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Negative refraction in isotropic achiral and chiral materials
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We show that negative refraction in materials can occur at frequencies ω where the real parts of the permittivity
ε(ω) and the permeability μ(ω) have different signs and that light with such frequencies can propagate just as
well as light with frequencies where they have equal signs. Therefore, for negative refraction one does not
need to be in the “double-negative” regime. We consider negative-refractive-index achiral materials using the
Drude-Lorentz model and chiral materials using the Drude-Born-Fedorov model. We find that the time-averaged
Poynting vector always points along the wave vector, the time-averaged energy-flux density is always positive,
and the time-averaged energy density is positive (negative) when the refractive index is positive (negative). The
phase velocity is negative when the real part of the refractive index is negative, and the group velocity generally
changes sign several times as a function of frequency near resonance.
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I. INTRODUCTION

Negative refraction (NR) is a phenomenon in which elec-
tromagnetic waves are refracted at an interface with a NR
angle [1–5]. It is believed that in order for NR to occur,
the real part of the (electric) permittivity ε and real part
of the (magnetic) permeability μ must both be negative at
a particular frequency [1–9]. Such materials are sometimes
called “double-negative” materials. NR metamaterials, i.e.,
specially designed NR materials made from assemblies of
multiple elements fashioned from composite materials, have
been developed [3,6–9]. It is furthermore believed that light at
frequencies such that {Re[ε(ω)] > 0 and Re[μ(ω)] < 0} or
{Re[ε(ω)] < 0 and Re[μ(ω)] > 0} is not able to propagate in
materials [1–9]. Both beliefs are predicated on the assumption
that the permittivity and the permeability are real. However,
this double-negative criterion does not apply for frequencies
close to resonance, where the permittivity and the permeabil-
ity are complex. If the permittivity and the permeability are
real and have different signs, the average energy-flux density
(average Poynting vector) vanishes (see Sec. II C). However, if
the permittivity and the permeability are complex, the average
energy-flux density is nonzero (the same is true for the chiral
case treated in Sec. IV A). Here we use the amplitude-phase
representation of the permittivity and permeability within the
Drude-Lorentz model [10] for achiral media and the Drude-
Born-Fedorov model [11] for chiral media to calculate the
complex refractive index. We then analyze and categorize the
wealth of phenomena that occur when optical waves are in
frequency ranges near resonant optical transitions where NR
is possible.

References [12,13] are exceptions; they used the
amplitude-phase representation of the permittivity, per-
meability, and refractive index. They considered two resultant
complex refractive indices, n(ω) = ±√

ε(ω)μ(ω)/(ε0μ0).
While the resultant complex refractive index n(ω) with the
minus sign is not a physical solution because it gives negative

absorption (i.e., gain), the refractive index n(ω) with the plus
sign has the right properties.

To date, NR materials have been fabricated using man-
made metamaterials, but Ref. [14] argued that naturally
occurring NR materials exist; the NRs of Dirac semimet-
als such as Cd3As2 were calculated. NR metamaterials have
led to significant technological advancements [4–9], includ-
ing (1) superlensing, i.e., overcoming the diffraction limit
of conventional lenses, allowing for subwavelength imaging
for high-resolution microscopy [15,16]; (2) cloaking using
devices that can manipulate the flow of light around an ob-
ject, rendering it invisible to observers [4,17,18]; (3) terahertz
imaging, spectroscopy, and communication systems, enabling
noninvasive inspections in biomedical imaging and security
screening [19]; and (4) antennas incorporating NR metamate-
rials that can enhance the radiated power of the antenna NR
by focusing electromagnetic radiation by a flat lens versus
dispersion [20–22].

II. THEORY

For an electromagnetic plane wave with electric field
E(r, t ) = Re(E0 ei(k·r−ωt ) ) and magnetic field H(r, t ) =
Re(H0 ei(k·r−ωt ) ), the Faraday and Ampère equations, to-
gether with the constitutive equations in an isotropic homo-
geneous material, D = εE and B = μH, yield, in SI units,

k × E0 = ω μ(ω)H0, k × H0 = −ω ε(ω)E0. (1)

Substituting k = n(ω) ω

c k̂, we obtain

n(ω) k̂ × E0 = c μ(ω)H0, (2)

n(ω) k̂ × H0 = −c ε(ω)E0, (3)

which yields [noting that in vacuum, c2 = (ε0μ0)−1]

n2(ω) = c2ε(ω)μ(ω) = ε(ω)μ(ω)

ε0μ0
. (4)
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A. Drude-Lorentz model

The Drude-Lorentz model [10] is a widely used theoreti-
cal framework for describing the behavior of electromagnetic
waves in materials. It provides a phenomenological approach
to model ε and μ of materials, including those with NR. In the
Drude-Lorentz model, the equation of motion for an electron
in a meta-atom can be expressed as

m
d2r
dt2

= −mω2
0r − mγ

dr
dt

+ (−e)E(ω)e−iωt , (5)

where m is the effective mass of the electron, r(t ) is the dis-
placement of the electron, ω0 is the resonance frequency, γ is
the damping coefficient, e is the elementary charge, and E(ω)
is the electric field of the incident electromagnetic wave at
frequency ω. Substituting r(t ) = r0(ω)e−iωt into Eq. (5), we
find r0(ω) = ( −e/m

ω2
0−ω2−iγω

)E(ω). The polarization P(ω) related
to the induced dipole moment per unit volume can be written
as P(ω) = −Ner0(ω) ≡ χ (ω)E(ω), where χ (ω) is the elec-
tric susceptibility of the material. Substituting the expression
for r0 into P(ω), we can obtain the electric susceptibility as
χ (ω) = − Ne2

m(ω2−ω2
0+iγω)

, where N is the number density of
electric dipole moments. The electric permittivity ε(ω) of the
material can then be calculated as

ε(ω) = ε0[1 + χ (ω)] = ε0

(
1 − ω2

p

ω2 − ω2
0 + iγω

)
, (6)

where the plasma frequency is defined as ω2
p = Ne2

ε0m [23]. [If
we make use of the Clausius-Mossotti relation [24], then

ε(ω) = ε0(1 − ω2
p

ω2−ω̃2
0+iγω

), where ω̃2
0 = ω2

0 − ω2
p/3, but the

correction to the resonance frequency is usually small.] Sim-
ilarly, a magnetic dipole transition with resonance frequency
ω0m and width γm yields the magnetic permeability,

μ(ω) = μ0

(
1 − ω2

pm

ω2 − ω2
0m + iγmω

)
, (7)

where the magnetic plasma frequency squared ω2
pm is a con-

stant related to the magnetic properties of the material and
is proportional to the transition magnetic dipole moment
squared.

B. Negative refractive index

In order to develop the theory of NR, Veselago [1] wrote

n(ω) = ±
√

ε(ω)μ(ω)
ε0μ0

, where the minus sign is required for

the case when the real parts of both ε(ω) and μ(ω) are
negative. This is the standard approach for dealing with
double-negative materials [1–9]. Instead, we follow a more
direct and mathematically appealing procedure. We write the
complex refractive index as

n(ω) =
√|ε(ω)||μ(ω)|√

ε0μ0
ei[θε (ω)+θμ(ω)]/2, (8)

where θε and θμ are the complex phases of ε and μ,
respectively, i.e., ε = |ε|eiθε and μ = |μ|eiθμ . The real (imag-
inary) part of n(ω) is the refractive index (optical ab-
sorption coefficient divided by ω/c). The imaginary part
of n(ω), n′′(ω), must be non-negative since otherwise, the

plane wave for the electric field E(r, t ) = Re(E0 ei(k·r−ωt ) ) =
Re(E0 eiω{[n′(ω)+in′′(ω)]k̂·r/c−t}) would have gain, which is im-
possible. This form of the refractive index is unique [there are
no branch-point problems because of the square root in the
definition of the refractive index and because the imaginary
part of n(ω) cannot be negative since that would imply gain].
Therefore, adding an angle π to θn = (θε + θμ)/2 in Eq. (8)
would yield an unphysical complex refractive index.

C. Poynting vector

The Poynting vector (which gives the electromagnetic en-
ergy transfer per unit area per unit time) is defined as S =
E × H. For a linearly polarized plane wave with E(r, t ) =
Re(E0 ei(k·r−ωt ) ) and H(r, t ) = Re(H0 ei(k·r−ωt ) ), where E0

and H0 obey Eqs. (2) and (3), with ε, μ, and n being com-
plex, the three orthogonal vectors {E0,H0, k} can be written
as E0 =E0 x̂, H0 = H0 ŷ, and k = k ẑ, where k = ωn(ω)/c,
H0 = √|ε|/|μ| E0eiθH , and θH = (θε − θμ)/2. The orthogonal
vectors {E0,H0, k} form a right- (left-) handed coordinate
system if Re(n) > 0 [Re(n) < 0]. Taking E0 to be real and
positive, we obtain

S = ẑ
√

|ε|/|μ| E2
0 cos(ζ ) cos(ζ + θH )e−2k′′z. (9)

Here ζ = k′z − ωt , k′ = n′(ω)ω/c [k′′ = n′′(ω)ω/c] is the
real (imaginary) part of k, and n′ (n′′) is the real (imaginary)
part of n. When θH vanishes, S is proportional to cos2(ζ ) and
is directed along ẑ. When θH �= 0, the magnetic field has phase
shift θH with respect to the electric field. Hence, there are
intervals of ζ where both cos(ζ ) and cos(ζ + θH ) have the
same sign and S is along ẑ, and there are intervals of ζ where
cos(ζ ) and cos(ζ + θH ) have different signs. In the latter case,
S is along −ẑ. Hence, the energy transfer per unit area per unit
time is time dependent and can be either positive or negative.
The time-averaged energy-flux density is

S̄ ≡ 1

T

∫ T

0
S(z, t )dt = ẑ

√
|ε|/|μ| (E2

0 /2
)

cos(θH )e−2k′′z,

(10)

where T = 2π/ω is the wave period. If ε and μ are real
and have different signs, satisfying the Faraday and Ampère
equations requires |θH | = π/2 and S̄ = 0. If ε and μ are
complex, 0 < θε < π , 0 < θμ < π , and |θH | < π/2, which is
clear from the Drude-Lorentz model; S̄(ω) is always directed
along ẑ.

D. Electromagnetic energy density and power-dissipation
density

The time rate of change of the electromagnetic energy
density is given by [25]

∂u

∂t
= E · ∂D

∂t
+ H · ∂B

∂t
. (11)

Moreover, the rate of change of the energy density can be
written as ∂u

∂t = Q + ∂ueff
∂t , where Q is the power-dissipation

density and ∂ueff
∂t is the energy density rate due to energy

transfer, i.e., the difference between incoming and outgo-
ing electromagnetic energies. For a narrow wave packet, the
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time-averaged power dissipation Q̄ and the energy density ūeff

averaged over a period 2π/ω are [25,26]

Q̄ = ω

2
[ε′′(ω) |E0|2 + μ′′(ω) |H0|2]e−2k′′z

= ω

2

{
ε′′(ω) + μ′′(ω)

∣∣∣∣ ε(ω)

μ(ω)

∣∣∣∣
}
|E0|2e−2k′′z, (12)

ūeff = 1

2

{
d[ω ε′(ω)]

dω

∣∣E0

∣∣2 + d[ω μ′(ω)]

dω

∣∣H0

∣∣2
}

e−2k′′z

= 1

2

{
d[ω ε′(ω)]

dω
+ d[ω μ′(ω)]

dω

∣∣∣∣ ε(ω)

μ(ω)

∣∣∣∣
}
|E0|2e−2k′′z.

(13)

Note that if ωp >
√

γ (2ω0 + γ ), then ε′(ω±) = 0, where

ω± =

√√√√
ω2

0 + ω2
p − γ 2

2
±

√(
ω2

p − γ 2

2

)2

− ω2
0γ

2.

For ω− < ω < ω+, ε′(ω) is negative. If ω is close to
ω−, ε′(ω) is small, and ∂ε′(ω)

∂ω
< 0; hence, d[ω ε′(ω)]

dω
< 0,

and the electric energy density 1
2

d[ω ε′(ω)]
dω

|E0|2 is negative.
Moreover, if ωpm >

√
γm (2ω0m + γm), there is a range of

ω where d[ω μ′(ω)]
dω

< 0, and the magnetic energy density
1
2

d[ω μ′(ω)]
dω

|H0|2 is negative.

E. Phase velocity and group velocity

The phase velocity of light is vp = ω/k′, and the group
velocity is vg = (∂k′/∂ω)−1. Hence, vp = c/n′, and vg =
c/(n′ + ω∂ωn′). Note that when n′ < 0, the phase velocity
is negative, and when n′ + ω∂ωn′ < 0, the group velocity is
negative. In other words, if a pulse propagates through a
material with a negative group velocity, the peak of the pulse
propagates in the direction opposite the energy-flow direction
[27,28]. Moreover, near a resonance, n′ + ω∂ωn′ can be small,
and the group velocity can exceed the speed of light [29].
Experiments have verified that it is possible for the group
velocity to exceed the speed of light in vacuum [28,30–32].
From our calculations we see that the group velocity can
become singular at as many as four frequencies.

A circular-polarization representation for achiral materials
will be discussed following the chiral case below. It turns out
to be simpler than the linearly polarized analysis above.

III. NUMERICAL RESULTS FOR THE ACHIRAL CASE

Using the Drude-Lorentz model for an electric dipole
transition and a magnetic dipole transition with resonance
frequencies that are close to one another (see the caption of
Fig. 1 for the set of parameters used), we calculate the com-
plex permittivity ε(ω) and complex permeability μ(ω) versus
frequency and the complex refractive index n(ω) (whose real
part is the index of refraction and whose imaginary part is
the absorption coefficient) using Eq. (8). Figure 1 shows the
complex ε(ω) and μ(ω) versus frequency calculated with the
Drude-Lorentz model. The region of frequencies where both
of the real parts of ε(ω) and μ(ω) are negative is shown in
Fig. 1, but there are also frequency regions where the real
parts of ε(ω) and μ(ω) are of opposite sign. Figure 2 plots

FIG. 1. The complex relative electric permittivity ε/ε0 and com-
plex magnetic permeability μ/μ0 plotted versus ω (in arbitrary units)
for Drude-Lorentz parameters ω0 = 3, ω0m = 3.2, γ = 0.3, γm =
0.2, ωp = 5, and ωpm = 2. The dashed curves are the imaginary parts
of ε(ω) and μ(ω).

the real and imaginary parts n(ω), defined in Eq. (8), versus
ω. Note that the absorption coefficient α ≡ Im[n(ω)] � 0 for
all frequencies [hence, there is absorption (no gain) for all
frequencies]. Moreover, there are frequency regions where
Re[n(ω)] < 0, and in part of this frequency range the real
parts of ε(ω) and μ(ω) are of opposite sign.

Note that all the figures in this paper appear in the Supple-
mental Material (SM) [33], which is a Mathematica notebook
that allows readers to modify all the material parameters using
the sliders.

For comparison, Fig. 3 shows n(ω) versus ω calculated
assuming the light can propagate only if the real parts of
ε and μ are of the same sign, as assumed in much of the
literature. Where they are of opposite sign, n(ω) has been set
to zero in Fig. 3. With the set of parameters used, there are
two frequency regions where n(ω) has been set to zero: the
frequency regions [3.01, 3.24] and [3.73, 5.82]. Readers can

FIG. 2. The real (magenta line) and imaginary (black line) parts
of the complex refractive index n(ω) versus ω (in arbitrary units) for
the same Drude-Lorentz parameters as used in Fig. 1. The NR region
is to the right of the resonance frequency. The imaginary part shows
absorption over a large region about the resonance frequency.
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FIG. 3. The real and imaginary parts of the complex refractive
index versus ω (in arbitrary units) for the same Drude-Lorentz pa-
rameters as used in Fig. 1 using the double-negative criterion that
propagation cannot occur if the real parts of ε and μ have different
signs. In the these frequency regions the real and imaginary parts
of n(ω) have been set to zero, which is necessary according to the
commonly held view.

compare Fig. 3 with Fig. 2 to see the behavior of the correct
refractive index in these regions. The large region where n(ω)
is zeroed to the right of ω = 3.7 is where the real part of ε is
negative but the real part of μ is positive, and the same is true
in the small region near ω = 3.0 (see Fig. 1).

Figure 4 plots the frequency dependence of the time-
averaged Poynting vector S̄(ω)

E2
0 e−2k′′z [which is equivalent to the

nonaveraged quantity S±(ω)
E2±e−2k′′

σ z for right- and left-polarized

light in the chiral case, as discussed in Sec. IV]. The aver-
age Poynting vector is positive (i.e., in the z direction) for
all frequencies. The peaks of S̄ appear at the frequencies of
the maximum and minimum of n(ω). Figure 5 plots both
the average energy density ū(ω) and the imaginary parts
of the permittivity and permeability, ε′′(ω) ≡ Im[ε(ω)] and
μ′′(ω) ≡ Im[μ(ω)], versus frequency. ū(ω) is negative in the
frequency region near the maximum of ε′′ and in a region near
the maximum of μ′′.

FIG. 4. The time-averaged Poynting vector S̄ plotted versus ω

(in arbitrary units) for the same Drude-Lorentz parameters as used in
Fig. 1.

FIG. 5. The time-averaged energy density ū(ω) (black line), the
imaginary part of the permittivity Im(ε) ≡ ε′′ (red line), and the
imaginary part of the permeability Im(μ) ≡ μ′′ (blue line) versus ω

(in arbitrary units) for the same Drude-Lorentz parameters as used in
Fig. 1.

Figure 6 shows the time-averaged power dissipation den-
sity Q̄(ω) versus ω given in Eq. (12). The major peak near
ω = 3 is due to the peak of the imaginary part of n(ω) and
the minor peak near ω = 3.8 is near the small peak of the
imaginary part of n(ω) near ω = 3.9. In Fig. 1 we can see
that the imaginary part of μ(ω) has a peak at ω = 3.2 which
contributes to the peak of Q̄(ω) but is shifted due to the factor
of

∣∣ ε(ω)
μ(ω)

∣∣ multiplying it [see Eq. (12)].
Figure 7 plots the phase velocity vp = ω/k′ versus fre-

quency. There are two resonances in the phase velocity that
originate from the two zeros in Re[n(ω)] ≡ n′(ω). Figure 8
plots the group velocity vg = (∂k′/∂ω)−1 versus frequency.
There are four resonances for the group velocity that originate
from four zeros in ∂[ωn′(ω)]/∂ω.

Figure 9 simulates a plane wave which is polarized along
the x axis as it propagates along the z axis. Figure 9 shows the
electric field E(r, t ) = x̂ Re[ei(kz−ωt )], where k = n(ω)ω/c,
versus z at five different times. At a frequency ω = 3.8 (in
arbitrary units), the phase of the electric field propagates in
the −z direction (the curves shift left with increasing time);
hence, the real part of the refractive index is negative (see

FIG. 6. The time-averaged power-dissipation density Q̄(ω) ver-
sus ω (in arbitrary units) for the same Drude-Lorentz parameters as
used in Fig. 1.
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FIG. 7. Phase velocity vp = ω/k′ versus frequency for the same
Drude-Lorentz parameters as used in Fig. 1.

below). For the Drude-Lorentz parameters used here, the per-
mittivity is ε(ω) = −3.402 + 0.923 i, and the permeability
is μ(ω) = 0.078 + 0.167 i; i.e., ε′(ω) and μ′(ω) have differ-
ent signs (so according to the double-negative criterion that
propagation cannot occur if the real parts of ε and μ have
different signs, propagation cannot occur at this frequency),
and the refractive index is n(ω) = −0.339 + 0.731i. In the
section titled “Simulation of the propagation of a plane wave
in an achiral medium” in the SM [33] readers can run a movie
of the propagation of the electric field and watch it propagate
by opening the time slider and playing the movie. In the
SM [33] readers can also change the frequency ω as well as
other Drude-Lorentz parameters to see how the propagation
changes as the parameters are varied.

IV. CHIRAL MEDIA

The constitutive equations for isotropic chiral media must
be modified to allow for optical activity. One form of the mod-
ified constitutive equations, called the Drude-Born-Fedorov
model [10,11], is as follows:

D = ε[E + β ∇ × E], (14)

B = μ[H + β ∇ × H], (15)

FIG. 8. Group velocity vg = (∂k′/∂ω)−1 versus frequency for the
same Drude-Lorentz parameters as used in Fig. 1.

FIG. 9. Simulation of the electric field Ex (z, t ) = Re[Ex (z, t )]
of the plane wave propagating along the z axis plotted versus z
at five times, t = 0, 0.1, 0.2, 0.3, 0.4 (in arbitrary units), where the
period τ = 2π/ω = 1. Here we take ω = 3.8 (in arbitrary units) and
the same Drude-Lorentz parameters as used in Fig. 1, so n(ω) =
−0.339 + 0.731i.

where the electric permittivity ε(ω) is given in Eq. (6) and
the magnetic permeability μ(ω) is given in Eq. (7). This
form is symmetric under time reversal. The pseudoscalar β,
sometimes called the chiral admittance, has units of length
and is a measure of the optical activity. Let us consider
a plane-wave electromagnetic field, E(r, t ) = Re[E (r, t )] =
Re[E0ei(k·r−ω t )], with similar notation for B(r, t ), D(r, t ) and
H(r, t ), and determine the consequences of Eqs. (14) and
(15). Using the Faraday and Ampère laws in a nonconducting
medium, ∇ × E = iωB and ∇ × H = −iωD, the Drude-
Born-Fedorov equation in frequency space takes the form

D0 = ε(ω)[E0 + iωβ(ω)B0],

B0 = μ(ω)[H0 − iωβ(ω)D0]. (16)

These equations can be written in matrix form as(
E0

H0

)
=

(
ε−1(ω) −iωβ(ω)
iωβ(ω) μ−1(ω)

)(
D0

B0

)
. (17)

Substituting into the Faraday and Ampère equations gives

k × E0 = ωB0, k × H0 = −ωD0, (18)

which, upon writing k = ñ(ω)ω
c k̂, can be written in terms of

the refractive index as

ñ(ω)

c
k̂ × (ε−1D0 − iωβB0) = B0,

ñ(ω)

c
k̂ × (μ−1B0 + iωβD0) = −D0. (19)

Solving for ñ(ω) in the determinant obtained using these
equations yields two degenerate solutions for the right- and
left-handed circularly polarized light fields,

ñ(ω) ≡ n±(ω) = n(ω)

1 ∓ βω

c n(ω)
, (20)

where n(ω) is given in Eq. (8).
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FIG. 10. In a medium that is chiral, the real and imaginary parts
of the complex refractive index n±(ω) versus ω (in arbitrary units)
are different for right-circular polarization (solid curves) and left-
circular polarization (dashed curves). The same Drude parameters as
in Fig. 1 are used here, and β = 0.02 (in arbitrary units).

A. Nonresonant chiral admittance

In this section we consider a chiral medium containing
impurity atoms with an electric dipole transition and impurity
atoms with a magnetic dipole transition. The chiral admittance
β of the chiral medium has resonances that are very far from
the resonance frequencies of the atoms, so it is reasonable
to take β to be frequency independent [34]. In the next sec-
tion we will investigate the case where the chiral admittance
has a resonance form [35–38].

Using a circular-polarization basis, we write

E0 = E+ e+ + E− e− (21)

(with similar notation for D0, B0, and H0), where the sub-
script + (−) refers to right-polarized (left-polarized) waves
e+ = −1√

2
(x̂ + iŷ) [e− = 1√

2
(x̂ − iŷ)]. We find that

D± = n±(ω)

n(ω)
ε(ω)E±, B± = ∓ in±(ω)

c
E±,

H± = ∓i

√
|ε(ω)|
|μ(ω)| eiθHE±. (22)

The real part of the complex wave number of a circu-
larly polarized wave is k′

σ = ωn′
σ (ω)/c, where σ = ± and

n′
σ (ω) is the real part of nσ (ω). The rotation angle of the

polarization of linearly polarized light is given by θrot ≡
Re[�n]l = (n′

+ − n′
−)l , where l is the length of the NR

material traversed. Moreover, differential absorption �α± ≡
Im[�n]ω/c = (n′′

+ − n′′
−)ω/c (i.e., the circular dichroism) en-

sues; hence, the light will generally be elliptically polarized
upon propagation through the material, and θrot (ω) will be the
rotation of the major and minor axes.

Figure 10 plots the real (magenta curves) and imaginary
(black curves) parts of n±(ω) versus ω for right-circularly
polarized (+, solid curves) and left-circularly polarized (−,
dashed curves) light. The resonance frequency and entire
curves for the complex refractive index are shifted to higher
(lower) frequencies for the right-circularly polarized (left-
circularly polarized) light in the chiral medium (finite β)

FIG. 11. In a chiral medium, the real and imaginary parts of
the complex refractive index n±(ω) versus ω (in arbitrary units) are
different for right-circular polarization (solid curve) and left-circular
polarization (dashed curve). The same Drude-Born-Fedorov param-
eters as in Fig. 10 are used here.

relative to those in Fig. 2 (which is for β = 0). Moreover, both
Re(n+) and Im(n+) are smaller in magnitude than Re(n−) and
Im(n−), respectively. Both Re(n+) and Re(n−) have regions
of NR, and these regions partly overlap. Both Im(n±) are
positive (absorptive) for all frequencies. The absorptions of
both right- and left-circularly polarized light have minima
near ω ≈ 3.8.

Figure 11 plots the circular birefringence Re[�n(ω)] =
n′

+(ω) − n′
−(ω), which is proportional to the polarization

rotation angle θrot (ω) = [n′
+rot(ω) − n′

−rot(ω)]l versus fre-
quency, and the circular dichroism Im[�n(ω)] = n′′

+(ω) −
n′′

−(ω), which is proportional to the differential absorption
�α(ω) ≡ [n′′

+(ω) − n′′
−(ω)]ω/c versus frequency. Both the

circular birefringence and the circular dichroism change sign
as a function of frequency near the resonance, but the real
part changes sign twice, whereas the imaginary part changes
sign only once. For frequencies larger than ω ≈ 3.8, both
the circular birefringence and the circular dichroism are very
small (the solid and dashed curves in Fig. 10 are very close to
overlapping).

The possibility of obtaining negative refraction in a chiral
medium due to a resonance in only the permittivity (and not in
the permeability) was first suggested by Pendry [39] (see also
Refs. [40,41]). This can be understood from Eq. (20) by noting
that if the real part of the second term in the denominator were
larger than unity, n+ would be negative (while n− would be
positive). In Fig. 10 we see that there are frequency ranges
where both n+ and n− are negative due to the resonance
structure of ε and μ. The resonance in n+ occurs at a lower
frequency than the resonance in n−.

The Poynting vector is given by

S±(ω) = k̂

√
|ε(ω)|
|μ(ω)|

E2
±
2

cos θH e−2k′′
σ z. (23)

Since |θH | � π/2, S± points in the k̂ direction. Note that
the energy-flux density S±

e−2k′′
σ z does not depend on r or t (as

opposed to the non-time-averaged achiral case). The Poynting
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vector S±(ω)
E2±e−2k′′

σ z is independent of the polarization σ and the

chiral admittance β; there is no need to present a figure for
this case since the results are identical to Fig. 4, which shows
the average energy-flux density S̄ obtained in the achiral case
discussed in Sec. II.

Following a similar line of reasoning as that used by Jack-
son [25] for the achiral case, we find that the energy density
u± and the power-dissipation density Q± are given by [42]

u± = 1

16π

{
d[ωε̃′(ω)]

dω

∣∣E±(ω)
∣∣2 + d[ωμ̃′(ω)]

dω
|H±(ω)|2

+ 2
d[ω2β̃ ′(ω)]

dω
Im[H±(ω) · E∗

±(ω)]

}

= |E±(ω)|2
16π

{
d[ωε̃′(ω)]

dω
+ d[ωμ̃′(ω)]

dω

∣∣∣∣ ε(ω)

μ(ω)

∣∣∣∣
∓ 2

d[ω2β̃ ′(ω)]

dω
Re

[√
ε(ω)

μ(ω)

]}
, (24)

Q± = ω

8π
{ε̃′′(ω) |E±(ω)|2 + μ̃′′(ω) |H±(ω)|2

+2ωβ̃ ′′(ω) Im[H±(ω) · E∗
±(ω)]}

= ω|E±(ω)|2
8π

{
ε̃′′(ω) + μ̃′′(ω)

∣∣∣∣ ε(ω)

μ(ω)

∣∣∣∣
∓2 ωβ̃ ′′(ω) Re

[√
ε(ω)

μ(ω)

]}
. (25)

Note that circularly polarized light has a constant mag-
nitude; hence, time averaging the energy density and
power-dissipation density is not necessary when a circular-
polarization basis is used (unlike the linear-polarization basis
used in Sec. III).

In the limit β → 0, the phase velocities vp,σ (ω) and group
velocities vp,σ (ω) go to the achiral ones, and as already stated,
the energy-flux density and the energy density go to the achiral
average energy-flux density and the average energy density,
respectively.

The phase velocity is vp,σ (ω) = ω/k′
σ = c

n′
σ (ω) , and the

group velocity is vg,σ (ω) = (∂k′
σ /∂ω)−1 = c

n′
σ (ω)+ω∂ωn′

σ (ω) .
Figure 12 plots the phase velocities vp,±(ω) versus ω, and
Fig. 13 plots the group velocities vg,±(ω). The resonance
behaviors of the phase and group velocities are similar to those
in the achiral case; the phase velocities have two resonances,
and the group velocities have four. The SM notebook [33]
allows one to vary the β parameter (and other parameters)
to see the dramatic changes in the frequency dependence of
θrot (ω), �α±, and other quantities such as the phase and group
velocities.

Figure 14 plots u+(ω) and u−(ω) versus frequency. The
right- and left-polarization curves are hard to distinguish, but
the inset plots the difference �u±(ω) = u+(ω)(ω)

E2+e−2k′′+z − u−(ω)(ω)

E2−e−2k′′−z .

Figure 15 shows the power-dissipation density Q±(ω) versus
ω for right-circular (solid red curve) and left-circular polar-
ization (dashed blue curve). The power dissipation is always
positive, and resonance behavior has two local maxima in

FIG. 12. In a chiral medium, the phase velocities vp,±(ω) ver-
sus ω are different for right-circular polarization (solid curves) and
left-circular polarization (dashed curves). The same Drude-Born-
Fedorov parameters as in Fig. 10 are used here.

FIG. 13. In a medium that is chiral, the phase velocities vg,±(ω)
versus ω are different for right-circular polarization (solid curves)
and left-circular polarization (dashed curves). The same Drude-
Born-Fedorov parameters as in Fig. 10 are used here.

FIG. 14. In a chiral medium, the energy density u±(ω) versus
ω for right-circular polarization (red solid line) and left-circular
polarization (dashed blue line). The same Drude-Born-Fedorov pa-
rameters as in Fig. 10 are used here. The inset shows the difference
�u±(ω) = u+ (ω)(ω)

E2+e−2k′′
σ z

− u− (ω)(ω)

E2−e−2k′′
σ z

.
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FIG. 15. In a chiral medium, the power-dissipation density
Q±(ω) versus ω for right-circular polarization (solid red line)
and left-circular polarization (dashed blue line). The difference
�Q±(ω) = Q+ (ω)(ω)

E2+e−2k′′
σ z

− Q− (ω)(ω)

E2−e−2k′′
σ z

is identically zero. The same Drude-

Born-Fedorov parameters as in Fig. 10 are used here.

this case; the difference �Q±(ω) = Q+(ω)(ω)

E2+e−2k′′+z − Q−(ω)(ω)

E2−e−2k′′−z = 0

for all frequencies if β is real (as we shall see in Sec. IV B,
for complex β, �Q±(ω) is, in general, not zero).

Finally, Fig. 16 shows the electric field E(z, t ) of a plane
wave propagating along the z axis plotted versus z (in the SM
[33] readers can run a movie which shows the time depen-
dence of E(z, t ) and can also change the material parameters).
The light field at z = 0 is linearly polarized (see the orange

FIG. 16. The electric field E(z, t ) of the plane wave (26) propa-
gating along the z axis plotted as a function of z for t = 0. The orange
line at the front face of the material shows the linear polarization of
the incident light. The intersection of the blue curve with the orange
line gives the instantaneous polarization at t = 0. The orange ellipse
shows the polarization states of the light at the back face of the
material as a function of time, and the intersection of the blue curve
with the orange ellipse gives the instantaneous polarization at t = 0.
The same Drude-Born-Fedorov parameters as in Fig. 10 are used
here. The SM [33] contains a movie showing the time dependence
of the polarization.

line at the front face of the material in Fig. 16). The polariza-
tion becomes elliptical as the field propagates in z. The electric
field can be represented as

E(z, t ) = 2−1/2E0Re[(−e+eik+z + e−eik−z )e−iωt ]. (26)

In addition to the electric field inside the material, the lin-
ear polarization of the incident field at the front face of the
medium is determined by the intersection of the blue curve
with the orange line at the front face, and the polarization
ellipse of the field at z = zmax is shown at the back face as the
intersection of the blue curve with the orange ellipse. To better
understand the plane-wave polarization dynamics, the reader
is strongly encouraged to use the Manipulate command in the
SM [33].

B. Resonant chiral admittance

The chiral admittance β(ω) can be frequency dependent
[35,36]; it can even have a resonance form (which can be
modeled by a Lorentzian function) [37,38],

β(ω) = c ωpβ

ω2 − ω2
0β + iωγβ

. (27)

Here ω0β is the resonance frequency, γβ is the resonance
width, and ωpβ is the chiral admittance strength parameter.
We use a model similar to that in Ref. [35], wherein we
have a chiral medium which has an electric dipole transition
with susceptibility χβ (ω) having resonance frequency ω0β

that results in a contribution to the permittivity with resonance
frequency ω0β and resonance width γβ and the chiral medium
has impurity atoms. The impurity atoms have resonant electric
susceptibility χ (ω) = ε(ω)/ε0 − 1, where ε(ω) is given in
Eq. (6). Furthermore, the chiral medium (without impurity
atoms) has susceptibility

χb(ω) = − ω2
pb

ω2 − ω2
0β + iωγβ

, (28)

FIG. 17. Refractive index for a medium with resonant chiral
admittance. The real and imaginary parts of the complex refrac-
tive index n±(ω) versus ω (in arbitrary units) are different for
right-circular polarization (solid curves) and left-circular polariza-
tion (dashed curves). The same Drude parameters for ε and μ as used
in Fig. 1 are used here, and the parameters for β(ω) are ω0β = 3.3,
ωpβ = 0.4, and γβ = 4.3.
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FIG. 18. Blowup of the ordinate in Fig. 17 showing n−(ω) versus
frequency.

where ωpb is a plasma frequency of the medium without
impurity atoms. The total permittivity of the chiral medium
with impurity atoms is

ε̃(ω) = ε0 [1 + χ (ω) + χβ (ω)]. (29)

The permeability μ(ω) of impurity atoms is given in Eq. (7).
Note that if ω0β is of the same order of magnitude as ω0 and
ω0m, the optical characteristics of the resonant chiral materials
can be very different than the constant-β case. Specifically,
if ω is close to ω0β , the chiral admittance can be large. The
Appendix discusses the conditions that restrict the parameters
appearing in the resonance chiral admittance given in Eq. (27).

Figure 17 shows the real and imaginary parts of the re-
fractive index in Eq. (20), with β on the right-hand side
of the equation replaced by β(ω) given by Eq. (27) for a
medium with a resonance in the chiral admittance very close
to the resonance frequencies of the permittivity and perme-
ability. The right-circularly polarized light has a huge n′

+(ω)
which changes sign at ω ≈ 3.15 and a gigantic n′′

+(ω) (hence
absorption) with a maximum at the same frequency. For left-
circularly polarized light, neither n′

−(ω) nor n′′
−(ω) can be

seen on the ordinate scale of Fig. 17; therefore, we plot these
quantities in Fig. 18. The refractive index n′

−(ω) is negative in

FIG. 19. Energy density u±(ω) versus ω for right-circular polar-
ization (solid red line) and left-circular polarization (dashed blue
line) for a chiral medium with resonant β(ω). The inset shows a
close-up of the difference �u±(ω) = u+ (ω)(ω)

E2+e−2k′′
σ z

− u− (ω)(ω)

E2−e−2k′′
σ z

. The same

Drude-Born-Fedorov parameters as used in Fig. 17 are used here.

FIG. 20. In a chiral medium with resonant β(ω), the power-
dissipation densities Q±(ω) versus ω for right-circular polarization
(solid red line) and left-circular polarization (dashed blue line). The
difference �Q±(ω) = Q+ (ω)(ω)

E2+e−2k′′
σ z

− Q− (ω)(ω)

E2−e−2k′′
σ z

is very small and positive

in this case; the difference is largest at ω ≈ 3.152, where �Q± =
4.05. The same Drude-Born-Fedorov parameters as used in Fig. 17
are used here.

the frequency region 3.12 < ω < 3.98, and the absorption has
a maximum at ω ≈ 3.03. Comparing the refractive index here
with that shown in Fig. 10 for the nonresonance β case, we
see that the scale of the right-circularly polarized refractive
index is roughly 2 orders of magnitude larger here, but the
left-circularly polarized refractive index is the same order of
magnitude here.

Figure 19 shows the energy densities u±(ω) versus ω for
right-circularly and left-circularly polarized light. There are
two maxima and one minimum in the energy density. In
making a comparison with the energy density in Fig. 14, we
see that, again, there is a region where the energy density
is negative, but the shape of the energy-density curve as a
function of frequency is very different here. Because of the
resonance in β, the minimum is 3 orders of magnitude deeper
than in the nonresonance case. The inset shows that �u(ω) =
u+(ω)(ω)

E2+e−2k′′+z − u−(ω)(ω)

E2−e−2k′′−z is 4 orders of magnitude larger than in the

nonresonant β case.
Figure 20 shows the power-dissipation densities Q±(ω)

versus ω. The maxima for Q±(ω) occur at ω ≈ 3.152, but the
Q+(ω) maximum is a little larger and at a slightly higher fre-
quency than that for Q−(ω). The power-dissipation densities
here are roughly a factor of 40 larger than for the nonresonant
β case shown in Fig. 15.

V. SUMMARY

We calculated the complex ε, μ, and refractive index n
versus frequency using a Drude-Lorentz model for a material
having electric dipole and magnetic dipole transition reso-
nances that are near one another, using the amplitude-phase
representation for complex functions in Eq. (8) to define√

εμ. We then evaluated the phase velocity, group velocity,
Poynting vector (energy-flux density), energy density, and
power-dissipation density and discussed their surprising be-
havior for frequencies near the resonances. We then treated
chiral media using the Drude-Born-Fedorov model. The cir-
cularly polarized representation used to treat the chiral case
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determines the optical rotation activity and circular dichroism
of the light given incident linearly polarized light and yields
the Poynting vector (energy-flux density) and energy density,
which are independent of position and time (this is true for
the time-averaged quantities in the achiral case too). In the
limit as the chiral admittance β → 0, the energy-flux density
and energy density are identical to the temporally averaged
energy-flux density and energy density calculated with the
linearly polarized representation in the achiral case. We then
considered the case when the chiral admittance β depends on
frequency and has a resonance near the resonance frequencies
of the permittivity and permeability of the media and saw that
the results can vary dramatically from those obtained when
the chiral admittance is almost constant near the resonance
frequencies of the permittivity and permeability. We intend to
generalize the theory to treat nonisotropic condensed-matter
systems in a future publication.

APPENDIX: CONDITIONS ON THE PARAMETERS
APPEARING IN THE RESONANT CHIRAL ADMITTANCE

Let us now consider a medium without any impurity atoms
in order to determine the conditions that restrict the param-
eter values appearing in β(ω). The electric susceptibility of
the medium is given in Eq. (28), the medium permittivity is

εb(ω) = ε0[1 + χb(ω)], and the chiral admittance is given by
Eq. (27). The refractive index of the chiral medium without
impurity atoms is

nb±(ω) = nb(ω)

1 ∓ β(ω) ω

c nb(ω)
, (A1)

where

nb(ω) =
√

εb(ω). (A2)

The imaginary part of the refractive index must be positive,
n′′

β±(ω) � 0, which implies

n′′
b (ω) > ω β ′′(ω) |nb(ω)|2. (A3)

Assuming that γβ is large, γβ 
 ωoβ , and applying condition
(A3) to the range ω � γ β, we get the inequality

ωpβ <
ω2

pb

2ω
. (A4)

This inequality is satisfied in the frequency range ω < ωmax =
ω2

pb/(2ωpβ ). On the other hand, when ωmax 
 ω0β ,

ω2
pb

2ωpβ

 ω0β.
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