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Compact topological edge modes through hybrid coupling of orbital angular momentum modes
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Topological waveguide arrays, which support robust light propagation through edge modes, offer a promising
solution for fault-tolerant photonic chips. However, these arrays commonly require a considerable number of
waveguide elements to ensure their topological protection, leading to increased footprint and fabrication costs.
Here, we propose a topological waveguide array with only a few cells based on a photonic Aharonov-Bohm
(AB) cage. This design is advantageous because the edge modes become compactly localized at the boundary
waveguides. We achieve this by utilizing the orbital hybridization of the fundamental mode and first-order orbital
angular momentum (OAM) modes to construct the AB cage, where arbitrary flux of artificial gauge fields
(AGFs) can be generated and controlled by adjusting the angle between adjacent waveguides. Notably, these
edge modes exhibit robustness against disorders of on-site potential and coupling, even within a small lattice.
Furthermore, we demonstrate the extension of this mechanism to high-order OAM modes. Our work paves the
way for miniaturizing topological devices using the orbital degree of freedom, holding the potential for exploring
other AGF-enriched phenomena.
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I. INTRODUCTION

Photonic integrated circuits are essential for optical inter-
connects, processing, and computing [1]. The performance of
traditional optical components, such as waveguide couplers
and resonators, heavily relies on local structural parameters.
Minor changes in the spatial separation between two waveg-
uides or resonators substantially impact the splitting ratio and
working bandwidth. In addition, fabrication imperfections and
disorders may destroy the function of devices. To meet these
challenges, the field of topological photonics has emerged,
using the topological degree of freedom that characterizes the
global features of the wave function across the entire Brillouin
zone [2–7]. This approach holds promise for the develop-
ment of fault-tolerant photonic devices. Applications ranging
from delay lines [8], broadband wave splitters and routers
[9], sharply bended waveguiding [10], to high-performance
lasers [11] have been proposed based on photonic crystals,
metamaterials, split resonators, and more [12,13]. Photonic
waveguide arrays, serving as the fundamental building blocks
for integrated photonics, have garnered considerable attention
in exploring topological phenomena [14–16]. The topological
Su-Schrieffer-Heeger (SSH) model [17], Floquet topological
insulators [18–20], and high-order topological insulators [21]
were explored in the straight or helical waveguides. These
waveguides support edge or corner modes at the boundary
or interface, contributing to their fault-tolerant characteristics.
However, the topological modes arising from the bulk nature
of waveguide arrays commonly require many elements to
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ensure their topological protection, resulting in large sizes and
high fabrication expenses. To address this challenge, various
strategies, such as twisted edge bands [22], twig boundaries
[23], parity-time symmetry [24], and non-Hermitian coupling
[25], have been proposed to decrease the mode coupling of
topological modes at different boundaries, thereby reducing
the system size. Here, we introduce another mechanism by
employing an artificial gauge field (AGF) to achieve this goal.

Artificial gauge fields for photons mimic the interaction
of electromagnetic fields with charged particles. They offer
an alternative way for controlling light propagation [26–29].
Examples include Bloch oscillation, dynamical localization,
and negative refraction [28,30]. The physical origin of AGFs
is understood by the Aharonov-Bohm (AB) effect, where the
phase factor of the wave function acquired along a closed
loop is gauge invariant [31]. Consequently, an AGF can be
generated by engineering the geometry of systems or ap-
plying external modulation to induce a nonreciprocal phase
in the wave tunneling process. For instance, electro-optic
modulation imposed on waveguides or resonators introduces
a nonreciprocal phase shift, acting as AGFs between two
frequency channels [27]. Using auxiliary rings between two
site rings, the difference of propagation length gives rise
to AGFs as well [32]. The orbital degree of freedom has
also been exploited to realize AGFs, thanks to the nonuni-
form phase distributions of high-order modes [33–40]. Mode
interference and hybrid coupling between s, p, and d or-
bital modes were reported to generate π gauge flux, which
can be utilized in photonic Aharonov-Bohm (AB) cages
[34,41–45], quadrupole topological insulators [37], Möbius
topological insulators [33,36,46], and coherent control of
topological edge modes [47]. The orbital degree of freedom
is also used to create synthetic dimensions, allowing the
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FIG. 1. Arbitrary gauge flux and photonic AB cage induced
by orbital hybridization. (a) Schematic of the proposed zigzag
waveguide arrays carrying different OAM modes. (b) The effective
tight-binding lattice for OAM modes with each plaquette filled with
flux φ. (c) The coupling mechanism in s − p modes and OAM
modes, which are connected by a basis transformation.

exploration of rich topological phases that are not easily re-
alized in spatial dimensions [48–50].

In this work, we show another opportunity offered by
orbital-induced AGFs, effectively reducing the size of a
waveguide array while preserving the topological edge modes.
The proposed array consists of two different waveguide ele-
ments, supporting fundamental and first-order orbital angular
momentum (OAM) modes, respectively. Their hybrid cou-
pling gives rise to AGFs with arbitrary flux, tunable by the
central angle of adjacent waveguides. Destructive interference
leads to AB cages and compact topological edge modes.
These modes form a compact platform and are localized
only at boundary waveguides, unlike conventional topolog-
ical modes, which exhibit exponential localization and are
confined to many lattice sites. This approach effectively mini-
mizes mode coupling at opposite boundaries when the waveg-
uide elements are reduced in number. We present a compre-
hensive discussion of the robustness and the hybrid coupling
of higher-order OAM modes. Our findings are important for
minimizing the size of topological waveguide arrays. The
utilization of orbital hybridization addresses the challenge to
generate arbitrary gauge fields in straight waveguides.

II. ORBITAL HYBRIDIZATION INDUCED
AGFS AND AB CAGING

The proposed waveguide array is arranged in a zigzag lat-
tice, forming a triangle structure with a central angle denoted
by θ , as shown in Fig. 1(a). The nth unit cell consists of two
types of cylindrical waveguides, labelled as an for the funda-
mental mode (l = 0) and bn for the first-order OAM modes

(l = ±1). The refractive index of the OAM±1 waveguide is
higher than that of the OAM0 waveguide, ensuring that their
effective refractive indices are matched. The OAM modes
display distinct ring-shaped and helical phase wave fronts, as
described by [51–53]

ψ±l
n (r, ϕ, z) = ψ l

n(r)e±il (ϕ−ϕ0 )e−iβl z, (1)

where ±l represents the charge value, ψ l
n(r) is the radial field

distribution of the nth waveguide, βl signifies the propagation
constant along the z direction, (r, ϕ) are polar coordinates,
and ϕ0 is an arbitrary phase origin. The separation d between
any two neighboring waveguides is uniform, distinguished
from conventional topological waveguide arrays with alternat-
ing short and long separations [17]. The coupling coefficient
integrates the two mode profiles at adjacent waveguides.
Considering the phase variation of OAM±1 modes along
the azimuthal angle, the mixed coupling of the two OAM
modes naturally acquires a phase factor, serving as AGFs and
forming the basis for topological edge modes. Specifically, as-
suming the phase origin ϕ0 along the x direction, the coupling
c0,±1 along the an to bn path is c/

√
2 exp[∓i(π/2 − θ/2)],

with the phase factor determined by the central angle of the
triangle. The coupling c±1,0 along the bn to an+1 path has a
phase factor ±(π /2 + θ /2) [35,54]. The effective tight-binding
lattice for OAM modes, depicted in Fig. 1(b), exhibits a rhom-
bic lattice where each plaquette experiences a gauge flux with
φ = 2θ . For simplicity, the Bloch Hamiltonian of the orbital
waveguide array is expressed

H (k) = c√
2

⎛
⎝ 0 e−iφ/2 + e−ikd eiφ/2 + e−ikd

eiφ/2 + eikd 0 0

e−iφ/2 + eikd 0 0

⎞
⎠,

(2)

where k represents the Bloch momentum. Three band struc-
tures are derived as

E (k) = 0,±
√

2c
√

1 + cos (φ/2) cos (kd ). (3)

When φ = π , the AB caging effect emerges due to the de-
structive interference between the two legs of the rhombus.
In this scenario, the corresponding eigenmodes become com-
pact, and all energy bands flatten across the entire Brillouin
zone [26].

The generation of gauge flux is also verified through the
transformation from s − p coupling, illustrated in Fig. 1(c).
Assuming a coupling coefficient between the s mode and a
horizontal p mode is c and considering a plaquette of zigzag
chain (three waveguides) as an example, the Hamiltonian in
the s − p basis is expressed as follows:

Hsp = c

⎛
⎜⎜⎜⎝

0 sin(θ /2) cos(θ /2) 0

sin(θ /2) 0 0 − sin(θ /2)

cos(θ /2) 0 0 cos(θ /2)

0 − sin(θ /2) cos(θ /2) 0

⎞
⎟⎟⎟⎠.

(4)
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OAM modes can be synthesized through a combination of
px and py modes according to [55](

ψOAM+1

ψOAM−1

)
= T1

(
ψpx

ψpy

)
= 1√

2

(
1 i

1 −i

)(
ψpx

ψpy

)
. (5)

Then, by a transformation, the Hamiltonian in the basis of
OAM modes is

HOAM = T2HspT −1
2

= c√
2

⎛
⎜⎜⎜⎝

0 e−iϕ1 eiϕ1 0

eiϕ1 0 0 ei(ϕ1+θ )

e−iϕ1 0 0 e−i(ϕ1+θ )

0 e−i(ϕ1+θ ) ei(ϕ1+θ ) 0

⎞
⎟⎟⎟⎠, T2

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1
/√

2 i
/√

2 0

0 1
/√

2 −i
/√

2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (6)

where ϕ1 = π/2 − θ/2 represents the phase factor of the
coupling c0,±1 introduced along the an to bn path. Nonre-
ciprocal phase factors manifest in the coupling coefficient,
and the accumulated phase along a closed loop should be
φ = 2θ , acting as AGFs and effectively creating magnetic
fields. Following this mechanism, we can construct AB chains
with arbitrary gauge flux threading each plaquette, as shown
in Fig. 1(b).

Orbital-induced AGFs have been observed in several stud-
ies. However, mixed couplings, such as s − p or s − d orbital
couplings, are limited to creating a π flux [34,36]. In con-
trast, using the same order OAM±1 mode shows potential
for generating arbitrary flux [35,38]. Nevertheless, challenges
remain in creating an effective model that accounts for cross
coupling between different circulation modes, and the precise
determination of the flux value in each plaquette remains un-
clear. The condition for the AB caging phenomenon is highly
critical, only satisfied for large separation such that the self-
and cross couplings between adjusted OAM modes are the
same. Unfortunately, meeting this condition results in a long
propagation length. In Ref. [33], simulations indicate that a
flat band is achieved when d = 15µm. In our work, the sepa-
ration is d = 7µm, which is approximately half the separation
used in the previous work. Our proposed scheme, involving
the hybridization of two OAM modes, offers two distinct
advantages. First, it enables the generation of arbitrary gauge
flux in each plaquette, overcoming the limitation utilizing
the same-order OAM±1 mode. Second, direct coupling be-
tween adjacent waveguides is used, without inserting auxiliary
waveguides between two main ones. Consequently, the total
length of the waveguides can be significantly reduced [56].
This approach differs from that of [38]. While both works
utilize OAM modes to create gauge fields and topological
bound modes, here we utilize hybrid coupling of OAM0 and
OAM±1, contrasting with [38], where all waveguides are the
same, supporting OAM±1. The effective lattice is the Creutz
ladder in [38], and the discussion mainly focuses on how
the gauge fields affect topological phases. In contrast, in this
work, the effective lattice is rhombic, aimed at creating flat

FIG. 2. Band structure and distribution of eigenmodes for AB
cages. (a) Eigenenergy E as a function of Bloch momentum kd and
central angle θ . (b) Theoretical (dots) and simulated (lines) band
structures for three different central angles. The AB caging phe-
nomenon emerges at θ = π /2 as all bands become flat. (c) Theoretical
(first row) and simulated (second row) amplitude distribution of bulk
modes for three flat bands at k = 0.

bands and compact topological edge modes. Furthermore, in
Sec. IV, we propose that high-order OAM modes can also be
utilized to create gauge flux.

Figure 2(a) illustrates the eigenenergy E for a system with
periodic boundary as a function of Bloch momentum k and
central angle θ . Three bands E(k) are observed, with two
generally dispersive bands and a middle flat band. As θ =
π /2, corresponding to flux φ = π , the AB caging effect arises
due to the destructive interference, causing all three bands to
be flat. We conducted a full-wave simulation using COMSOL.
In the simulation, a unit cell is used for mode analysis. The
left and right edges are set as periodic conditions with a wave
vector k along the x direction, while the top and bottom edges
are scattering boundary conditions to absorb outgoing waves.
The mesh is smaller than 1/5 of the effective wavelength.
Subsequently, we sweep the Bloch wave vector k and solve for
the effective index neff of supermodes. In the waveguides with
the same parameters, the effective refractive index of OAM±1

is smaller than that of OAM0. By increasing the refractive
index of the OAM±1 waveguide, the effective refractive index
can match that of the OAM0 waveguide. The refractive indices
of two waveguides in each cell are given by n0 = 1.5443 for
an and n1 = 1.5480 for bn, both with a radius r = 2.4µm.
The cladding refractive index is nb = 1.540, and the incident
wavelength is λ = 0.7 μm. The simulation parameters fol-
low [35], where the waveguide samples can be fabricated via
direct laser writing using a commercial Nanoscribe system
and the photoresist IP-Dip. The effective refractive indices of
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FIG. 3. Bulk dynamics for different central angle for (a) θ = π , (b) θ = 3π /4, and (c) θ = π /2. In all cases, light is injected from a central
waveguide with fundamental modes.

l = 0 and l = 1 modes are identical, with neff0 = 1.5424. The
waveguide separation is fixed at d = 7µm for different central
angles. Figure 2(b) show the band structures for θ = π , 3π /4,
and π /2, respectively. The lines and dots represent theory and
simulation results, demonstrating consistency. The energy E
relates to effective refractive indices of supermodes neff as E
= (neff − neff0)k0, where k0 is the wave vector in vacuum and
neff0 is the effective refractive index for a single waveguide.
As θ = π , the two dispersive bands intersect at the center
of the Brillouin zone. As θ = 3π /4 and π /2, the three bands
have gaps. As θ = π /2, all three bands become dispersionless
across the entire Brillouin zone, signifying the presence of
AB caging, where the particles are expected to localize. By
solving Eq. (2), the three eigenmodes are determined to be
ψ2 = [0,−1, 1] and ψ1,3 = [2,±1,−1], with their distribu-
tions shown in the upper panel of Fig. 2(c). Simulated mode
profiles (Ey) are present in the lower panel of Fig. 2(c). The
E2 = 0 band exhibits vanished fields at the l = 0 waveg-
uide, while the l = 1 waveguide displays a py mode profile
due to the superposition of two OAM modes. Furthermore,
the field distributions for E1,3 = ±√

2c bands also show a
vertical py polarization at l = 1 waveguides, with opposite
orientations for two bands, consistent with the theoretical
expectations.

We further explore the bulk dynamics of wave propagation.
Figures 3(a)–3(c) illustrate the simulated light propagation
for three different central angles, with waves injected from a
fundament waveguide situated in the middle of the structure.
In general, a single injection induces the excitation of all
Bloch modes at different momenta k. When θ = π , corre-
sponding to dispersive bands, light spreads, and a discrete
diffraction pattern emerges during propagation, as depicted in
Fig. 3(a). When θ = 3π /4, while two bands are still curved,
their slopes decrease, resulting in slower spreading, as shown
in Fig. 3(b). Further reducing the central angle to θ = π /2
causes all bands to become flat, leading to the localization of
light without spreading. In Fig. 3(c), the waves are confined
to the incident waveguide and its two neighboring waveg-
uides due to destructive interference. At the beating length
Lb = 2π/(E1 − E3) ≈ 3600µm, the waves completely return
to the initial waveguide.

III. COMPACT TOPOLOGICAL EDGE
MODES IN AB CAGE

The proposed AB cage represents a square-root topological
insulator characterized by a nonquantized topological invari-
ant, capable of hosting topological edge states [56,57]. Its
topological origin is identified through a transformation to
either a SSH model or a stub lattice [58,59]. Here, we mainly
focus on the compact feature of edge modes, which are robust
even in a small lattice. Figure 4(a) shows the open band
spectrum as the central angle varies. Blue dots and red circles
represent bulk and topological edge modes, respectively. For
any given θ , two edge modes manifest in both upper and lower

0 0.2 0.4 0.6 0.8 1
-2

0E
/c

θ/π

θ=3π/4

(a)

(c) (e)

θ=π/2

0 5 10 15 20 25 30
Mode number

(b) (d)

0 5 10 15 20 25 30
Mode number

-2
-1
0
1

E
/c

2

0 1 0 1|E| |E|

FIG. 4. Topological edge modes in finite zigzag waveguide ar-
rays. (a) The energy spectra for a finite array. The red circles in the
band gap indicate the topological edge modes. Panels (b) and (d) plot
two energy spectra for θ = 3π /4 and θ = π /2, respectively. The red
circles in the band gaps stand for topological edge modes. Panels (c)
and (e) are the mode profiles for edge modes corresponding to (b)
and (d), respectively.
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band gaps, with energy given by

Eedge = ±c sin (θ ). (7)

Their corresponding eigenstates are

{an, b+
n , b−

n } = {
√

2,±1, 1}δn−1, δ = −1 + e2iθ

2
. (8)

with n < 1 staring from the left boundary. Considering |δ| <

1, the mode decays exponentially from the boundary into the
bulk. Two central angles are chosen to analyze their bands and
mode profiles. In Fig. 4(b), the open band spectrum for θ =
3π /4 is displayed, showing two edge modes with E = ±c/�2
in the gap. The corresponding simulated field distribution is
shown in Fig. 4(c), localized at the left boundary and ex-
hibiting an exponential decay away from it. Moving on to
Fig. 4(d), the energy band for θ = π /2 is presented, where
bulk bands are flat, and two edge modes appear at the gap with
Eedge = ±c. The simulated fields in Fig. 4(e) are compact,
confined to the left two waveguides. This compact feature
can be strategically utilized to reduce the number of waveg-
uide elements. We emphasize that the smallest lattice sites
(a single plaquette) are achieved through perfect destructive
interference. However, there is no strict necessity to limit the
gauge flux to π since the lattice sites are reduced as the gauge
flux approaches π . Therefore, the number of waveguides and
gauge flux can be combined to optimize different application
scenarios. In addition, the edge modes differ from compact
bulk modes in two key aspects. First, their origins are differ-
ent: one arises from a localized edge mode, while the other
originates from bulk extended states. Consequently, the edge
states benefit from topological protection. Second, the topo-
logical edge states exhibit better localization than bulk states.
In the AB caging limit, the bulk modes become compactly
localized but they are not robust against certain disorders and
perturbations.

Topological edge modes arise from the nontrivial bulk of
crystals, traditionally necessitating many lattice sites to hold
their topological protection. Figure 5(a) illustrates the spec-
trum under open boundary condition as a function of the total
number of array cells, with θ = 3π /4. The edge modes are
plotted in red. An additional site is introduced at the right
edge, supporting an extra topological edge mode at the right
boundary. In this configuration, the system has four edge
modes within two gaps. For large cells, the eigenenergies of
edge modes are degenerate in each gap. However, in smaller
cells, degeneracy is lifted due to the mode coupling of the
edge modes at different terminations, inevitably affecting their
topological protection. This finite-size effect is attributed to
their exponential decay feature. In contrast, for AB cages
with θ = π /2, the energy remains constant as the cell num-
ber decreases owing to their compact nature. Consequently,
a topological waveguide array with only a few cells can be
constructed based on AB cages. Wave propagation simula-
tions are depicted in Figs. 5(c) and 5(d), utilizing only seven
waveguides with light injected from the left edge. For θ =
3π /4, light couples to the right boundary due to the overlap of
edge modes. Conversely, for θ = π /2, light remains confined
to the left two waveguides due to their compact feature.

(c)

(d)

(a) (b)

0

2 cmz

0

1

xx

y

x

y

z

|E|

N

E
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−2

−1

0

1

2

N

FIG. 5. Finite-size effect for topological edge modes. Panels (a)
and (b) are the energy spectra versus the number of cells for θ =
3π /4 and θ = π /2, respectively. The bulk and edge modes are plotted
in blue dots and red circles, respectively. Panels (c) and (d) are the
light propagation for edge modes with n = 3 corresponding to θ =
3π /4 and θ = π /2, respectively. The edge modes for θ = π /2 remain
compact.

Topological edge modes are robust against certain disor-
ders that do not break underlying symmetries, paving the way
for disorder-insensitive photonic devices. The AB chains hold
two nonsymmorphic symmetries described by∏

H (k)
∏−1 = H∗(k),

χH (k)χ−1 = −H∗(k), (9)

with

∏
=

⎛
⎜⎝

1 0 0

0 e−iφ/2e−ikd 0

0 0 eiφ/2e−ikd

⎞
⎟⎠,

χ =

⎛
⎜⎝

1 0 0

0 −e−iφ/2e−ikd 0

0 0 −eiφ/2e−ikd

⎞
⎟⎠. (10)

We consider three types of disorders, including on-site
potential Vn at OAM0 waveguides, complex coupling αn be-
tween OAM±1 modes, and the coexistence of both. The inset
in Fig. 6(a) depicts these disorders. In practical experiment,
tuning the radius or refractive index of the waveguide core can
control on-site potential Vn, breaking χ while preserving �.
The coupling αn can be realized using elliptical waveguides,
where the rotation angle introduces nonreciprocal phase fac-
tors and thus complex coupling [38]. Therefore, the proposed
orbital waveguides provide a suitable platform to explore the
robustness of AB cages. Real-valued αn just breaks � but
preserves χ symmetry. The combination of Vn and complex
αn creates a general disorder that breaks both symmetries. We
focus on the AB caging case with a central angle θ = π /2,
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FIG. 6. Disorder analysis. Panels (a) and (b) are for the long
chain and small chain in AB cages. Panels (c) and (d) are for θ =
0.45. Three different disorders are considered, including the presence
of only on-site potential (blue solid line), only additional coupling
(red dash-dotted line), and both (green dashed line).

where the edge modes appear at E = ±c. The robustness of
the edge mode is characterized by the average mean squared
difference E/c = 〈|Eedge/c−1〉. All disorders are assumed
to follow a Gaussian distribution with zero mean value, that
is, 〈an〉 = 〈Vn〉 = 0. The standard deviation is denoted by σ .
Figures 6(a) and 6(b) present the averaged mean squared
difference of the edge modes for a long chain (n = 33) and
a small chain (n = 2), respectively. Each point represents the
average value calculated over 1000 iterations. When introduc-
ing on-site disorder or purely real coupling, the energy offset
gradually increases with the increase of disorder strength,
indicated by the blue solid lines and red dash-dotted lines.
In contrast, the green dashed line represents the result of
general disorder as the complex coupling αn and Vn are both
present. They follow a normal distribution with expected val-
ues 〈Im(αn)〉 = 〈Re(αn)〉 = 〈Vn〉 = 0 and the same standard
deviation σ . It exhibits a rapid increase with σ , indicating
that the system is not robust against this kind of disorder.
Notably, the disorder analysis for the small chain is similar
to that of the long chain, suggesting that topological edge
modes in AB cages remain robust irrespective of the number
of waveguide elements. The discussion about disorder aims
to identify which type of disorder the system performs better
against. With symmetry-preserved disorder, the topological
edge modes demonstrate stable eigenvalues and eigenstates.
We also analyze the imperfect AB caging with θ = 0.45π ,
as shown in Figs. 6(c) and 6(d). Nevertheless, their energy
remains robust against the disorders in the on-site term V
and coupling α, which indicates that the flux can be shifted
without the requirement to stay exactly at π .

IV. ORBITAL HYBRIDIZATION
FOR HIGH-ORDER OAM MODES

The hybrid coupling between OAM0 and high-order OAM
modes can also induce arbitrary gauge fluxes. As an exam-
ple, we analyze the interaction between OAM0 and OAM±2

modes. Considering that OAM±2 modes can be synthesized
by d orbital modes, we consider a unit cell of a zigzag chain

4θ4θ 4θ

-1 -0.5 0 0.5 1
kd/

-2

-1

0

1

E
/c

(a) (b)

(c) (d)

l=0

l=2

l=-2

zz=0

z=970 μm

z=1940 μm

z=2910 μm

z= 3880 μm

TheorySimulation

x

y

x

y 0

1
|E|

FIG. 7. Gauge flux induced by hybrid coupling between funda-
mental and high-order OAM modes. (a) Tight-binding lattice for
coupling of l = 0 and l = 2 OAM modes. (b) Band structure for AB
caging as central angle θ = 3π /4. Panels (c) and (d) are the bulk and
edge dynamics, respectively.

and formulate the Hamiltonian based on s − d interaction,

Hsd = c

⎛
⎜⎜⎜⎝

0 cosθ −sinθ 0

cosθ 0 0 cosθ

−sinθ 0 0 sinθ

0 cosθ sinθ 0

⎞
⎟⎟⎟⎠. (11)

Here, the OAM±2 modes are constructed using two d or-
bital modes with a phase difference of π /2. The transfer matrix
T2 is analogous to Eq. (6), leading to the Hamiltonian in the
OAM basis,

HOAM = T2Hsd T −1
2 = c√

2

⎛
⎜⎜⎜⎝

0 eiθ e−iθ 0

e−iθ 0 0 eiθ

eiθ 0 0 e−iθ

0 e−iθ eiθ 0

⎞
⎟⎟⎟⎠.

(12)

A nonreciprocal phase θ appears in the coupling term,
twice that for OAM±1 modes. Consequently, the gauge flux
threading each plaquette is φ = 4θ .

The effective tight-binding lattice for the coupling module
for OAM±2 modes is depicted in Fig. 7(a). The condition for
the AB caging effect is 4θ = π + 2mπ with m an integer.
Considering that θ is in the range of 0 and π , the central
angle can be θ = π /4 or 3π /4. However, when θ = π /4,
the next-nearest coupling between two adjacent waveguides
becomes significant. Therefore, we choose θ = 3π /4. The cor-
responding band structure under periodic boundary condition
is shown in Fig. 7(b), with lines and dots representing theory
and simulation, respectively. In the simulation, the refractive
index of OAM±2 waveguide is nd = 1.5538, ensuring the
mode matching of OAM0 and OAM±2 modes. Other param-
eters are the same as those used in Fig. 2. All three bands
exhibit flatness across the entire Brillouin zone, signifying
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the AB caging effect. Further exploration of bulk dynamics
involves injecting light from a l = 0 waveguide located at the
structure center. The field distributions at different propaga-
tion distances are shown in Fig. 7(c). During the propagation,
light gradually transfers into the two neighboring waveguides
near the incident waveguides, and then returns to the ini-
tial waveguide, with a beating length Lb = 2π/(E3 − E1) ≈
3880µm. We also investigate the edge dynamics, as shown in
Fig. 7(d). The waves concentrate at the two boundary waveg-
uides during the propagation, corresponding to topological
edge modes.

V. CONCLUSION

In conclusion, we have demonstrated the generation of ar-
bitrary AGFs in an orbital zigzag waveguide array composed
of two types of waveguide elements that support fundamental
and first-order OAM modes, respectively. The orbital hy-
bridization introduces complex coupling, leading to tunable
AGFs controlled by the center angle of the zigzag chain.
Specifically, when the central angle is set to π /2, an effec-
tive π gauge flux is induced, leading to AB caging effect

characterized by flat bands and localized bulk modes. The
topological edge modes in AB cages are shown to be com-
pact, completely localized at the boundary waveguides, and
robust against disorders preserving certain symmetries, even
in relatively small lattices. The direct coupling scheme used
in our approach eliminates the need for auxiliary waveguides,
significantly reducing the total length of waveguide arrays
along the propagation direction. Consequently, our proposed
orbital hybridization is effective in miniaturizing the size of
topological waveguide arrays. Furthermore, the mechanism
is generalizable to high-order OAM modes. This alternative
approach to orbital hybridization addresses challenges associ-
ated with arbitrary gauge fields in straight waveguides. It can
be further applied to investigate other gauge-enriched topo-
logical phenomena, such as projective symmetry-protected
topological phases [60,61], non-Hermitian physics [62,63],
and high-order topological insulators [37,64].
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