6): 〈â†â〉 � (h/2 − g)/β. Therefore, to have
a faithful representation of ρ̂ on the truncated Hilbert space,
it is sufficient to choose nmax such that |ρmn| < ε with ε

vanishingly small, for all m, n > nmax. We checked that this
condition is ensured for ρ̂ in all our numerical simulations.

IV. WIGNER FUNCTION

A useful observable that can be measured from the
numerically obtained density matrix ρmn is the Wigner
quasiprobability distribution function W (z), which provides a
representation of the quantum state in the complex quadrature
space z = (X + iP)/

√
2, where X and P are the position and

momentum coordinates, respectively. The Wigner function is
defined as the complex Fourier transform of the character-
istic function χ (ξ ) = Tr[D̂ξ ρ̂], where D̂ξ = eξ â†−ξ∗â is the
displacement operator, i.e., W (z) = 1

π2

∫
C d2ξ ezξ∗−z∗ξ χ (ξ ),

where the integral extends over the complex plane. Using a
series of identities, one can show that the Wigner function is
equivalently rewritten as [29,30]

W (z) = 2

π
Tr[D̂2z eiπ â†âρ̂] . (9)

Equation (9) is particularly useful when ρ̂ is represented in
the Fock basis. Indeed, by using the resolution of the identity∑∞

n=0 |n〉〈n| = 1̂, one has

W (z) = 2

π

∑
m,n

(−1)m〈n|D̂2z|m〉 ρmn . (10)

The matrix representation of the displacement operator in the
Fock basis 〈n|D̂z|m〉 is reported in Appendix B.

The numerical results on the Wigner function are shown in
Fig. 1, where we plot W (z) as a color map in the Im[z] versus
Re[z] plane for different values of the pump amplitude h, rel-
ative to the classical oscillation threshold hth = 2g, on which

FIG. 1. Color map of the Wigner function W (z), computed as in
Eq. (10), in the Im[z] versus Re[z] plane, for different values of the
pump amplitude h: (a) h = 0.2 (80% below threshold), (b) h = 1.0
(at threshold), (c) h = 1.5 (50% above threshold), and (d) h = 2.2
(120% above threshold). Color coding: Yellow for W (z) = 0 and
other colors for W (z) > 0. Numerical parameters are nmax = 40,
g = 0.5 (i.e., hth = 2g = 1), and β = 0.1. The green and black points
are the stable and unstable fixed points of the classical equations of
motion in Eq. (6), respectively. The Wigner function is very close to
one Gaussian lobe far below threshold. As h approaches the thresh-
old, it becomes an elongated cigar-shaped lobe, which eventually
splits into two lobes on the real axis, symmetric with respect to
Re[z] = 0 (see Sec. VII for details on experimentally relevant units
of measure of the field and thus of z).

we overlap the classical fixed points from Eq. (6) as green
and black dots for stable and unstable points, respectively. We
see that below threshold, the Wigner function consists of one
lobe centered about the stable origin, and it develops a sym-
metric two-lobe structure on the real axis around the origin
(which becomes a saddle after the pitchfork bifurcation) as the
pump amplitude is driven above the classical threshold (see
also Refs. [31,32]). From the quantum point of view, such a
symmetric Wigner function signifies that the state is found on
each lobe with equal probability. The corresponding classical
behavior is explained by the fact that the two stable fixed
points are equally attractive, i.e., their basins of attraction are
of equal size so that the probability to converge to either fixed
point is the same for random initial conditions close to the
origin.

It is known that the quantum state of a subthreshold OPO is
a squeezed state [33,34], which is a Gaussian state (in particu-
lar, for zero pump the system is in the vacuum state). Instead,
the two-lobe structure of W (z) is a clear indication of the
non-Gaussian nature of the state above threshold. Specifically,
far above threshold W (z) resembles two symmetric Gaussian
lobes, suggesting that the quantum state tends to a mixture of
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coherent states

τ̂α = |α〉〈α| + | − α〉〈−α|
2

, (11)

with α � Ā in Eq. (6), which is indeed non-Gaussian [12]. A
natural question therefore arises: How does non-Gaussianity
emerge from the Gaussian state as the pump amplitude is
driven from below to above threshold?

V. MEASUREMENTS OF NON-GAUSSIANITY

In this section, we quantify the deviation from Gaussianity
of the quantum state ρ̂ as the system crosses the oscillation
threshold by comparing three different metrics: The degree
of non-Gaussianity δ(ρ̂) based on the Hilbert-Schmidt dis-
tance [17–19], the quantum relative entropy s(ρ̂) [19–21],
and non-Gaussianity Q(ρ̂) extracted from the photon distri-
bution of ρ̂. All these observables quantify the deviation of
the actual quantum state ρ̂ from a reference state τ̂ defined as
the Gaussian state having the same first and second moments
(covariance matrix) of ρ̂. Since τ̂ is Gaussian, the determi-
nation of the first moments and covariance matrix of ρ̂ fully
determines τ̂ .

A. Determination of the Gaussian reference state

We first discuss how the state τ̂ is defined. Let us denote
by R̂ = (X̂ , P̂) the vector of the two quadratures R̂1 ≡ X̂ =
(â + â†)/

√
2 and R̂2 ≡ P̂ = (â − â†)/i

√
2. From the state ρ̂,

the first moments 〈R̂〉 and covariance matrix � (which is a
2 × 2 real and symmetric matrix) are found as customary as

〈R̂ j〉 = Tr[R̂ j ρ̂], � jk = 1
2 Tr[{�R̂ j,�R̂k}ρ̂] , (12)

where �R̂ j = R̂ j − 〈R̂ j〉. From our numerical simulations, the
first moments and covariance matrix of ρ̂ are readily com-
puted by plugging in Eq. (12) the Fock state expansion in
Eq. (7) with ρmn computed as explained before, and by recall-
ing that â|n〉 = √

n|n − 1〉 and â†|n〉 = √
n + 1|n + 1〉. Let us

observe that, due to Z2 symmetry, which translates in phase
space as invariance under inversion symmetry R̂ → −R̂, the
first moments in our case are zero, and thus the computation
of the covariance matrix simplifies to � jk = 1

2 Tr[{R̂ j, R̂k}ρ̂].
As said before, the computed first moments and covariance

matrix of ρ̂ are by construction the same of τ̂ . Since the
generic single-mode Gaussian state is given by the displaced
squeezed thermal state [18,35]

τ̂ = D̂α Ŝ(ξ ) ρ̂th(n) Ŝ†(ξ ) D̂†
α , (13)

with complex α and ξ , and n � 0, where the squeezing opera-
tor is Ŝ(ξ ) = e(ξ∗ ââ−ξ â†â† )/2 and the thermal state with average
number of thermal particles n is

ρ̂th(n) =
∞∑

ν=0

fν |ν〉〈ν|, fν = nν

(n + 1)ν+1 , (14)

the state τ̂ is determined by finding α, ξ , and n from 〈X̂ 〉, 〈P̂〉,
and � of ρ̂.

The displacement α affects the first moments only, and
one has Re[α] = 〈X̂ 〉/√2 and Im[α] = 〈P̂〉/√2. In our case,
since the first moments are zero, one readily has α = 0 and
thus D̂α = 1̂. Instead, the squeezing ξ and thermal number of

photons n affect the covariance matrix only, whose form is
reviewed in Appendix C. From our numerical simulations, we
observe that the covariance matrix � of ρ̂ (and thus of τ̂ ) is a
diagonal matrix with �11 > �22. From Appendix C it follows
that τ̂ is defined with real ξ and n given by

ξ = −1

4
ln

(
�11

�22

)
, n =

√
�11�22 − 1

2
. (15)

We recall that n is related to the symplectic eigenvalue νsymp

of � by νsymp = n + 1/2 = √
�11�22 = √

det[�] [36]. The
Fock representation of τ̂ in Eq. (13) with α = 0 is

τmn =
∞∑

ν=0

fν 〈m|Ŝ(ξ )|ν〉〈ν|Ŝ†(ξ )|n〉 , (16)

which, with ξ and n in Eq. (15), is a real and symmetric
matrix, where fν is as in Eq. (14) and the expression of
〈ν|Ŝ†(ξ )|n〉 = (〈n|Ŝ(ξ )|ν〉)∗ is reported in Appendix D.

B. Non-Gaussianity by Hilbert-Schimdt distance

A natural way to quantify the deviation of ρ̂ from Gaus-
sianity is via the operator distance between ρ̂ and τ̂ in the
Hilbert-Schmidt metric [17]

DHS(ρ̂, τ̂ ) =
√

Tr[(ρ̂ − τ̂ )2]

=
√

Tr[ρ̂2] + Tr[τ̂ 2] − 2 Tr[ρ̂ τ̂ ] , (17)

where the purity of ρ̂ in Eq. (7) and of τ̂ in Eq. (13) are (see
also Appendix C)

Tr[ρ̂2] =
∞∑

m,n=0

ρ2
mn, Tr[τ̂ 2] = 1

2n + 1
. (18)

Moreover,

Tr[ρ̂ τ̂ ] =
∞∑

m,n=0

ρmn τmn , (19)

denotes the scalar product (overlap) between ρ̂ and τ̂ (recall
that both ρmn and τmn are real and symmetric matrices). From
Eq. (17), the degree of non-Gaussianity is defined as [18,19]

δ(ρ̂ ) := D2
HS(ρ̂, τ̂ )

2 Tr[ρ̂2]
. (20)

Notice that, to numerically compute the purities of ρ̂ and τ̂ , it
is sufficient to determine ρ̂ in the Fock basis, from which �

and thus n in Eq. (15) are computed. Instead, the numerical
computation of the overlap Tr[ρ̂ τ̂ ] requires also the Fock
representation of τ̂ in Eq. (16).

C. Quantum relative entropy

Another observable that quantifies the non-Gaussian nature
of the quantum state is provided by the quantum relative
entropy between the actual state ρ̂ and its Gaussian reference
state τ̂ [19,20]

s(ρ̂ ) := S(τ̂ ) − S(ρ̂ ) , (21)

where S(ρ̂ ) = −Tr[ρ̂ ln(ρ̂ )] is the von Neumann entropy. For
the state ρ̂ in Eq. (7), the von Neumann entropy is defined in
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terms of the eigenvalues λk � 0 of ρmn as

S(ρ̂ ) = −
∞∑

k=0

λk ln (λk ) . (22)

Instead, the von Neumann entropy of τ̂ readily follows from
the diagonal representation of the thermal state in Eq. (14),
i.e., S(τ̂ ) = −∑∞

ν=0 fν ln( fν ), which explicitly reads [37]

S(τ̂ ) = (n + 1) ln (n + 1) − n ln (n) . (23)

The fact that Eq. (21) defines an exact distance-type measure
of non-Gaussianity was shown in Ref. [21].

D. Euclidian distance between photon distributions

While the degree of non-Gaussianity and quantum relative
entropy in Eqs. (20) and (21) provide exact measurements to
quantify the non-Gaussian nature of the state, they require
the full knowledge of the density matrix ρ̂. However, re-
constructing ρ̂ requires complex state tomography techniques
that are often unfeasible for large-dimensional systems [38],
hampering the experimental measurement of δ(ρ̂) and s(ρ̂).
To overcome this problem, we show that it is possible to obtain
similar results as for Eq. (20) from solely the knowledge of the
second moments � and the photon distribution pn � ρnn. This
fact has notable advantages in experiments since the first and
second moments are measured by homodyne detection [39],
while ρnn is measured by photon counting [40].

The measured � of the full quantum state ρ̂ is used to
determine the Gaussian target τ̂ in Eq. (13) by determining
the squeezing parameter and the average number of thermal
particles from Eq. (15). Then, the measured pn is compared
to the photon distribution qn = τnn obtained from the Fock
expansion of τ̂ in Eq. (16). We define the deviation from
Gaussianity as the squared Euclidian distance between pn and
qn, i.e.,

Q(ρ̂ ) :=
∞∑

n=0

(pn − qn)2 . (24)

As discussed in Ref. [13], pn is expected to be close to qn

below the oscillation threshold, while deviations from qn are
observed as the threshold is approached, which motivates the
choice of Eq. (24) to quantify non-Gaussianity in the quantum
state.

E. Numerical results

Figure 2 shows the degree of non-Gaussianity from our
numerical simulations, comparing δ(ρ̂ ) from Eq. (20) in
Fig. 2(a), s(ρ̂) from Eq. (21) in Fig. 2(b), and Q(ρ̂) from
Eq. (24) in Fig. 2(c). Data are shown as a function of the pump
amplitude h relative to the classical threshold hth, which is
marked in the plot as the vertical dashed black line. Different
colors refer to different values of g as in the legend. Other
numerical parameters are β = 0.1 and nmax = 40. Clearly,
when truncating the Hilbert space, all quantities where the
summation over the Fock states appears are evaluated by
summing up to the Fock state with nmax − 1 particles.

As is evident from the figure, all measured quantities show
the same qualitative picture: They increase monotonically,

FIG. 2. Quantification of the non-Gaussian nature of the state
ρ̂. (a) Degree of non-Gaussianity δ(ρ̂) from the Hilbert-Schmidt
distance in Eq. (20). (b) Quantum relative entropy s(ρ̂) from Eq. (21)
and (c) non-Gaussianity Q(ρ̂ ) from photon distribution in Eq. (24).
Data are shown as a function of the pump amplitude h relative to
the value of the classical oscillation threshold hth = 2g, for different
intrinsic loss parameters g as in the legend. The vertical black dashed
line marks the threshold value h = hth. Other numerical parameters
are nmax = 40 and β = 0.1.

being very close to zero below threshold and rapidly deviating
from zero above threshold. In other words, the quantum state
ρ̂ is well approximated by a Gaussian state below threshold,
while it becomes highly non-Gaussian above threshold. The
fact that the curves at lower g are below those at higher
g is a consequence of the fact that data are taken as a
function of h/hth.

We remark that, in our numerical simulations, the com-
putation of s(ρ̂) in Eq. (21) is significantly less demanding
compared to that of δ(ρ̂) and Q(ρ̂) in Eqs. (20) and (24),
respectively. This is because δ(ρ̂) and Q(ρ̂) require the com-
putation of both ρ̂ and τ̂ in the Fock basis. In fact, determining
τmn as in Eq. (16) requires to perform at least n3

max numerical
operations (which become n2

max when only the diagonal ele-
ments of τ̂ are needed) when α = 0 in Eq. (13). In the general
case, when α 
= 0, the number of operations to determine τmn

increases to n5
max (the additional n2

max operations come from
the displacement operator).

In addition to this, the calculation of τmn is strongly af-
fected by the truncation of the Hilbert space (because the
unitarity of the displacement and squeezing operators, as well
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FIG. 3. Comparison between the degree of non-Gaussianity δ(ρ̂)
from Fig. 2 (blue dots) and the normalized Hilbert-Schmidt distance
d (ρ̂, τ̂α ) between ρ̂ and the mixed coherent state τ̂α in Eq. (11) (red
crosses), where α is extracted from the number of particles from ρ̂

(see text). Data are shown as a function of pump amplitude relative
to the classical oscillation threshold. The vertical black dashed line
marks the threshold value h = hth. Other numerical parameters are
nmax = 60, β = 0.1, and g = 0.5. As is evident, d (ρ̂, τ̂α ) decays to
zero for large h, signaling the convergence of ρ̂ to the mixed coherent
state with α � A in Eq. (6).

as the proper normalization of the thermal state, are strictly
speaking found only when the Hilbert space has infinite di-
mension), and therefore, the numerical calculation of δ(ρ̂)
and Q(ρ̂) intrinsically carries with it an additional source of
truncation error. This additional truncation error is reduced
by increasing nmax until no sensitive change in the numerical
results is observed. In our numerics, we indeed checked that
no sensitive change of data occurred for nmax > 40. Instead,
computing s(ρ̂) needs only ρ̂ since also n in Eq. (23) is
found from the covariance matrix of ρ̂ as in Eq. (15), which
makes its computation not only less demanding but also more
accurate compared to the other two quantities in Fig. 2.

Figure 3 shows the comparison between the degree of
non-Gaussianity from the Hilbert-Schmidt metric δ(ρ̂) from
Fig. 2 and the normalized Hilbert-Schmidt distance between
ρ̂ and the mixture of coherent states τ̂α in Eq. (11), de-
fined as d (ρ̂, τ̂α ) := D2

HS(ρ̂, τ̂α )/Tr[ρ̂2], where DHS is as in
Eq. (17). The computation is performed by expressing τ̂α

in the Fock basis, obtained from the Fock expansion of co-
herent states | ± α〉 [41]. The value of α � 0 defining τ̂α is
extracted from the average number of particles, i.e., α2 =
〈â†â〉 = ∑nmax−1

n=0 n ρn,n, which scales as α � A in Eq. (6) for
large h. We show the data by scanning the pump amplitude
up to 4hth, by using nmax = 60 and g = 0.5 (hth = 1). Despite
such a large pump amplitude regime is often experimentally
unexplored [26], taking data significantly above threshold al-
lows us to thoroughly show the convergence of the state ρ̂

towards τ̂α .
As is evident, below threshold, d (ρ̂, τ̂α ) monotonically

increases. This is a consequence of the fact that ρ̂ below
threshold is well approximated by a squeezed thermal state
[quantified by δ(ρ̂ )], which highly differers from τ̂α . Well
above threshold, d (ρ̂, τ̂α ) decays to zero, confirming indeed
the approaching of the mixed coherent state. The intermedi-
ate range of pump amplitude, where both δ(ρ̂) and d (ρ̂, τ̂α )
are noticeably nonzero corresponds to the regime where the

Wigner function is as Fig. 1(c), and it reflects the fact that the
two lobes of the Wigner function from ρ̂ show a much larger
overlap about z = 0 compared to the Wigner function from τ̂α ,
which is the sum of two Gaussian functions centered about
z = ±α. As suggested in Ref. [15], in this regime, quantum
noise enhances quantum tunneling between states identifying
different spin configurations, and for networks of coupled
OPOs, this behavior lies at the origin of the crossover between
the quantum parallel search regime and the classical one.

It is interesting to remark that δ(ρ̂ ), s(ρ̂), and Q(ρ̂) have
inherently different behaviors at large h. Specifically, both
δ(ρ̂ ) and s(ρ̂) monotonically grow, with the difference that
δ(ρ̂ ) tends to saturate, while s(ρ̂) grows unbounded. Instead,
Q(ρ̂ ) displays a nonmonotonic behavior: It increases for not
a too large h above threshold, giving the same information as
the other two quantities (Fig. 2), and it decays to zero for large
h (not shown).

The saturation of δ(ρ̂) for large h (i.e., large α) is under-
stood as follows: Since ρ̂ tends to τ̂α , where α grows with
h (Fig. 3), then δ(ρ̂ ) � δ(τ̂α ) for large h. The covariance
matrix of τ̂α is given by � = diag(2α2 + 1/2, 1/2), then from
Sec. V A the Gaussian reference state τ̂ of τ̂α is a squeezed
thermal state with squeezing parameter and average number
of particles in the thermal state as

ξ = −1

4
ln(4α2 + 1), n =

√
α2 + 1

4
− 1

2
. (25)

The purities of τ̂α and τ̂ are Tr[τ̂ 2
α ] = (1 + e−4α2

)/2 and
Tr[τ̂ 2] = 1/

√
4α2 + 1 [Eq. (18)]. In particular, one has

2 Tr[τ̂ 2
α ] � 1. From the triangle inequality, the degree of non-

Gaussianity in Eq. (20) is upper bounded by δ(τ̂α ) � Tr[τ̂ 2
α ] +

Tr[τ̂ 2], and for large α, one has δ(τ̂α ) � 1/2, which is consis-
tent with our numerical data, and with the conjecture reported
in Ref. [19]. Thus, δ(ρ̂ ) is upper bounded for large h.

The unbounded, monotonic growth of s(ρ̂) is seen from
the fact that s(ρ̂) � s(τ̂α ) for large h has two contributions
[see Eq. (21)]. (i) S(τ̂α ) that is upper bounded for large α,
and (ii) S(τ̂ ), which is not. This causes s(τ̂α ) to be not upper
bounded for large h. Specifically, using known bounds of the
von Neumann entropy together with the fact that pure states
have zero entropy [42], one has S(τ̂α ) � ln(2), while from
Eqs. (23) and (25) one sees that S(τ̂ ) monotonically grows
with α without saturating. Thus, overall, s(ρ̂) monotonically
grows with h, showing no saturation.

Finally, the fact that Q(ρ̂) � Q(τ̂α ) in Eq. (24) decays to
zero for large h is shown as follows. Since Q(τ̂α ) ≡ ||�v − �u||2
is the Euclidian distance between the real vectors �v = {pn}
and �u = {qn} containing the diagonal elements of the Fock
representation of τ̂α and of the Gaussian reference state τ̂ , re-
spectively, the triangle inequality holds: Q(τ̂α ) � ||�v||2 + ||�u||2.
From Eq. (11) and the Fock state expansion of coherent states,
one has pn = e−α2

α2n/n!, from which it follows that

||�v||2 =
∞∑

n=0

p2
n = e−2α2

∞∑
n=0

α4n

(n!)2 = e−2α2
I0(2α2) , (26)

where I0(x) is the modified Bessel function of the first kind
[43] that, for large x, has the leading asymptotic behavior
I0(x) ∼ ex/

√
x [44]. Thus, it follows that ||�v||2 ∼ 1/α for large
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h. Furthermore, from Eq. (16), one has

qn =
∞∑

ν=0

fν |〈n|Ŝ(ξ )|ν〉|2 , (27)

where ξ and n are as in Eq. (25). From Eq. (27), one has q2
n �∑∞

ν=0 f 2
ν |〈n|Ŝ(ξ )|ν〉|4. Notice that, by the unitarity of the

squeezing operator, one has
∑∞

n=0 |〈n|Ŝ(ξ )|ν〉|2 = 1, which
implies that

∑∞
n=0 |〈n|Ŝ(ξ )|ν〉|4 � 1. Therefore, one has

||�u||2 =
∞∑

n=0

q2
n �

∞∑
ν=0

f 2
ν = Tr

[
ρ̂2

th(n)
] = 1

2n + 1
, (28)

where the purity of the thermal state is as in Eq. (18). Since
n is as in Eq. (25), one has ||�u||2 � 1/α for large h. From this
analysis, it follows that Q(ρ̂ ) decays to zero for large h. Since
our data in Fig. 2(c) show a monotonic growth of Q(ρ̂) in
the regime of scanned pump amplitude, Q(ρ̂) as a function of
h must reach a maximum for some h before decaying. This
means that the decreasing slope of Q(ρ̂) in the figure is not
due to saturation, as it is for δ(ρ̂), but rather to the approach
of an extremal value. Despite this nonmonotonic behavior, we
stress that Q(ρ̂ ) works remarkably well as a quantifier of non-
Gaussianity within a large range of pump amplitude around
the classical threshold.

VI. INCLUSION OF AN ADDITIVE FIELD

In this section, we analyze the non-Gaussianity of the
quantum state by including an additive field (also known as
signal injection). This is done by adding to the parametric gain
Hamiltonian in Eq. (2) the one-photon field

ĤF = iF (â† − â) , (29)

where F ∈ R quantifies the external field strength. The ad-
ditional terms in the Liouvillian tensor in Eq. (8) due to the
presence of ĤF are reported in Eq. (A4) of Appendix A.

In the adjoint master equation in Eq. (4) and in its classical
limit in Eq. (5), the applied field ĤF in Eq. (29) adds the
extra term F to the right-hand sides, i.e., a term that is not
multiplied by â or A, respectively. This kind of additive field is
relevant to Ising machines because it is envisioned to simulate
applied fields fully optically in the simulated Ising model (see
Ref. [45] for a recent work in an electronic oscillator network)
without the need of electronic feedback mechanisms [46],
therefore preserving the quantum nature of the state.

The presence of the applied field breaks the inversion sym-
metry (i.e., polarizes the system) in phase space R → −R,
which is manifest by looking at the Wigner function and the
classical fixed points of the equations of motion in Fig. 4. As
evident from the figure, the Wigner function loses its sym-
metric two-lobe structure found in Fig. 1, which is for F = 0.
In particular, a positive (negative) F enhances the lobe at
Re[z] > 0 (Re[z] < 0) in the complex plane, while suppress-
ing the opposite one. In terms of the classical fixed points,
the saddle (black, which corresponds to the origin for F = 0)
gradually approaches the attractor (green) at Re[z] < 0 for
F > 0 (or Re[z] > 0 for F < 0) as |F | increases, until the
two fixed points eventually collide and annihilate each other
via a saddle-node bifurcation. After this bifurcation, only the

FIG. 4. Color map of the Wigner function W (z), as in Fig. 1,
in the presence of a real additive field F as in Eq. (29) with value
(a) F = 0.02, (b) F = −0.02, (c) F = 0.1, and (d) F = −0.1. Nu-
merical parameters are nmax = 40, g = 0.5, β = 0.1, and h = 1.5.
Compared to Fig. 1, which is for F = 0, a nonzero F breaks the
inversion symmetry in phase space, resulting into an asymmetric
W (z), enhancing the lobe for Re[z] > 0 or Re[z] < 0 when F > 0
or F < 0, respectively, while suppressing the opposite one as |F |
increases.

attractor at Re[z] > 0 for F > 0 (or Re[z] < 0 for F < 0) is
found. In this parameter regime, the system is fully polarized,
deterministically converging to the only remaining attractor
(see also Ref. [47] for related results).

We therefore see that the pump amplitude h and the applied
field F play two antagonistic roles. The former tends to sta-
bilize a state with two (possibly symmetric) configurations,
while the latter induces imbalance, eventually polarizing
(phase locking) the system to a single configuration. A natural
question is how the combined effect of h and F influences the
non-Gaussian character of the quantum state.

To answer this question, we extend the analysis on the mea-
surements of non-Gaussianity of Sec. V to the case of F 
= 0.
Since a nonzero F induces a displacement in phase space, the
first moments 〈X̂ 〉 and 〈P̂〉 are now nonzero, which in turn
implies that α 
= 0 in the target Gaussian state τ̂ in Eq. (13).
Following the discussion in Sec. V E, to keep a reasonable
numerical complexity of the problem, we here quantify non-
Gaussianity solely from the quantum relative entropy s(ρ̂) in
Eq. (21). This choice is further supported by Fig. 2, which
shows that the relative entropy provides qualitatively the same
information as the other two quantities.

The numerical result of s(ρ̂) for different values of h and F
is shown as a colormap in Fig. 5(a). Our numerical results
highlight a nontrivial interplay between h and F . Indeed,
while we observe that increasing h causes a monotonic growth
of s(ρ̂) at any F , generalizing the result in Fig. 2 for F = 0,
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FIG. 5. Analysis of the quantum relative entropy s(ρ̂) as a func-
tion of the applied field F in dimensionless units (see Sec. VII for
details on experimentally relevant units of measure) and pump am-
plitude h relative to the classical threshold hth. (a) Color map of s(ρ̂)
in the F versus h/hth plane. Color coding as in the color bar (note the
logarithmic scale of the colormap). (b) Horizontal cut of the color
map at F = 0, marked by the horizontal green dashed line in panel
(a), showing the monotonic increase as in Fig. 2. (c) Vertical cut of
the colormap at h/hth = 1.4, marked by the horizontal orange dashed
line in panel (a), showing a symmetric structure peaked at |F | > 0
and rapidly decreasing with |F | (thus a nonmonotonic behavior).
Other numerical parameters are nmax = 40, g = 0.5, and β = 0.1.

increasing |F | causes instead the quantum relative entropy
to vary in a nonmonotonic way: Starting from F = 0 (green
dashed line in the figure), it first increases, reaching a maxi-
mum value for nonzero |F |, and then it rapidly decreases. This
behavior is exemplified in Fig. 5(c), where a vertical cut of
s(ρ̂) at fixed h is shown. From this analysis, we conclude that
the parametric gain tends to drive the system into a regime
of emerging non-Gaussianity. On the contrary, increasing F
above a certain value restores the Gaussian nature of the state.

VII. CONNECTION TO ALL-OPTICAL
EXPERIMENTAL SETUPS

Before concluding, we comment on the experimental rel-
evance of our model. The choice of the model in Sec. II
is motivated by all-optical experimental setups of OPO-
based computing machines, relying on parametric cavities
composed by a nonlinear medium (NLM) to provide phase-
dependent amplification, and couplers. We specifically resort
to the schemes in Refs. [8,48], where a second-order, χ (2)

NLM pumped by a strong laser field with amplitude B gener-
ates the degenerate signal field within an optical cavity. In this
scheme, the nonlinear coefficient κ and length L of the NLM
are small enough to deplete the pump only slightly [49,50].
Also, the pump field escapes the optical cavity after the NLM,
which means that the pump cavity losses are significantly
larger than those of the signal. These conditions justify the
adiabatic elimination of the pump discussed in Sec. II.

Following Ref. [50], the time evolution of a single OPO
real field within such an optical cavity is described by the

discrete-time nonlinear map

Xτ+τrt = Rout NLM[Xτ ] , (30)

linking the OPO field Xτ+τrt at round trip τ + τrt , where τrt is
the round-trip time, to the field Xτ at the previous round trip τ .
In Eq. (30), NLM[Xτ ] describes parametric amplification, and
Rout quantifies the intrinsic cavity losses. In the limit of weak
pump depletion, the field exiting the NLM is [50]

NLM[Xτ ] � Xτ + κL
(
B − κLX 2

τ

)
Xτ , (31)

and by subtracting Xτ from both sides of Eq. (30) and by
defining τrt (dX/dτ ) � Xτ+τrt − Xτ , one has (the subscript τ

is omitted from now on)

τrt
dX

dτ
= (Rout − 1)X + κLRout (B − κLX 2)X . (32)

The field X in Eq. (32) is recast in dimensionless units (A) by
introducing the characteristic field amplitude Y as X = YA, so
that Eq. (32) becomes (t = τ/τrt)

dA

dt
= −(1 − Rout )A + κLRoutBA − (κLY )2RoutA

3 . (33)

By comparing Eq. (5) for real A and (33), one sees that

h

4
= κLRoutB,

g

2
= 1 − Rout,

β

2
= (κLY )2Rout , (34)

which links the model parameters to experimentally relevant
quantities whose realistic values are reported in Ref. [48]. We
mention that, when an external field Eτ is added to Eq. (30),
then Y also defines the scale of the dimensionless field F in
Eq. (29) as E = Y F . We finally notice that the values of our
numerical parameters are compatible with those in Ref. [22].

VIII. CONCLUSION

In this paper, we provided an ab initio detailed numer-
ical analysis of the emergence of non-Gaussianity in the
steady state of the single quantum optical parametric oscillator
(OPO). We modeled the dynamical evolution of the system
by a Lindblad master equation, where the Hermitian part
described two-photon gain (parametric amplification), and the
dissipation accounted for one- and two-photon losses, quanti-
fying the intrinsic loss and amplitude-saturation nonlinearity,
respectively. The full steady-state density matrix of the system
was found by exact diagonalization of the Liouvillian tensor,
resulting from the projection of the master equation onto the
Fock (number) basis.

We first showed the Wigner function for different values
of pump amplitude, and then discussed the measurement of
non-Gaussianity from the density matrix, comparing three
different quantities: Degree of non-Gaussianity from the
Hilbert-Schmidt distance, quantum relative entropy, and non-
Gaussianity from the covariance matrix and photon number
distribution. By scanning the pump amplitude from zero to
twice the classical oscillation threshold value, we revealed that
all measured quantities monotonically increase with the pump
amplitude, being close to zero below threshold and rapidly
increasing above threshold. This result provides a quantitative
clear evidence of how the steady state of the quantum OPO
deviates from Gaussianity close to threshold, and becomes
highly non-Gaussian for large gain.
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We also quantified the distance between the OPO steady
state and the mixture of coherent states, comparing it to the
degree of non-Gaussianity. We outlined that, as suggested
in Ref. [15], in the regime where non-Gaussianity emerges
and yet the state significantly differs from the mixture of
coherent states, quantum noise enhances tunneling between
states identifying different spin configurations, and for net-
works of coupled OPOs, this behavior lies at the origin of the
crossover between the quantum parallel search regime and the
classical one.

We then extended the calculation of the Wigner function
and quantum relative entropy to the quantum OPO in the
presence of an additive field (one-photon drive). Our numerics
pointed out the nontrivial interplay between parametric pump
and additive field. Specifically, rising the pump amplitude
generates a monotonic growth of non-Gaussianity, while a
nonzero field first causes non-Gaussianity to grow, and then
gives raise to a steep decrease for increasing field strength,
suggesting the restoration of the Gaussian nature of the state.
We finally linked our model to experimentally relevant setups
of all-optical Ising machines in the regime of large pump
cavity losses and weak pump depletion.

Our work opens the future perspective to study without
approximation how the quantum properties of small OPO
networks such as non-Gaussianity and quantum entanglement
evolve for different parameter regimes. Indeed, even if the
ab initio method here used becomes exponentially more de-
manding for increasing number of OPOs, it is still usable
for systems of few OPOs only. Previous studied reported
on the presence of quantum correlations in OPO networks
using phase-space methods like the positive P representation
[9,10,51]. An interesting perspective is to compare previous
results with those obtainable from our ab initio method, as
well as from lattice approaches similar to matrix-product-state
or density-matrix-renormalization-group methods [52].
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APPENDIX A: LIOUVILLIAN TENSOR
IN THE FOCK BASIS

In this Appendix, we explicitly report the expression of
the nonzero elements of the Liouvillian superoperator L in
Eq. (1) projected in the Fock basis. By recalling that the
action of the annihiliation and creation operators on the Fock
states is â|n〉 = √

n|n − 1〉 and â†|n〉 = √
n + 1|n + 1〉, and

the definition ρmn = 〈m|ρ̂|n〉, one has the projected Hermitian
term

1

i
〈m|[Ĥ0, ρ̂]|n〉

= h

8
(
√

m(m − 1) ρm−2,n −
√

(m + 1)(m + 2) ρm+2,n

+
√

n(n − 1) ρm,n−2 −
√

(n + 1)(n + 2) ρm,n+2) .

(A1)

The projected one-photon dissipator in Eq. (3) reads

〈m|D1ph(ρ̂ )|n〉

= g

(√
(m + 1)(n + 1) ρm+1,n+1 − m + n

2
ρmn

)
, (A2)

and the projected two-photon dissipator is

〈m|D2ph(ρ̂ )|n〉

= β

2

√
(m + 1)(m + 2)(n + 1)(n + 2)ρm+2,n+2

−β
m(m − 1) + n(n − 1)

4
ρmn . (A3)

Without additive field [i.e., F = 0 in ĤF in Eq. (29)], the
nonzero elements of Lrs

mn are therefore at (r, s) = (m, n), (m ±
2, n), (m, n ± 2), (m + 1, n + 1), and (m + 2, n + 2) whose
expression is retrieved from Eqs. (A1) to (A3). The inclusion
of F 
= 0 adds at the right-hand side of Eq. (1) and therefore
Eq. (8) the term

1

i
〈m|[ĤF , ρ̂]|n〉

= F (
√

m ρm−1,n − √
m + 1 ρm+1,n

+ √
n ρm,n−1 − √

n + 1 ρm,n+1) , (A4)

therefore, yielding other nonzero elements of Lrs
mn at (r, s) =

(m ± 1, n) and (m, n ± 1). Before diagonalization, Lrs
mn is

reshaped as a matrix Lpq where p = m + nmaxn and q =
r + nmaxs. It is seen from Eqs. (A1) to (A3) that Lpq is
a very sparse matrix, with density of nonzero elements
scaling as 1/n2

max.

APPENDIX B: DISPLACEMENT OPERATOR
IN THE FOCK BASIS

The matrix representation of the displacement opera-
tor D̂z = ez â†−z∗ â in the Fock basis follows from the fact
that â|n〉 = √

n|n − 1〉 and â†|n〉 = √
n + 1|n + 1〉, and from

Baker-Campbell-Housdorff theorem, which allows to write
D̂z = ez â†−z∗ â = e−|z|2/2 ez â†

e−z∗ â. For m � n, one can ex-
plicitly compute the matrix element

〈n|D̂z|m〉 =
√

n!

m!
e−|z|2/2(−z∗)m−nL(m−n)

n (|z|2) , (B1)

where L(α)
n (x) is the generalized Laguerre polynomial [43].

The element for m < n is found by using the fact that D̂†
z =

D̂−z, i.e., 〈n|D̂z|m〉 = (〈m|D̂†
z |n〉)

∗ = (〈m|D̂−z|n〉)
∗
, and there-

fore one has for m < n

〈n|D̂z|m〉 =
√

m!

n!
e−|z|2/2zn−mL(n−m)

m (|z|2) . (B2)

APPENDIX C: COVARIANCE MATRIX AND PURITY
OF THE SQUEEZED THERMAL STATE

In this Appendix, we recall the expression of the co-
variance matrix �G and purity of the displaced squeezed
thermal state τ̂ = D̂α Ŝ(ξ ) ρ̂th(n) Ŝ†(ξ ) D̂†

α in Eq. (13), where
D̂α = eα â†−α∗ â and Ŝ(ξ ) = e(ξ∗ ââ−ξ â†â† )/2, and ρ̂th(n) is

063519-9



CALVANESE STRINATI AND CONTI PHYSICAL REVIEW A 109, 063519 (2024)

as in Eq. (14). As recalled in Sec. V A, the covari-
ance matrix of τ̂ is unaffected by the displacement
D̂α . Let us define for simplicity ξ = r eiϕ in terms
of its absolute value r = |ξ | and phase ϕ = arg(ξ ).
First, one recalls that the covariance matrix �sqv(r, ϕ)
of the squeezed vacuum state Ŝ(ξ )|0〉〈0|Ŝ†(ξ ) is given
by �sqv(r, ϕ) = R(ϕ/2) �sqv(r, 0)RT (ϕ/2) where R(φ) =
(
cos(φ) − sin(φ)
sin(φ) cos(φ) ) is the rotation matrix, �sqv(r, 0) =

1
2 diag(e−2r, e2r ), and T denotes the transposition. The co-
variance matrix of the squeezed thermal state readily follows:
�G = (2n + 1)�sqv(r, ϕ).

Since the displacement and squeezing operator are unitary
and the trace is cyclic, the purity of τ̂ reduces to the purity
of the thermal state, i.e., Tr[τ̂ 2] = Tr[ρ̂2

th(n)] = ∑∞
ν=0 f 2

ν =
1/(2n + 1).

APPENDIX D: SQUEEZING OPERATOR
IN THE FOCK BASIS

In this Appendix, we report for the sake of completeness
the explicit expression of the matrix representation of the
squeezing operator Ŝ(ξ ) = e(ξ∗ ââ−ξ â†â† )/2 with ξ = r eiϕ in the
Fock basis. This is 〈n|Ŝ(ξ )|m〉 = 0 for m and n with opposite
parity, while for m and n of the same parity one has

〈n|Ŝ(ξ )|m〉 =

⎧⎪⎪⎨
⎪⎪⎩

(− ζ

2

)(n−m)/2
e−(η/2)(m+1/2)

√
n! m!

∑�m/2�
k=0

(
−|ζ |2eη

4

)k
1

(m−2k)! k! [(n−m)/2+k]! (n � m),

(
ζ ∗
2

)(m−n)/2
e−(η/2)(n+1/2)

√
m! n!

∑�n/2�
k=0

(
−|ζ |2eη

4

)k
1

(n−2k)! k! [(m−n)/2+k]! (n < m),

, (D1)

where ζ = eiϕ tanh(r) and η = 2 ln[cosh(r)], and �·� is the
floor function. This result is derived after a chain of iden-
tities first by using the operator ordering of Ŝ(ξ ) [41], and

then by using â|n〉 = √
n|n − 1〉 and â†|n〉 = √

n + 1|n + 1〉,
similar to Appendix B. The explicit calculation can be found
in Ref. [53] (see also Ref. [54]).
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