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Parametric resonances in a photonic time crystal with periodic
square modulation of its permittivity ε(t )

J. L. Valdez-García * and P. Halevi †

Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, 72840 Puebla, México

(Received 12 July 2023; accepted 27 March 2024; published 18 June 2024)

We study parametric resonances in a “temporal photonic crystal” or “photonic time crystal” (PTC) slab whose
permittivity is assumed to be modulated periodically in time in a stepwise manner (with abrupt transitions). These
resonances in the light reflected and transmitted by the PTC slab occur when the modulation frequency assumes
a series of eigenvalues that are inversely proportional to the slab thickness, in addition to having a value that is
twice that of the frequency of incidence. We compare the reflection and transmission spectra with those for a
harmonically modulated slab and find marked, qualitative differences. These depend crucially on the modulation
strength and on the impedance contrast at the slab’s interfaces. In the special case of weak modulation, the
differences in behavior between the two forms of modulation can be traced to a simple scaling factor. In principle,
these findings could be corroborated with infrared light incident on PTC slabs tens of micrometers thick.
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I. INTRODUCTION

This paper concerns optical modes in dynamic media,
namely, media whose properties such as permittivity and/or
permeability vary with time. A book [1] and a very recent
review [2] are devoted to this emerging field, so our references
will be restricted mostly to those that are essential to the
present work. Singling out a few very recent publications,
we note that dispersion and absorption have been incorpo-
rated into the study of refraction at a temporal discontinuity,
leading to the conclusion that two additional boundary con-
ditions are required [3]. Time modulation can also affect
thermal behavior: reciprocal thermal diffusion was experi-
mentally demonstrated in such dynamic media [4] and it was
also shown that near-field thermal radiation can be coherently
controlled [5].

Here, we deal with “temporal photonic crystals” or “pho-
tonic time crystals” (PTCs); the word “crystal” suggesting
periodicity. Specifically, we are assuming that the permittivity
is a periodic function of time [6,7]. The study of optical modes
in such media has taken great impetus with the realization
of an Al-doped zinc oxide film that was pumped at infrared
frequencies [8] and by simulations of excitations by means of
dipole or atomic emission [9] and free electron motion [10].

In the case of ordinary (spatially periodic) photonic crys-
tals propagation is allowed in certain frequency bands that
are separated by frequency gaps. In PTCs, to the contrary,
any value of the frequency is permitted and a band structure
of wave number bands, separated by wave number gaps, is
obtained [6,7,9]. The first observation of such a gap was
reported in the microwave regime for a transmission line
[11,12]. Direct incidence of monochromatic light should ex-
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cite an infinite number of plane waves (with different wave
lengths) of the same frequency, as well as harmonics of this
frequency, a consequence of Floquet’s theorem. On the other
hand, a wave number within a band gap can be excited only by
special methods [9,10] and this results in growth of the wave
amplitude, namely, instabilities.

The above comments pertain to bulk modes of the PTC.
Boundaries can affect the outcome in important ways. A PTC
with modulation of the permittivity can lead to parametric
resonances (PRs) [6,13], as is also the case for modulation of
the permeability or simultaneous modulation of both permit-
tivity and permeability [14]. Such resonances give rise to huge
amplifications of the fields that are reflected and transmitted
by the slab; this can be attained for a series of values of the
frequency of modulation (for a given slab thickness) or for
special thicknesses (while keeping constant the modulation
frequency). Very recently it was pointed out that, strictly at
resonance, Floquet’s theorem requires an amendment [15] and
that this should lead to linear growth in time of the light
reflected from a slab on a metallic substrate [16]. Parametric
Mie resonances in modulated scatterers were also reported
[17].

Most work in this field assumes harmonic modulation in
time. Recently, however, we have been exploring square mod-
ulation (with abrupt alternations of the permittivity and/or
permeability in time) as well. We found that the behavior
strongly differs depending on whether the permittivity and
permeability oscillate in phase or out of phase [18], and sur-
prisingly, the band structure and the growth pattern (for the
wave number within a forbidden band) can be periodic in
the wave number itself, in addition to the usual periodicity in
frequency [19]. Here we continue this line of investigation,
exploring the PRs in a PTC with the square profile of its
permittivity. In our calculations of the eigenvalues (dispersion
relation) and the reflection and transmission coefficients of
the slab we closely follow the general theoretical treatments
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FIG. 1. The relative permittivity εr (t ) of a slab of thickness D
is periodically modulated in time, alternating stepwise between the
values ε1 and ε2 every half-period T . This dynamic slab is bounded
by a medium of static relative permittivity εb.

of Ref. [7], while the theory of the parametric resonances
is based on Ref. [14]. That said, despite the formal analogy,
we find substantial qualitative and quantitative differences in
behavior in comparison to the case of harmonic modulation
[14].

Section II is devoted to the theoretical development of the
PRs, including definition of the system (Sec. II A), the bulk
eigenvalue problem (Sec. II B), the reflection and transmission
coefficients for the dynamic slab (Sec. II C), the eigenvalue
problem for the resonances (Sec. II D), and some simple for-
mulas for the approximation of weak modulation (Sec. II E).
The numerical results are presented and discussed in Sec. III,
concluding the paper in Sec. IV.

II. THEORETICAL DEVELOPMENT
OF THE PARAMETRIC RESONANCES

A. Definition of the system

As can be seen in Fig. 1, the relative permittivity εr (x, t )
of our system depends both on the spatial coordinate x and
on the time t . Namely, the PTC occupies the space between
x = −D/2 and x = D/2, with its relative permittivity switch-
ing from ε1 to ε2 and back to ε1 every T/2 seconds. This
slab of thickness D is bounded (for x < −D/2 and x > D/2)
by a medium of constant relative permittivity εb. The relative
permeabilities are also assumed to be constant, μr for the slab
and μb for the bounding medium. In brief, Fig. 1 describes
a PTC slab, with its permittivity modulated abruptly at the
circular frequency � = 2π/T , embedded in a static medium.

For a more realistic description of the PRs we also allow for
some absorption within the slab, characterized by a constant
imaginary part of the relative permittivity, ε′′

r . Then we can
express the relative permittivity within a single period in terms
of the modulation strength (or, briefly, modulation) mε as

εr (t ) =
{
ε1 = ε̄r (1 + mε ) + iε̄′′

r , 0 < t < T/2,

ε2 = ε̄r (1 − mε ) + iε̄′′
r , T/2 < t < T .

(1)

Here, ε̄r is the simple average of ε1 and ε2 or mε = (ε1 −
ε2)/(2ε̄r ).

B. Bulk eigenvalue problem

First we consider a plane wave of wave number k propa-
gating in the bulk PTC. As in Refs. [6,7], in such a dynamic

medium the electric field E (t)eikx satisfies the wave equation

d2

dt2
[μrεr (t )E (t )] + k2c2E (t ) = 0, (2)

with c being the vacuum speed of light. Then expanding εr (t )
in a Fourier series, the Floquet theorem leads to the following
eigenvalue equation for the eigenvectors epn:∑

n

[
ε̂m−n(ω̂ − m)2 − k̂2

pδmn
]
epn(ω̂) = 0. (3)

Here, p = 1, 2, . . . , are the serial indexes of the first, second,
and so on wave number bands and m, n = 0,±1,±2, . . . ,

are the indexes of the time-harmonics created by the mod-
ulation. εm−n are the Fourier coefficients of εr (t ) and δmn is
the Kronecker delta. For convenience we normalized the wave
number k and the frequency ω as follows:

k̂p = kpc

�
√

μr ε̄r
, (4)

ω̂ = ω

�
. (5)

For every value of the band index p, Eq. (3) represents an
infinite number of equations in the index m for the infinite
number of unknowns epn. Equating to zero the determinant of
the coefficients of epn relates ω̂ and k̂ and thus leads to the
dispersion relation for the optical modes of our time-periodic
medium.

C. Reflection and transmission coefficients

The electric-field amplitudes within the PTC slab, Ap and
Bp, and the reflection and transmission coefficients rn and tn
were originally calculated in Ref. [7] and in a generalized
form (to take into account a possible change of impedance
at the slab interfaces) in Ref. [20]. They were obtained by
imposing the conditions that the electric and magnetic fields
E (t ) and H (t ) must be continuous at both slab interfaces at
every instant of time. The amplitudes Ap and Bp are obtained
from the following coupled set of equations:

∑
p

[
epn +

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Ap

E0

+
∑

p

[
epn −

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Bp

E0
= 2δn0, (6)

∑
p

[
epn −

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Ap

E0
eik̂pν

+
∑

p

[
epn +

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Bp

E0
e−ik̂pν = 0. (7)

The calculation of Ap and Bp requires that the bulk eigenvalue
problem be first solved. Namely, epn and ω̂(k̂) from Eq. (3)
have to be substituted in the Eqs. (6) and (7). The relative
impedance Ẑ is defined as

Ẑ =
√

μr/ε̄r√
μb/εb

. (8)
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Also, the normalization process leads to the important pa-
rameter ν, defined as

ν = D�
√

μr ε̄r

c
. (9)

Finally, the reflection and transmission coefficients are
found from the following equations:

rn =
∑

p

(
Ap

E0
+ Bp

E0

)
epn − δn0, (10)

tn =
∑

p

(
Ap

E0
eik̂pν + Bp

E0
e−ik̂pν

)
epn. (11)

D. Eigenvalue problem for the resonances

Here, we pose the central question of the issue at hand: Is
the PTC slab capable of self-sustained oscillations of optical
fields? If the answer were affirmative, then Maxwell’s Equa-
tions would have legitimate solutions inside and outside the
PTC slab even with the imposition of E0 = 0, namely, no field
incident on the slab. We could proceed by multiplying Eqs. (6)
and (7) by E0, followed by the substitution E0 = 0; however,
it is more instructive to take advantage of the simple spatial
symmetry that implies that the fields E (t ) be either symmetric
or antisymmetric. This approach was followed in Ref. [14]
for the more general situation of modulation in time of both
the permittivity and the permeability. In the present case of
interest, that μ(t ) is constant, we obtain that

∑
p

{
Ẑ (ω̂ − n) f

(
k̂pν

2

)
+ ik̂p f ′

(
k̂pν

2

)}
epnEp = 0, (12)

f (k̂pν) =
{

cos(k̂pν) for the symmetric modes,

sin(k̂pν) for the antisymmetric modes.
(13)

Equation (12) is an additional eigenvalue equation; al-
though its solution necessitates the prior solution of the bulk
eigenvalue problem, Eq. (3), it determines the conditions for
self-sustained or natural modes of the PTC plate. The band
amplitudes Ep are the eigenvectors, determining the specific
field profile of the electric field in the slab. Equation (12)
is expected to have solutions only for special values of the
parameter ν; these are the eigenvalues. In practical terms
this means that, for a PTC slab of given thickness D there
should exist self-sustained oscillations only for certain modu-
lation frequencies �. The opposite is true if � is specified,
normal modes can exist only for special values of D. The
dimensionless parameter ν thus concisely expresses both the
D values (for given �) and the � values (for given D) for
which parametric resonances are possible.

E. Weak modulation approximation

This approximation is based on the assumption that
mε � 1 in Eq. (1), meaning that (ε1 − ε2) � (ε1 + ε2) in
Fig. 1. In this situation, presumably, only the first two har-
monics (n = 0 and n = 1) and the first two bands (p = 1
and p = 2) are appreciably excited. The approximation has
turned out surprisingly good even for modulations as high
as mε = 0.5 [20,14]. Also, it is well known that parametric

resonances are strongest when the modulation frequency is
twice as great as the natural frequency of oscillation, so in this
subsection we assume that ω = �/2.

Under the above-noted assumptions Eq. (12) reduces to

Ẑ2 − 1

Ẑ2 + 1
cos

(ν

2

)
± cos

(νmε

2π

)
= 0. (14)

The + and − signs here correspond, respectively, to symmet-
ric and antisymmetric oscillations of the electric field in the
slab. Changing the parameter Ẑ to 1/Ẑ merely changes the
sign of the first term of Eq. (14); hence, if a certain value of
ν is an eigenvalue for a given value of Ẑ , this ν is still an
eigenvalue for its reciprocal 1/Ẑ , however, with a change of
symmetry. Namely, a symmetric field for Ẑ becomes antisym-
metric for 1/Ẑ and vice versa. This property turns out to be
valid even for modulations that are not small, as will be seen
in the next section. Equation (14) has multiple solutions for
the eigenvalue ν, these depend on the modulation mε and on
the relative impedance Ẑ .

In the limit mε → 0, Eq. (14) becomes

cos
(ν

2

)
= ±

(
Ẑ2 + 1

Ẑ2 − 1

)
. (15)

We note that Eqs. (14) and (15) are similar to the Eqs. (17)
and (21) of Ref. [14]; however, Eq. (15) cannot be satisfied.
This is hardly surprising since, in the absence of modulation
(for a static slab) there are no parametric resonances. A more
interesting limit of Eq. (14) is gotten for a PTC whose average
impedance matches that of the bounding medium, Ẑ = 1:

cos
(νmε

2π

)
= 0. (16)

Thus, the solutions are

ν = π2

mε

s, s = 1, 3, 5, · · · . (17)

Then the smallest value of ν that gives rise to resonance
is π2/mε. The corresponding formula for the case of har-
monic modulation (see Eq. (20) of Ref. [14]) was found to
be ν = 4πs/mε, thus occasioning the lowest resonance at
ν = 4π/mε, a value about 27% greater than for the square
modulation.

Another interesting special case obtains for Ẑ � 1 or for
Ẑ � 1. According to the definition of Ẑ , Eq. (8), Ẑ � 1
describes the case of a geometry where the bounding medium
of the slab is an “epsilon-near-zero” (ENZ) material, namely,
εb � ε̄r . On the other hand, for Ẑ � 1, this inequality is
reversed, ε̄r � εb, namely, it is the modulated dielectric that
is the ENZ material. Taking the limits Ẑ → 0 or Ẑ → ∞,
Eq. (14) reduces to

cos
(ν

2

)
± cos

(νmε

2π

)
= 0. (18)

Then simple algebra gives the solutions

ν = 2π
(

1 ± mε

π

)
s, s = 1, 2, 3, · · · . (19)

Because mε � 1, these describe doublets that are centered
at all the integral multiples of 2π . And these ν values are
∼(1/mε ) times smaller than those given by Eq. (17) for Ẑ = 1.
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FIG. 2. (a) Three eigenvalues of the parameter ν for square mod-
ulation, defined in Eq. (9), as function of the modulation strength
mε . We compare three different methods of calculation, based on the
transmission coefficients Eq. (11), the eigenvalue equation Eq. (12),
and the weak modulation approximation Eq. (17). Note the exact
coincidence of the first two methods and good coincidence of the
third method for mε < 0.5. (b) Comparison of eigenvalues of the ν

parameter for square modulation and harmonic modulation, using
the transmission coefficient method Eq. (11) and the eigenvalue
equation Eq. (12). (c) Fine structure of the ν parameter for the square
and harmonic modulations for mε

∼= 0.1 and mε
∼= 0.4. This splitting

�ν, corresponding to symmetric and antisymmetric modes E (x) in
the slab, was unresolved in (a) and (b). It is assumed that Ẑ = 1,
ω̂ = 1/2, and ε′′

r = 0

How does this compare to the case of harmonic modula-
tion? By inspection of Eq. (17) of Ref. [14] we can see that the
only change is that, in Eqs. (18) and (19) we have to replace
mε/π by mε/4, so that

νharm = 2π
(

1 ± mε

4

)
s, s = 1, 2, 3, · · · . (20)

Hence, the doublets are still positioned at integral multiples
of 2π , however, their splitting is (πmε )s for the harmonic
modulation, while it is (4mε )s for the square modulation.

FIG. 3. The product νmε for the first eigenvalue of Eq. (12) as
function of the modulation mε . Results are compared for five values
of the relative impedance Ẑ , defined by Eq. (8). Here, ω̂ = 0.5 and
ε′′

r = 0.0001. Note that, for Ẑ = 1, νmε = π 2 [as given by the weak
approximation formula (17)] even for strong modulations. All the
resonances for Ẑ = 0.005 are antisymmetric and for Ẑ = 200 they
are symmetric. In the case of Ẑ = 0.25 and Ẑ = 4 there are both
symmetric and antisymmetric resonances. The symmetry of the res-
onances for Ẑ is the opposite of the resonances for 1/Ẑ . All these
eigenvalues split [analogously to Fig. 2(c)], the amount of splitting
depending on Ẑ

All the resonances for mε � 1 are associated with the
intersection of two cosine functions in Eq. (14) (and Eq. (17)
of Ref. [14]), one oscillating rapidly and the other slowly.
This point, as well as the creation of the doublets, is vividly
illustrated in Figs. 3(a) and 3(b) of Ref. [14].

Let’s consider the implications for the average wavelength
in the slab λ� = 2πc/�(μr ε̄r )1/2, while maintaining the
modulation frequency at the value � = 2ω that gives rise to
the strongest resonances. Then the definition of ν, Eq. (9),
gives

D

λ�/2
= ν

2π
. (21)

The discussion being limited to weak modulation, mε � 1, in
this subsection, if either the dynamic medium or the bounding
media are ENZ materials, then Eqs. (19) and (20) give

D

λ�/2
=

{
(1 ± mε/π )s for square mod.

(1 ± mε/4)s for harmonic mod.

}

for s = 1, 2, 3, . . . , Ẑ � 1 or Ẑ � 1. (22)

This has the simple interpretation that parametric reso-
nances are excited in the form of doublets whenever an
integer number of half-wavelengths fits into the slab width.
Thus, while these doublets appear at the wavelengths λ� =
2D, 2D/2, 2D/3, and so on for both the square and the
harmonic modulations (and, likely, for any type of periodic
modulation) the splittings δλ� depend on the form of the
modulation:

δλ�

λ�

=
{

(2/π ) mε for square modulation
(1/2) mε for harmonic modulation

}

for Ẑ � 1 or Ẑ � 1. (23)

The other notable special case is that the average impedance
of the dynamic medium is the same as the impedance of the
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FIG. 4. (a) The first eigenvalue of ν as function of the relative impedance Ẑ for three values of the modulation strength mε . (b) Here, four
different combinations of the average relative permittivity ε̄r and the modulation wavelength λ� = 2πc/� are used in Eq. (12) with mε = 0.1.
The slab thickness D corresponding to the smallest ν is graphed as a function of Ẑ . Here, ω̂ = 0.5 and ε′′

r = 0.0001. Note the symmetry
about the value Ẑ = 1. The symmetry for the resonances for Ẑ is opposite to those for 1/Ẑ . In the case Ẑ = 1 there are both symmetric and
antisymmetric resonances.

bounding media, namely, Ẑ = 1. Then, according to Eqs. (21),
(17), and Eq. (20) of Ref. [14]

D

λ�/2
=

{
(π/2)s/mε for square modulation
2s/mε for harmonic modulation

}

for Ẑ = 1. (24)

This describes singlets whose half-wavelength fits in the slab
width on the order of (1/mε ) times, this being a large and
not necessarily integer number [as was the case for the dou-
blets in Eq. (22)]. Then we can see that, just as for Ẑ � 1
(or Ẑ � 1), the behavior of the resonances for harmonic

modulation differs from the square modulation only by the
replacement mε/π → mε/4.

In the following section we will compare approximate so-
lutions obtained from Eq. (14) with exact numerical solutions.

III. NUMERICAL RESULTS AND DISCUSSION

To solve Eqs. (3) and (12) a minimum number of har-
monics n must be used. For harmonic modulation 30 to
40 harmonics are sufficient while for square modulation at
least 50 harmonics are necessary. The following results were
obtained using 100 harmonics and 100 p bands for both mod-
ulations.

FIG. 5. Magnitude of the transmission coefficient tn=0 as function of the ν parameter for (a) mε = 0.9 and Ẑ = 0.05, (b) mε = 0.1 and
Ẑ = 0.05, (c) mε = 0.9 and Ẑ = 1, and (d) mε = 0.1 and Ẑ = 1. Results for the square modulation (solid blue lines) are compared with
those for harmonic modulation (dotted red lines). Here, ω̂ = 0.5 and ε′′

r = 0.01. When Ẑ = 0.05 there are both symmetric and antisymmetric
resonances. The inset of (b) amplifies the doublet at ν = 4π . The inset of (d) zooms in on the doublet resonance for square modulation at
ν = π 2/mε ≈ 100. Here, n∗ denotes the number of harmonics n.
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FIG. 6. This figure zooms in at the sharp red peak at ν =
4π/mε ≈ 125 for harmonic modulation in Fig. 5(d). It shows that, for
sufficiently small dissipation (ε′′ < 0.005) and with higher resolu-
tion, the broad red maximum actually splits into a doublet. Moreover,
with ε′′

r = 0, the two sharp peaks keep increasing indefinitely with
improved resolution. Same parameters as in Fig. 5(d).

Now we have three methods to calculate the crucial pa-
rameter ν, Eq. (9), that specifies the modulation frequencies
� for which resonances occur for a given slab of width D.
Two of these are exact: of these one is based on the maxima
of the reflection and/or transmission coefficients rn and tn
as functions of ν, see Eqs. (10) and (11); the other method
solves the eigenvalue equation (12) for ν. The third method
is approximate, using Eq. (14), derived for weak modulation,
mε � 1. We compare the results of these methods in Fig. 2(a),
plotting three eigenvalues of ν as a function of mε, while
assuming that � = 2ω (or ω̂ = 0.5) and that Ẑ = 1. Absorp-
tion is neglected, ε′′

r = 0. As can be expected, the results
of the two exact methods are invariably indistinguishable.
As for the weak modulation approximation, here for Ẑ = 1
Eq. (14) has been reduced to Eq. (17). It is apparent that
ν is inversely proportional to mε and that, for a given mε,
the second and third eigenvalues are, respectively, three and
five times greater than the smallest eigenvalue. Moreover, the
approximation is excellent up to mε = 0.25 and, very good
up to mε = 0.5, the relative error never exceeding 15%. In
Fig. 2(b) we compare three eigenvalues of the ν parameter
for square and harmonic modulations, using the two exact
methods. The results obtained show that the value of ν is
always lower for the case of square modulation regardless of
the value of mε. For mε � 1 this displacement is given by the
factor 4/π ∼= 1.27, as explained by the comments following
Eq. (17). This suggests a smaller slab width in the case of
square modulation. A closer investigation, based on higher
resolution, reveals that the eigenvalues in Figs. 2(a) and 2(b)
have a fine-structure. Namely, each solution in these figures is
actually composed of two eigenvalues, suggesting a doublet
structure. This splitting is displayed explicitly in Fig. 2(c)
for both square and harmonic modulations for mε = 0.1 and
mε = 0.4. As can be seen, the splittings are substantially
greater for the square modulation. Moreover, we find that the
smaller-valued component of the doublet corresponds to an
antisymmetric field [E (−x) = −E (x)] in the slab, while the
larger-valued component pertains to the symmetric solution
[E (−x) = E (x)] with respect to the slab center.

In Fig. 3 we graph the product νmε as function of mε for
five values of the impedance parameter Ẑ . If Ẑ = 1, the lowest

resonance gives, surprisingly, νmε = π2 even for mε = 0.5,
although Eq. (17) has been derived for weak modulation.
Now, in Ref. [6] it was found that the results remain unal-
tered when the parameter Ẑ is replaced by its reciprocal, 1/Ẑ .
We confirm this in Fig. 3 for the mutually reciprocal values
Ẑ = 0.005 and 200 and for Ẑ = 0.25 and 4. We also note
that, according to Eq. (14), switching between Ẑ and 1/Ẑ
interchanges as well symmetric and antisymmetric solutions.
Also, with higher resolution, every point in Fig. 3 splits into a
symmetric and an antisymmetric ν component.

Fiure 3 suggests that, for any modulation, the ν parame-
ter reaches its maximum value when Ẑ = 1, namely, when
the average impedance of the slab is continuous across its
boundaries. This is explicitly confirmed in Fig. 4(a) for three
values of mε. Considering the definition of ν, Eq. (9), this
also corresponds to a maximum of the slab thickness for
select values of the average permittivity and of the modulation
wavelength λ� = 2πc/�; this can be seen in Fig. 4(b). We
note that these are realistic values taken from an experimental
work [8], resulting in thicknesses on the order of tens of
micrometers. Thus, the larger the impedance contrast with
the bounding medium, the smaller are the slab thicknesses
for which resonance is attainable (given ω̂) and, vice versa,
if the thickness D is specified, the smaller is the modulation
frequency that gives rise to a resonance. The symmetry about
Ẑ = 1 confirms that ν(Ẑ ) = ν(1/Ẑ ).

In principle, a straightforward method to observe these
resonances would be measurements of the reflection or trans-
mission coefficients as function of the modulation frequency.
The case of harmonic modulation was already investigated
in Ref. [14]; in the three following figures we will dwell
on both similarities and differences that are present for the
square modulation. In Fig. 5 we plot the magnitude of the
transmission coefficient t0 as function of ν, which, according
to Eq. (9), is proportional to � for a given slab thickness. Four
combinations of the modulation mε and relative impedance
Ẑ are given. In each case, several resonances are displayed
and, for the same parameter values, compared with the case of
harmonic modulation. For both cases of modulation, the trans-
mission coefficients are greatest for Ẑ = 1 and for relatively
small values of ν (that is, � or D). We wish to stress, however,
that apart from these similarities, the two forms of modu-
lation lead, in general, to qualitatively different responses.
For example, especially striking are the sharp resonances for
harmonic modulation in Fig. 5(a), totally absent (at least in
the present resolution) for the square modulation. Similarly,
Fig. 5(c) reveals qualitative differences between the two types
of modulations. Thus, the Figs. 5(a) and 5(c) suggest that simi-
larities in behavior found for weak modulation (mε = 0.1) are
absent for strong modulation (mε = 0.9).

The choice of mε = 0.1 in Figs. 5(b) and 5(d) invites
comparisons with the predictions of Sec. II E that was dedi-
cated to the case of weak modulation, mε � 1. First consider
Fig. 5(b), with the relative impedance Ẑ = 0.005. The trans-
mission coefficients display a series of doublets, all positioned
at the same ν values for both the square and the harmonic
modulations. Moreover, these doublets are centered at ν =
2π, 4π, 6π, and so on, just as specified by Eqs. (19) and
(20). The split (peak separation) is about twice, thrice, and
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FIG. 7. The magnitude of the reflection coefficients rn as function of the normalized frequency ω/� for four values of the harmonic index
n. The first resonance for square modulation (ν = 41.0176, solid blue line) is compared with the first resonance for harmonic modulation
(ν = 50.2854, dotted red lines). Here, Ẑ = 1, mε = 0.25, and ε′′

r = 0.001. Note parametric resonances for odd integer multiples of �/2 in
addition to the usual Fabry-Pérot oscillations.

so on greater for the second, third, and so on doublet as it
is for the first one, again confirming the Eqs. (19) and (20).
Finally, the inset of Fig. 5(b) also confirms that the split for
the harmonic modulations is smaller (0.1πs) than the split
for the square modulation (0.4s). Thus, we can conclude that
our approximation for mε � 1 and Ẑ � 1 works just fine for
mε = 0.1 and Ẑ = 0.05. Similar behavior can be expected for
somewhat greater values of mε and, indeed, in Fig. 5(a) we can
still observe some semblance to Fig. 5(b) for the harmonic
modulation (not, however, for the square modulation) even
though mε is as large as 0.9. That said, the first resonance
peak in Fig. 5(b) does not reveal doublets, although, for ε′′

r
sufficiently smaller than 0.01, the peak for square modulation
does split.

The situation changes dramatically for continuous average
impedance Ẑ at the slab boundaries, namely, Ẑ = 1, while still
keeping mε = 0.1, see Fig. 5(d). For the harmonic modulation
(dashed red lines) resonant peaks can be seen at ν ≈ 125 and
ν ≈ 375, corresponding very well to the approximate result
of Ref. [14], ν = 4πs/mε for s = 1 and s = 3. However,
with improved resolution and sufficiently small absorption
(ε′′ < 0.005) the peak at ν ≈ 125 splits into two peaks, in-
dicating a shortcoming of the approximation for mε � 1, see
Fig. 6. Notably, these peaks diverge when ε′′

r → 0, as proper
resonances should. As for the square modulation (solid blue
lines) there are two sharp resonances at ν ≈ 100 and a single
resonance at ν ≈ 280. These values correspond to s = 1 and
s = 3 of the weak-modulation approximation, Eq. (17). How-
ever, according to this equation, there should be only a single
peak at π2/mε ≈ 100! The explanation is given by the inset of
Fig. 6(d): Assuming just two harmonics (n = 2) (as assumed
in the mε � 1 approximation) there is a single peak, indeed; a

greater number of harmonics (n � 100) is, however, required
to reveal the splitting. In this inset we can also observe the
convergence of Eq. (11) for a sufficiently large number of
harmonics n∗ = 100 and n∗ = 500, obtaining practically the
same results.

As we pointed out in Sec. II E, the approximation based
on just two harmonics (n = 0, 1), is expected to lead to rea-
sonably accurate results for small modulations, mε � 1. This
is to say that the relative permittivity is essentially approxi-
mated by εr (t ) = ε̄r + ε̂1ei�t . Now, for our square modulation
model, ε̂1 = −2iε̄rmε/π , while, for the harmonic modula-
tion ε̂1 = −iε̄rmε/2. This suggests that, for sufficiently weak
modulation, results for the square modulation can be gotten
from results for the harmonic modulation, simply by replacing
mε by (4/π )mε. For continuous average impedance, Ẑ = 1,
the resonance parameter ν is inversely proportional to mε,
see Eq. (17). In this case, then, the ν values for the square
modulation are expected to be diminished by the factor (4/π )
with respect to those for the harmonic modulation. This is
beautifully confirmed by the Fig. 2(b) and the Fig. 5(d) as
well. On the other hand, for very small (Ẑ � 1) and for very
large (Ẑ � 1) contrast, our approximate calculation predicts ν

doublets whose positions are independent of mε, while whose
splittings are proportional to mε, see Eq. (19). Again, this
behavior is confirmed by the precise calculation in Fig. 5(b),
where the only difference between the two types of modula-
tion is an increase, by the factor (4/π ), in splitting for the
square modulation. Unfortunately, as can be expected, the
assumption of just two harmonics (n = 0, 1) is not as justified
for the square modulation as it is for the harmonic modulation,
see inset of Fig. 5(d). Moreover, in the vicinity of the reso-
nances the behavior is acutely dependent on absorption, see
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FIG. 8. Phase (solid blue lines, left-hand scale) and magnitude
(dotted red lines, right-hand scale) of the reflection coefficient rn=0

as function of the reduced frequency ω̂ in the vicinity of ω̂ = 1/2.
(a) Harmonic modulation, (b) square modulation. Same parameters
as in Fig. 7.

Fig. 6. All in all, the (4/π ) factor for transforming between
the two modulations should be exercised with care.

In Figs. 5 and 6 ν was scanned, while the frequency of
incidence was fixed at ω = �/2. In Fig. 7, on the contrary,
we limit ν to the lowest resonance values for the square
modulation (ν = 41.0176, solid blue lines) and the harmonic
modulation (ν = 50.2854, dashed red lines). For both pro-
files of modulation, we plot the magnitude of the reflection
coefficient rn as function of ω/� for four values of the har-
monic index n. For both square and harmonic modulations,
parametric resonances appear at odd multiples of �/2 and the
usual Fabry-Pérot oscillations are also present. Note that the
resonances for square modulation are invariably sharper and
higher than for harmonic modulation.

The reflection coefficients exhibit intriguing behavior in
the immediate neighborhood of the frequency ω = �/2; in
Fig. 8 we zoom in in this region. The magnitude of the
reflection coefficient is very large for ω̂ = 0.5 and drops to
extremely small values outside this frequency. This behavior,
not unlike a Dirac delta function, is true for both harmonic
modulation, Fig. 8(a), and square modulation, Fig. 8(b). On
the other hand, the phase change of the reflection coefficient

at ω̂ = 0.5 is highly sensitive to the form of modulation, as is
manifest by the qualitatively different phase shifts in Figs. 8(a)
and 8(b).

IV. CONCLUSION

Much of the recent work on PTCs is concerned with in-
stabilities, namely, growing optical fields excited by wave
numbers within bands that are forbidden to monochromatic
incidence of light; see, for example, Refs. [8–10]. On the
other hand, in the present paper (and in Refs. [13,14] as
well) we discussed stable amplification of monochromatic
light incident at a PTC slab. Clearly, the extra energy in the
reflected and transmitted frequency combs is drawn from the
(unspecified) source of modulation of the permittivity ε(t ) of
the slab. Here, we compared the behavior of PRs for square
and harmonic profiles of ε(t ), pointing out striking differ-
ences, as well as similarities, in the reflection and transmission
coefficients. For sufficiently weak modulation, mε � 1, re-
sults for the square modulation can be obtained from those
for the harmonic modulation by the simple replacement of
mε by (4/π )mε. These resonances could be realized in the
infrared region for PTC slabs of thickness on the order of tens
of micrometers with modest modulation strengths mε ∼ 0.1.
Several topics, associated with PRs would be of interest to
explore: duty cycle different than 50%; excitation by oblique
incidence; and periodic modulation of Im{εr (t )} [as well as
Re{εr (t )}]. Moreover, we are also investigating PRs in trans-
mission lines with modulated capacitors (varactors) in the
microwave regime. The ideas on PRs commented in this work
have the potential to find applications in energy management.
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