
PHYSICAL REVIEW A 109, 063518 (2024)

All-dielectric photonic higher-order topological insulator induced by a staggered bianisotropy
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In this paper, we introduce a two-dimensional all-dielectric photonic higher-order topological insulator that
is driven by the bianisotropic responses of electromagnetic fields. The nontrivial topology originates from
staggered bianisotropy effects, which result in modulated coupling between neighbor sites under a fixed lattice
constant. This model is generalized from an analogous Su-Schrieffer-Heeger model in one dimension and we
show that it realizes a second-order photonic topological insulator with robust symmetry-protected corner modes
in two dimensions. We also demonstrate that the topological property of such a model can be characterized
by a quantized quadrupolar moment. Our paper introduces a different platform for studying higher-order
topological photonics via bianisotropy, as well as a distinct method to engineer all-dielectric topological photonic
meta-atoms.
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I. INTRODUCTION

In condensed-matter physics, topological insulators have
drawn tremendous research efforts due to their remarkable
property of insulating in the bulk while conducting at the
boundary, which is dictated by the so-called bulk-edge cor-
respondence [1–3]. The insulating bulk and conducting edge
are robust against disorders and defects. Subsequently, the
bizarre zoo of topological insulators has been rapidly ex-
tended to other quantum and classical systems including
cold atoms [4–10], acoustics [11], and photonics [12–20]. In
photonic topological insulators, electromagnetic waves can
robustly propagate along the boundary of the system against
defects and disorders. Photonic analogs of topological phases
of matter have been experimentally investigated in a se-
ries of topological models such as the one-dimensional (1D)
Su-Schrieffer-Heeger (SSH) model [21–23], two-dimensional
(2D) quantum Hall model [13,24], as well as Haldane model
[25], which are characterized by Zak phase or Chern number.

More recently, higher-order topological models exhibiting
lower-dimensional edge modes on hinges or corners have
attracted extensive interest [26–41], which further lead to
thriving of its photonic counterparts [39,42–51]. Compared
to electronic systems, one merit of photonic materials lies
in the easy access to non-Hermitian effects, leading to many
exotic effects [52–54]. While this can be simply achieved by
incorporating active material as gain [55,56] and plasmonic
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material as loss [57–59], the inevitable intrinsic loss in plas-
monic material at optical frequency will definitely spoil the
performance of topological photonic devices. Thus, in order
to avoid metallic loss, lossless all-dielectric material serves
as one of the most desirable platforms to explore topological
phenomena in photonics [60].

On the other hand, a straightforward approach to engineer
tight-binding models in photonic systems is to design arrays
of coupled dielectric cavities [21] or meta-atoms [61]. The
photonic modes between two adjacent cavities or meta-atoms
can be evanescently coupled and the coupling strength can
be harnessed by the distances of the adjacent cavities. More-
over, incorporating other properties can raise more degrees of
freedom in controlling the coupling. One example is the bian-
isotropy effect, which is known as the coupling of electrical
and magnetic dipole moments in a photonic cavity [62–64].
When the spatial inversion symmetry of the cavity is bro-
ken, the overlapping between electrical and magnetic dipole
splits, raising the bianisotropy effects. The strength and sign
of the bianisotropy can be tuned by manipulating the cavities
with different spatial inversion symmetries. Interestingly, the
coupling strength between two cavities with the same bian-
isotropy is stronger than that with opposite bianisotropies even
if the distance is the same (the sign of bianisotropy can be
inverted by simply flipping the cavities or meta-atoms). Using
the bianisotropic effects, previous studies have demonstrated
an analog of the SSH lattice [65,66] and photonic spin Hall
effects [64].

This brings up an interesting question: can we realize
more broad topological modes like higher-order corner modes
using only bianisotropic effects? In this paper, we answer
the question affirmatively by proposing a 2D array of cou-
pled dielectric materials with staggered bianisotropy as an
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FIG. 1. All-dielectric photonic higher-order topological insulator with staggered bianisotropy. (a) Anisotropy enhances or reduces effective
coupling strength when neighboring bianisotropy parameters are different or the same. (b) By taking advantage of the mediated hopping
strength, a 1D topological chain with edge states can be realized with staggered bianisotropy, in which an analogy of the SSH model can be
extracted along the green curve. (c) The 1D unit cell can be generalized to 2D, realizing a photonic higher-order topological insulator with
corner states. The setups shown in the plots provide realistic ways to engineer the higher-order topological insulator proposed in this paper.

all-dielectric photonic second-order topological insulator. The
proposed model has some remarkable properties compared
to previous proposals for photonic higher-order topological
insulators. First of all, it requires no spatial modulations
of the distances of adjacent sites, and secondly, it uses
only dielectric materials and thus is free from any metallic
losses.

The paper is organized as follows. We first review the
1D setup, which is an analogous SSH model, and establish
its topological characterization using the non-Abelian Berry
phase. We then generalize the 1D chain to a 2D array and
reveal the corner modes. We further analyze the symmetry
of the Hamiltonian and show that the corners are robust as a
result of protection from inversion symmetry. To confirm the
topological properties of the corner modes, we also apply the
quadrupole moment and find that it is quantized to 0 and 0.5
in the trivial and topological phases.

II. REVISITING THE 1D PHOTONIC LADDER

In this section, we first briefly review the tight-binding
model from discrete dipole approximation as discussed in
previous work [65]. While it has been pointed out that the
staggered bianisotropy parameters lead to effective coupling
shown in Fig. 1(a) and, thus, an analogous SSH model,
the underlying topological properties and characterizations
are not fully investigated. We revisit this problem here
more carefully since it is crucial to understanding the 2D
generalization.

A. Review of the discrete dipole approximation
and tight-binding model

Given the 1D setup shown in Fig. 1(a), we have the dipole
moments at site i under the discrete dipole approximation:

d i = αeeE i + αem
i H i, (1)

mi = αme
i E i + αmmH i, (2)

where E i and H i are electrical and magnetic fields inside the
cavity at site i and α notations are polarizability tensors, which
are constrained by intrinsic symmetry like time-reversal
symmetry and spatial symmetry from the geometry of the
cylinders or homogeneous materials. The bianisotropy re-
sponses are described by αem

i and αme
i , which may vary from

site to site. The electric and magnetic polarizability tensor,
αee and αmm, are diagonal and we assume that out-of-plane
dipoles are off-resonant.

Considering only nearest-neighbor hopping, the elec-
tromagnetic field can be expanded through dyadic Green
functions:

E i =
∑

i′
{Gee(ri − ri′ )d i′ + Gem(ri − ri′ )mi′ }, (3)

H i =
∑

i′
{Gme(ri − ri′ )d i′ + Gmm(ri − ri′ )mi′ }, (4)

where ri = (xi, yi ) denotes the spatial position of each dipole
and i′ = i ± 1 represents the nearest neighbor for i in an in-
finite chain. Keeping only near-field terms, the dyadic Green
functions are Gem = Gme = 0, Gee

x = Gmm
x = 2/a3, and Gee

y =
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Gmm
y = −1/a3, where a is the lattice constant of the square

lattice.
Once we choose a suitable basis for a single disk,

|�〉 = (px + imy, px − imy, mx + ipy, mx − ipy)T , (5)

where p and m represent the eigenmodes of an isolated disk
and the subscripts are for spatial directions. We also arrive at
an eigenvalue-form equation:

μiσ
p

z ψi = (
t1σ

p
0 + t2σ

p
x

)∑
i′

ψi′ , (6)

where σ p is the Pauli matrix acting on the “sublattice” degree
of freedom, σ

p
0 is the identity matrix, and ψi = (ψ+

i , ψ−
i )T .

We can take the sublattice modes either ψ± = px ± imy or
ψ± = py ± imx due to the dual symmetry between the meta-
atom modes (px, my) and (py, mx ). The parameter μi can
be tuned by adjusting the lattice spacing a or anisotropy
strengths.

It can be shown that the coupling strengths are t1 = 1 and
t2 = 3, as visually demonstrated in Fig. 1(a). We want to point
out that while the effective coupling can hardly be tuned in
experiments, we will assume a general form in this paper
to study its topological properties. The important property
t1 �= t2 ensures that in a realistic setup, the model lies in the
topologically nontrivial regions.

B. Topological characterization of the 1D photonic lattice

It was shown that the 1D photonic lattice shown in Fig. 1(b)
exhibiting edge modes and the topological origin relates to
the SSH model as highlighted by the green curve. Such a
structure is referred to as “staggered bianisotropy” in this
paper since the signs of the bianisotropic effects are governed
by the spatial inversion symmetry and in a single unit cell the
signs of the bianisotropic effects are flipped from the second
to the third site. While the setup and edge modes in such a 1D
chain have been investigated in [65], the topological charac-
terization is less explored. Thus, we reexamine the topological
properties of the model more carefully here.

Given the unit cell shown in Fig. 1(b) and assuming the
chain is arranged along the x direction, the system Hamilto-
nian in the momentum space can be written as

H1D(kx ) = μσ x
z σ x

0 σ p
z

+ [(
σ x

0 σ x
+ + σ x

+σ x
−
)(

t1σ
p

0 + t2σ
p

x

) + H.c.
]

+ [
σ x

+σ x
+
(
t1e−ikx σ

p
0 + t2e−ikx σ p

x

) + H.c.
]
, (7)

where σx is the Pauli matrix acting on the degree of freedom
spanned along x (chain direction) and the ladder operators are
defined by convention σ± = 1

2 (σx ± iσy).
Such a Hamiltonian shows a chiral symmetry

CH1D(kx )C−1 = −H1D(kx ) with C = σ x
0 σ x

z σ
p

x so that its
spectrum is symmetric to zero. With a trivial time-reversal
symmetry T H1D(kx )T −1 = H1D(−kx ), where T = K is
complex conjugation, we could also define a particle-hole
symmetry P = CT . Thus unlike the SSH model, which
belongs to the AIII class, this model should fall into the BDI
class [68]. This is a result that the system can be effectively
viewed as two coupled SSH chains so that the time-reversal
symmetry is restored.

For a chiral-symmetric system, we can transform the
Hamiltonian into an off-diagonal form characterized by a
4 × 4 matrix Q(kx ) (see Appendix A for details). Since we
are dealing with a 1D chain, the usual topological invariant
should be the winding number [3]:

ν = i

2π

∮
dkxTr[Q(kx )−1dQ(kx )] ∈ Z, (8)

which is computed in the 1D momentum space. Yet, such
a winding vanishes in all parameter space [65] (see also
Appendix A). This is a result that the topological phase tran-
sition only happens within each chiral sector, leaving the
summation of the winding number of all the sectors, below or
above zero, always vanishing. In this sense, ν = 0 is reason-
able in electronic systems as the Fermi level is fixed at zero.
The edge modes all have nonzero energies here, so it could
not be excited in a fermionic system with chiral symmetries.

However, since we are dealing with a photonic system,
which is considered bosonic, we need to extend the topo-
logical invariant to any gap in the system. Here alternatively,
we take the non-Abelian Berry phase as a proper topological
invariant, which is defined as

γi =
(

i

π

∮
dkxTriA(kx )

)
mod 2 ∈ Z2, i ∈ 2Z, (9)

where Tri performs partial trace from band 1 to i and the non-
Abelian Berry connection Anm(kx ) = 〈φn(kx )|∂kx φm(kx )〉 is
defined through the eigenstates H (kx )φn(kx ) = En(kx )φn(kx ).
We then have γ2 = γ6 = 1 in the topological region and they
vanish in the trivial region, where i = 2 and 6 correspond to
the gap where the edge modes appear. The topological phase
transition and bulk-edge correspondence of the 1D chain are
further discussed in more detail in Appendix A.

III. TOWARDS HIGHER-ORDER PHOTONIC
CORNER STATES

As we have fully explored the 1D case and revealed its
topological nature as two coupled SSH chains, we are ready
to reveal its higher-order topology in two dimensions. Here
we consider a special case with the unit cell illustrated in
Fig. 1(c), which reduces to the 1D chain when projected to
either the x or y direction. Previous studies on higher-order
topological insulators suggest that a similar generalization of
the SSH model to two dimensions renders a second-order
topological insulator [26,27]. Here, we expect the staggered
strong or weak bonds argument to still apply in two dimen-
sions, making the proposed all-dielectric photonic lattice a
potential candidate for a higher-order topological photonic
lattice.

A. Photonic corner modes

We first examine the band structure of the photonic lattice
on a ribbon geometry, which is shown in Fig. 2(a). Since
the spectrum is symmetric to E = 0, we only focus on the
region E > 0. There are two photonic band gaps, which may
potentially support the corner modes on a finite sheet. In this
specific example, we choose a periodic-boundary condition
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FIG. 2. Higher-order photonic corner states. (a) Band structure on a ribbon sheet with Ny = 20 sites along the open-boundary direction.
We set μ = 4, t1 = 1, and t2 = 3 for all the panels here. (b) Open-boundary spectrum with Nx = 40 and Ny = 40. The insets zoom in on the
states inside the purple dashed rectangles. All four gaps hold four corner modes and there are no differences among the corner modes within
each gap. Thus, we use the corner modes in the top gap for demonstration, which are also highlighted in red in the inset. (c) Spatial distribution
of various eigenmodes, which are labeled in the inset of panel (b). The density at a single site is proportional to the radii of the circle.

along x and an open-boundary condition along y while similar
results can be observed with ky.

To further inspect the corner modes, we compute the
spectrum on a finite-size sheet with 40 × 40 sites and it is
plotted in Fig. 2(b). We see corner modes are rising in all
the gaps and one gap is zoomed in the insets with the four
degenerate corner modes being highlighted in red. We label
the corner modes, as well as two adjacent bulk modes, from
left to right and plot the corresponding electromagnetic field
distributions in panel (c). The first bulk mode spreads over
the entire crystal with a peak in the middle and decays along
the radial directions. The four corner modes occupy only the
zero-dimensional corner of the 2D lattice. One interesting
property we observed here is that the corner modes are not
strictly localized on the corner but on the two closest sites to
the corner. This is less common but has been reported in a 2D
SSH model with next-nearest-neighbor hopping [67], which
shares some common features with our model.

In the next subsection, we will see that these corner modes
are protected by spatial symmetries and, thus, are robust
to symmetry-preserving disorders. The last one showcases a
usual edge mode, which is located at the 1D boundaries of the
system. Unlike the in-gap corner modes, such an edge mode
can be easily scattered into other bulk modes.

B. System Hamiltonian and symmetry protection

While we have demonstrated the existence of corner modes
in the all-dielectric photonic lattice, to gain more insights into
the system, we need to first write down its Hamiltonian in
momentum space. We adopt similar notations from 1D cases
with an extra degree of freedom σy along y directions, so that
the 2D system Hamiltonian reads

H2D(kx, ky) = μσ y
z σ

y
0 σ x

z σ x
0 σ p

z

+ σ
y
0 σ

y
0

[(
σ x

0 σ x
+ + σ x

+σ x
−
)(

t1σ
p

0 + t2σ
p

x

) + H.c.
]

+ σ
y
0 σ

y
0

[
σ x

+σ x
+
(
t1e−ikx σ

p
0 + t2e−ikx σ p

x

) + H.c.
]

+ [(
σ

y
0 σ

y
+ + σ

y
+σ

y
−
)
σ x

0 σ x
0

(
t1σ

p
0 + t2σ

p
x

) + H.c.
]

+ [
σ

y
+σ

y
+σ x

0 σ x
0

(
t1e−ikyσ

p
0 + t2e−ikyσ p

x

) + H.c.
]
,

which is a 32 × 32 matrix.
Such a Hamiltonian possesses a chiral symmetry C =

σ
y
0 σ

y
z σ x

0 σ x
z σ

p
x . Consequently, the symmetric spectra and the

definitions of P and T symmetries in one dimension are
inherited. Besides these three intrinsic symmetries, it is known
that higher-order topological states must be protected by
spatial symmetries due to the instability of low-dimensional
defects on a compact manifold [68,69]. For the 2D bian-
isotropic photonic lattice, we have reflection symmetry
along x as RxH2D(kx, ky)R−1

x = H2D(−kx, ky), where Rx =
σ

y
0 σ

y
0 σ x

x σ x
x σ

p
x , and similarly, along y with Ry = σ

y
x σ

y
x σ x

0 σ x
0 σ

p
x .

The reflection symmetry operator can be viewed as an opera-
tion that exchanges the disks with different anisotropy along
one direction, as well as the internal dipole modes. The two
reflection symmetries can be further combined to form an
inversion symmetry IH2D(kx, ky)I−1 = H2D(−kx,−ky) and
I = RxRy = σ

y
x σ

y
x σ x

x σ x
x σ

p
0 .

While the model itself belongs to the real BDI class by AZ
classification [68], we find that T IT −1 = I and PIP−1 = I.
As a result, this photonic lattice is seemingly trivial by the cur-
rent classification of higher-order topological insulators [68].
Yet, this is similar to what happens in the 1D ladder model and
we will elucidate this by showing that the topological invariant
is quantized to nonzero values in the gap where corner modes
emerge in the topological phases.

To show the robustness as well as symmetry protection of
the corner modes, we apply disorders to the onsite energy
split μ and the results are summarized in Fig. 3. In Figs. 3(a)
and 3(b), we plot the band structure and the distribution of
the corner modes under symmetry-preserving disorders. It is
clear that while the exact energy of the corner modes shifts,
they remain gapped, degenerate, and localized, regardless of
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FIG. 3. Corner modes under disorder. The four planes consider
all cases combining two axes of the disorders, namely, the strength
of the disorder (weak or strong) and symmetry of the disorder (sym-
metry preserving or breaking). (a) The four corner modes are still
degenerate and localized in the corners when a symmetry-preserving
disorder is applied in both x and y directions. The panel shows the
real-space distribution of the first corner mode (from left to right)
while the inset shows the corresponding energy spectrum near the
gap, which shifts towards higher energies, compared to the top inset
in Fig. 2(b). (b) Similar to panel (a) but with a strong disorder and the
corner states still exist. (c), (b) Similar to panels (a) and (c) respec-
tively but plotted using a random disorder that comprises both the
inversion symmetry and the reflection symmetries. The degeneracy
among the corner modes is broken in both cases and the corner state
starts to delocalize in panel (d). The parameters used are the same as
Fig. 2.

the strength of the disorder. If the disorder breaks the inver-
sion symmetry discussed above, even a weak disorder can
immediately break the degeneracy of the corner modes, as
shown in panel (c). As we keep increasing the strength of
the disorder, the corner modes start to merge with the bulk
modes, indicating they can be easily scattered by defects. This
is demonstrated in panel (d) and it is obvious that the state is
no longer well localized in the corner.

C. Topological characterization

To this end, we turn to use the quadrupole moment to
characterize the topological properties of the proposed model,
which can be computed in real space and was shown to be
useful in studying amorphous topological insulators [70].

The quadrupole moment is defined as

Qxy = (n − nAL) mod 1 ∈ Z2, (10)

and it is 0 (0.5) for the trivial (topological) phase. The density
of the particle can be computed via

n = − i

2π
Tr ln U †OU (11)

where O is a diagonal matrix with entry ei2πxiyi/LxLy with xi and
yi the corresponding unit-cell indices and Lx = Nx/4 and Ly =
Ny/4 the number of unit cells along each direction. The matrix
U is constructed by arranging columnwise the eigenvectors of
No occupied states.

To reveal the topological nature underlying n, we need to
subtract from it the density at the atomic limit:

nAL = 2n f

∑
xi,yi

xiyi/LxLy, (12)

where factor 2 comes from the sublattice degree of freedom
and n f = No/2NxNy is the “filling” of the system.

For the results shown in Fig. 2, there are two different
band gaps with four degenerate corner states starting at E < 0
and E > 0. The sum of the two quadrupole moments at the
two gaps is 1 so we only focus on the lower branch. Given
the parameters used in Fig. 2, we compute the quadrupole
moments up to Nx = Ny = 120 and find it to be quantized,
Qxy = 0.5, confirming the topological nature of the system.

Note that since the corner modes here are protected by
inversion symmetries and it was shown that such a system can
only belong to a zero or a Z2 classification [68], the topolog-
ical invariant Qxy is sufficient to characterize the topological
phases.

IV. CONCLUSION AND OUTLOOK

To conclude, we have introduced a class of all-dielectric
photonic higher-order topological insulators via engineering
staggered bianisotropy, where we do not need to modulate
the spatial distance of neighbor lattice sites. We first uncover
the topological properties of its 1D counterpart as two cou-
pled SSH lattices and then demonstrate the topological corner
modes by directly generalizing the tight-binding model to two
dimensions. The system exhibits rich symmetries and multiple
photonic band gaps, and each comes with four degenerate
photonic corner states. We also show that they are robust un-
der symmetry-preserving disorders. Finally, we compute the
quadrupole moment in the real space to confirm its nontrivial
bulk topology.

The proposed schema can be easily realized in modern
laboratories and it requires only dielectric materials (see
Appendix B for a full-wave simulation of the model on a
ribbon geometry). The model also has the potential to be
further generalized to three dimensions, which may lead to a
three-dimensional photonic topological insulator with hinge
modes. Our paper provides an example of building an all-
dielectric higher-order topological insulator via engineering
the bianisotropy within the system and it opens a different
avenue to study distinct topological bianisotropic photonic
meta-atoms.
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APPENDIX: TOPOLOGICAL INVARIANT
OF THE 1D CHAIN

As discussed in the main text, given the chiral symmetry of
the system, the Hamiltonian can be written in an off-diagonal
form:

H1D(kx ) =
(

0 Q(kx )
Q(kx )† 0

)
, (A1)

with the basis in which the chiral symmetry operator C =
σ x

0 σ x
z σ

p
x is diagonal. The Q(kx ) matrix is found to be

Q(kx ) =

⎛
⎜⎜⎝

μ t+ 0 t+eikx

t− μ t− 0
0 t+ −μ t+

t−e−ikx 0 t− −μ

⎞
⎟⎟⎠, (A2)

where t± = t1 ± t2. Now, the winding number can be com-
puted as

ν = i

2π

∮
dkxTr[Q(kx )−1dQ(kx )],

= i

2π

∫ 2π

0
dkx

2t2
−t2

+ sin(kx )

μ4 + 2t2− − t2− cos(kx )

= 0, (A3)

as long as t1 �= t2. This superficially contradicts the usual bulk-
edge correspondence in a topological insulator, as pointed out
by the authors in [65]. However, we would like to emphasize
that the usual topological bulk theory still applies here.

To clarify, this can be viewed as a result of different spin
statistics. For a fermionic system, the Fermi level must lay at
E = 0 whenever chiral symmetry is present, and this system
would be correspondingly trivial since the edge modes are
not zero-energy modes. However, since photons are bosons,
we could excite any states far from the “Fermi” level at zero
energy and the topological invariant should be counted for
the states below that gap. To address this, we compute the
non-Abelian Berry phase as formulated in the main text and
these results are presented in Fig. 4.

To study the topological phase transition, we assume a
tunable t1 and t2. For simplicity, we fix t1 = 2 and vary t2
to induce the phase transition while μ does not affect the
topological phase much. Similar to the SSH model, the system
is trivial when t2 < t2 and it experiences a gap closing at
t2 = t1. When t2 > t1, it enters the topological region. The
topological invariant γ2 = γ6 is computed in Fig. 4(a) and
it is consistent with our description. The band structure for
both periodic- and open-boundary conditions in the trivial and
topological region is plotted in panels (b) and (c). The gap
closing only happens within each chiral sector (the upper of
lower two bands) and the top one is depicted in the inset of
panel (b). There is a pair of edge states for both E > 0 and
E < 0 and a typical spatial distribution is plotted in the inset

FIG. 4. Topological characterization of the 1D photonic lattice.
(a) Topological invariant computed across trivial and topological
regions with respect to t2. The topological phase transition happens
at t2 = 2, where an abrupt change of the corresponding topological
invariant γ2 from quantized value 0 to 1 is observed. (b) The band
structure (left), as well as the open-boundary spectrum with Nx = 24
sites (right), in the trivial region with t2 = 1. The inset shows the
upper four bands at the topological phase transition point, where a
Dirac point at kx = 0 is observed. (c) Similar to panel (b) but plotted
in the topological region t2 = 4, and the inset shows the distribution
of the edge modes in real space. The common parameters are chosen
as t1 = 2 and μ = 13.

of panel (c). Overall, the 1D photonic meta-atoms here can be
treated as two coupled SSH chains and, thus, it could support
higher-order topological corner modes when generalized in
higher dimensions.

APPENDIX B: FULL-WAVE SIMULATION IN COMSOL

To validate the 2D tight-binding model and to explore
the experimental realization of the proposed photonic corner
states, we perform a full-wave simulation of the systems in
three dimensions using COMSOL MULTIPHYSICS and present
the results in this section.

To start with, we need to verify the mode splitting in a
single cylinder. In Fig. 5(a), we observe a single characteristic
peak corresponding to the overlapping electric and magnetic
dipole resonances. When we add a groove as described in the
caption, the bianisotropy of the perturbed cylinder leads to two
peaks in the scattering spectrum as shown in Fig. 5(b), which
is a result of the splitting of the electric and magnetic dipole
modes. Now, both modes are coupled and in this specific setup
the energy splitting is about 150 MHz while both peaks are
still very narrow. Such a choice of parameter corresponds to
the topological phase discussed in the main text.
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FIG. 5. Three-dimensional full-wave simulation of edge states on a ribbon geometry. (a) The scattering spectrum of a single cylinder with
diameter D0 = 27.5 mm and height H0 = 11.0 mm. In all the simulations, we assume high-index dielectric materials with a dielectric constant
ε = 39. (b) The scattering spectrum of a single cylinder with a cylindrical groove on the top. The diameter and height of the larger cylinder are
D = 29.1 mm and H = 11.607 mm while the groove has a diameter d = 14 mm and a depth h = 1.607 mm. (c), (d) The real-space distribution
or |E | on the z = 0 plane of the edge states on a ribbon geometry, i.e., open-boundary condition along x and periodic boundary condition
along y. The distance between two adjacent disks is fixed as 5 cm. The corresponding eigenenergies are 2.41 + 0.02i and 2.53 + 0.01i GHz
respectively.

The tight-binding model suggests that we need more than
a few unit cells along a given direction with open-boundary
conditions to observe the corner modes without observable
finite-size effects. In this paper, we set the number of cylinders
along such a direction to be 35 so that we have only edge
modes on one side. Since the simulation has to be done in
three dimensions, it would be too expensive to run a full
simulation of a large array of cylinders with open-boundary
conditions along both x and y directions. In other words, it is
computationally impractical to directly simulate these corner
modes. Thus, we need other supporting evidence to verify our
theory as well as to guide experiment designs.

To take a step back, we consider cases similar to Fig. 2(a),
where we impose open- and periodic-boundary conditions

along two spatial directions. This only requires 4 × 35 = 140,
instead of 352 = 1225, cylinders, making it possible to per-
form a full simulation in a reasonable time (a few hours to
scan a narrow region with given energy ranges). Guided by the
results from the tight-binding model, we are able to identify
the edge modes depicted in Figs. 5(c) and 5(d). While we
cannot directly observe the corner modes with this setup, it
helps us narrow down the actual designs of the systems, which
means we will be able to measure the corner modes if we can
realize such a system using the provided parameters.

The simulation results confirm the results from tight-
binding models in the main text and imply that the proposed
corner states can be realized in a setup similar to its 1D coun-
terpart with slight modifications of the design of the disks.
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