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Self-pulsing dynamics in microscopic lasers with dispersive mirrors
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We show that a passive dispersive reflector integrated into a semiconductor laser can be used to tailor the laser
dynamics for the generation of ultrashort pulses as well as stable dual-mode lasing. We analyze the stability
using a general model that applies to any laser with frequency-dependent mirror losses. Finally, we present a
generalization of the Fano laser concept, which provides a flexible platform for tailoring the mirror dispersion
for self-pulsing. In addition to functioning as a design guideline, our model also accounts for several results in
the literature.

DOI: 10.1103/PhysRevA.109.063512

I. INTRODUCTION

The generation of optical pulses plays a crucial role in
many photonic technologies, including communications [1],
spectroscopy [2], all-optical clock recovery [3], sensing [4],
and LiDAR. In addition, excitable spiking nanolasers may
act as “photonic neurons” in neuromorphic computing [5,6].
Much effort has been put into reducing the size and increasing
the energy efficiency of pulsed lasers [7]. However, passive
Q-switching in a microscopic laser was only demonstrated
recently [8,9]. All current demonstrations of Q-switched
nanolasers rely on the presence of an element in the laser
cavity that exhibits saturable absorption, such that the laser
favors operation in a pulsed rather than a continuous wave
state. Saturable absorbers require control of the carrier life-
times, which need to be shorter in the absorber section than in
the gain section [10]. This is done by using different materials,
by reverse biasing the absorber section, or by modifying the
lifetimes in other ways, e.g., passivating the active section.

An alternative way of generating self-pulsing relies on
passive dispersive reflectors (PDRs) [11–16]. Compared to
saturable absorbers, PDRs may allow a lower lasing threshold
(there are no losses that first need to be saturated) and engi-
neered output pulses. Another advantage of PDRs is that they
are material independent, relying only on the geometry of the
design.

So far, modeling of lasers with dispersive mirrors has
mainly been done by implementation-specific approaches,
and this prevents general conclusions from being drawn about
their possibilities and limitations. Here, we provide a unified
description of how a dispersive mirror influences the dynam-
ical properties of the laser and, in particular, its stability.
For microscopic lasers, referring only to the local slope and
curvature of the mirror reflection spectrum, we are able to
predict the onset of self-pulsing.

*Contact author: krsee@dtu.dk

We keep the details of the PDR general and instead focus
on the inverse problem: what kinds of dynamic instabilities
can arise, and how does the onset of instabilities relate to
the PDR reflection spectrum? We show that a generalization
of the Fano laser [17,18] provides a flexible platform for
tailoring the mirror response. In particular, we demonstrate
the possibility of generating short optical pulses (see Sec. III),
as well as stable dual-mode lasing corresponding to beating
oscillations (see Sec. IV) with a tunable beat-note frequency
much smaller than the free spectral range of the cavity. As a
key result, we derive a modified characteristic equation for
the linearized system that explicitly takes into account the
frequency-dependent mirror response. We derive a general
expression for the relaxation oscillation frequency and damp-
ing rate that depends on the local shape of the reflectivity
rR(ω). This expression may be applied as a guideline for the
design of the PDR. Furthermore, it provides a simple and
general explanation of various results already presented in
the literature regarding the impact of a frequency-dependent
mirror on relaxation oscillations.

The coupled-cavity Fano laser

Our proposed generalization of the Fano laser is illus-
trated schematically in Fig. 1(a). It consists of a semi-open
waveguide that is side-coupled to two nanocavities. The left
mirror is broadband and formed by terminating the waveg-
uide, while the right mirror is based on Fano interference
between the nanocavities and the waveguide, making its
reflectivity, rR(ω) = |rR(ω)| exp[iφ(ω)], strongly frequency
dependent [19]. Importantly, a buried heterostructure [20,21]
ensures that gain material only exists in the waveguide seg-
ment between the left mirror and the leftmost nanocavity. The
nanocavities are thereby completely passive, with rR(ω) being
independent of the carrier density N .

The original Fano laser is based on a single side-coupled
nanocavity [17,18]. In the case of a single nanocavity, the
transmission in the waveguide below the nanocavity will
have two contributions corresponding to two different optical

2469-9926/2024/109(6)/063512(13) 063512-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8106-1555
https://orcid.org/0000-0001-9769-6005
https://orcid.org/0000-0002-7631-7069
https://orcid.org/0000-0001-8498-661X
https://ror.org/04qtj9h94
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.063512&domain=pdf&date_stamp=2024-06-13
https://doi.org/10.1103/PhysRevA.109.063512


SEEGERT, HEUCK, YU, AND MØRK PHYSICAL REVIEW A 109, 063512 (2024)

FIG. 1. (a) Schematic of the coupled-cavity Fano laser. Reflec-
tion off of the left mirror and propagation through the active region
with carrier density N is described by rL (ω, N ). The reflection from
the two coupled cavities on the right is rR(ω). The cavities are
sketched as the two ellipses labeled with their bare resonance fre-
quencies at ωc1 and ωc2. They are evanescently coupled with a rate
μ and indirectly through a waveguide of length LR and propagation
constant k. (b) Sketch of a possible realization of the coupled-cavity
Fano laser in a 2D photonic crystal membrane. (c) 2D reflectivity
map of |rR(ω)|2 (color scale) vs frequency ω and cavity separation
LR. The coupling phase is θ = kLR, and the evanescent coupling
between the cavities is modeled as μ = 5γw exp(−LR/κ ), where
κ = 0.5μm. The white dashed lines denote where θ = 0 mod 2π .
The detuning between the cavities is set to � = −0.78γw (�/2π =
−100 GHz), and the Q factor related to coupling to the waveguide is
set to Qw = 750 for both cavities. The intrinsic quality factor is set
to Qi = 105.

pathways, namely, direct propagation in the waveguide, and
coupling to the nanocavity and back into the waveguide in
the same direction. If the frequency of the incoming wave
matches the resonance frequency of the nanocavity, destruc-
tive inference occurs between these two optical pathways, and
the result is a narrow-band mirror with a Lorentzian reflec-
tion spectrum [22]. The conventional Fano laser has already
shown many interesting properties and dynamics, including
the theoretical possibility of terahertz frequency modulation
[17], stability toward coherence collapse [23], self-pulsing (in
the case where the active material extends into the nanocavity

[8]), ultra-narrow linewidth (in the case where the active ma-
terial is confined to the waveguide section similar to Fig. 1)
[21], and the possibility to dynamically modulate the mirror
losses [24]. In addition to functioning as narrow-band mirrors,
Fano resonances also have interesting possible applications in
all-optical switching, signal processing, and frequency con-
version [25].

In the present case, the addition of a second nanocavity to
the original Fano laser [17] allows additional possibilities for
engineering the mirror reflectivity, which can be analyzed by
temporal coupled-mode theory [26]. Note that in addition to
being placed on the same side of the waveguide as depicted
in Fig. 1(a), the cavities can also be placed on opposite sides
as in Refs. [27,28]. The spectral response of the dispersive
reflector is determined by the cavity detuning � = ωc2 − ωc1,
the evanescent coupling rate μ, and the indirect waveguide
coupling described by the propagation phase θ = kLR, see
Fig. 1(a).

We note that the Fano laser concept is agnostic to the
details of how the waveguide and the cavities are formed,
but one possible implementation is in a two-dimensional (2D)
photonic crystal membrane as sketched in Fig. 1(b). In this
case, confinement in the out-of-plane direction is due to total
internal reflection, while confinement in-plane is due to the
photonic band gap [29]. A line-defect waveguide can then
be formed by removing a row of holes, while point-defect
cavities can be formed by removing a limited number of holes,
here shown as one. Alternatively, one-dimensional (1D) pho-
tonic crystal nanobeams can be used for both the waveguide
and the side-coupled cavities, as recently demonstrated for the
single-cavity Fano laser in Ref. [30].

Figure 1(c) shows a 2D map of the reflectivity |rR(ω)|2
versus frequency and nanocavity separation LR for a detuning
of �/2π = −100 GHz. In order to represent the dependence
on both the evanescent and indirect coupling in a straightfor-
ward manner and illustrate some general tendencies, we use
a simple model where the evanescent coupling falls off as
μ = μ0 exp(−LR/κ ), where κ is some characteristic length.
The white dashed lines show where θ = 2πm. Note, in the
specific case of a 2D photonic crystal the exponential depen-
dence is not exactly valid [31].

We can understand the reflectivity spectrum in Fig. 1(c) as
follows: The two cavities form two supermodes with complex
frequencies ω̃± = ω± − iγ± which are hybridizations of the
modes of the uncoupled cavities, and each supermode will be
accompanied by a Lorentzian frequency dependence of the
reflectivity,

rR(ω) = d2
+

i(ω+ − ω) + γ+
+ d2

−
i(ω− − ω) + γ−

, (1)

where the complex coupling coefficients d± are given in
Appendix A. The real part of the resonance frequencies are
shown as the black dashed lines. In our case, the complex
supermode frequencies are given by

ω̃± = ωc1 + ωc2

2
− i(γw + γi ) ±

√(
�

2

)2

+ (μ + iγweiφw )2,

(2)
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where γw is the coupling rate between the nanocavities and the
waveguide, and γi represents intrinsic losses, both of which
are assumed to be identical for the two cavities. The total
coupling phase, φw = φ1R + θ + φ2L, includes the propaga-
tion phase θ and the coupling phases φ1R and φ2L associated
with coupling from cavity 1 to the right and cavity 2 to the
left, respectively. Further, if the cavities are identical, then the
relation exp(iφ1R + iφ2L ) = −1 can be derived from coupled-
mode theory [22].

When the nanocavity separation LR is small, such that the
evanescent coupling is strong (μ � γw), the resonances are
clearly split, but they start to overlap as the cavities get further
apart. The reflection occurs via different optical paths, and
interference between them causes variations in the positions
and widths of the Lorentzian resonances.

If the cavities are identical, the supermodes will be equal-
amplitude superpositions of the individual cavity modes. We
will refer to ω̃+ (ω̃−) as the “bonding” (“antibonding”) mode
corresponding to the cavity fields being phase-shifted by 0
(π ). For eiθ approaching 1, the outgoing waves of each cavity
interfere constructively (destructively) for the bonding (anti-
bonding) supermode, leading to broadening (narrowing) of
the associated resonance peak, making the spectrum highly
asymmetric. This phenomenon of loss-splitting is referred
to as dissipative coupling, and exactly when eiθ = 1 [white
dashed lines in Fig. 1(c)], we get an example of a bound
state in the continuum (BIC), which does not couple to the
waveguide at all [32]. In other words, if the leaky cavity
modes have the same far-field radiation pattern, then the out-
of-phase (antibonding) supermode will cancel out in the far
field, leading to a high Q factor. The same effect takes place
for eiθ = −1, but with the broadening and narrowing being
reversed. On the other hand, when eiθ = ±i, the outgoing
waves are phase shifted by π/2, which only affects the real
part of the resonance frequencies, resulting in a symmetric
spectrum. This case, where Im(μ + iγweiφw ) = 0, is referred
to as dispersive coupling.

While coupled mode theory has been shown to accurately
account for the dispersive properties of systems composed of
coupled waveguides and cavities [33], actual designs will, of
course, need to rely on numerical calculations, using, e.g.,
finite-difference time-domain (FDTD) or finite-element cal-
culations.

Using dual-cavity reflectors, several works illustrate the
large freedom one has to engineer the spectral shape of
the reflection spectrum by modifying the geometry of the
cavities, including their relative positions [31], the poten-
tial barrier between the cavities [34], and possibly adding
blocking elements in the waveguide [27]. Finally, in addi-
tion to tuning the response through the designed geometry,
it is also possible to dynamically modulate the cavities
through nonlinear effects [24,35], or by electrodes that change
the refractive index of the nanocavity through an applied
electrical field.

The ability to manipulate the mirror’s response opens up
avenues to design laser dynamics, as the wide range of re-
flection spectra may lead to very different dynamical regimes.
Next, we turn to the question of how a frequency-dependent
mirror affects the laser dynamics. After the general analysis,
we provide two examples of applications: self-Q-switching
and dual-mode lasing.

II. GENERAL STABILITY ANALYSIS

A. Modal properties of lasers with dispersive mirrors

The general analysis in this section applies to any laser
that can be modeled as an effective Fabry-Perot laser with a
dispersive mirror. In order to get a better understanding of the
dynamics of lasers with dispersive mirrors, we will introduce
the concepts of steady-state modes, antimodes, instantaneous
modes, and sidemodes. Additionally, steady-state modes
and antimodes are referred to collectively as steady-state
solutions.

We define the forward- and backward-propagating com-
plex electric fields at a reference plane just left of the PDR
[see Fig. 1(a)] as E (ω) and E−(ω). They are related by [36]

E (ω) = rL(ω, N )E−(ω) + F (ω), (3)

E−(ω) = rR(ω)E (ω), (4)

where F (ω) is a term representing spontaneous emission and
noise. The function rL(ω, N ), which represents a round trip in
the active section with carrier density N , is given by

rL(ω, N ) = r1e2ik(ω,N )L, (5)

where r1 is the reflectivity of the frequency-independent left
mirror, k(ω, N ) is the wave number, and L is the length of the
active section.

We define the instantaneous modes ω̃n(N ) as the complex
solutions to the oscillation condition

rL(ω̃n, N )rR(ω̃n) = 1, ω̃n ∈ C, (6)

where the carrier density is interpreted as a parameter. The
instantaneous modes trace out branches of solutions in the
complex frequency plane that depend parametrically on N ,
and the subscript “n” denotes a particular solution branch. For
a frequency-independent right mirror, the different branches
of instantaneous modes would correspond to different Fabry-
Perot longitudinal modes, where the round-trip phase of each
mode is a unique integer multiple of 2π . When the right mirror
is frequency dependent, we can still think of the branches as
different longitudinal modes, but the total round-trip phase
is not necessarily a unique number. This is due to the phase
arg[rR(ω)], which especially affects the modes near the reso-
nance.

The name “instantaneous modes” is taken from analogous
concepts in Refs. [11,37–39], and refers to the fact that they
solve the oscillation condition for a fixed instantaneous carrier
density. That is, the instantaneous modes are the resonant
modes in the system if we freeze the carrier density at a
particular instant in time. They may be leaky or amplified and
are characterized by complex frequencies.

The imaginary part of an instantaneous mode gives the
effective net modal gain per unit time Gn(N ) = 2 Im[ω̃n(N )],
and we define the modal differential gain per unit time as
GNn(N ) = d

dN Gn(N ). In this paper, “effective” parameters are
characterized with an overline.

In Fig. 2(a) the instantaneous modes are drawn as the red
(dark gray) and blue (light gray) continuous curves in (�ν, N )
space, where �ν = [Re(ω̃) − ωc]/2π , using the example of a
single-cavity Fano laser with a Lorentzian reflection spectrum
rR(ω) ∝ 1/(ω − ωc − iγ ) [17]. Blue (red) means the mode
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FIG. 2. Illustration of the various concepts introduced in Sec. II
in the (a) (�ν, N ) plane and (b) [N, Im(ω̃)] plane, using an ex-
ample of a Fano laser with a Lorentzian reflection spectrum. The
frequency axis in (a) is shifted relative to the reflectivity peak
�ν = [Re(ω̃) − ωc]/2π . The blue (light gray) and red (dark gray)
continuous curves are instantaneous modes ω̃n(N ), with Im(ω̃) > 0
in red and Im(ω̃) < 0 in blue. The black curve in (a) is the threshold
carrier density Nth(ω) as a function of (real) frequency, which is
continuous when 
(ω) > 0 and dotted when 
(ω) < 0, following
Eq. (14). Steady-state modes are shown as black dots, and antimodes
are empty circles. For the two lowest-threshold steady-state modes,
s = (0, 1) and s = (0, 3), the horizontal dashed orange lines indicate
their threshold carrier densities, and orange squares indicate side-
modes. Only the sidemodes of the two lowest steady-state modes are
indicated in order not to crowd the plot.

is below (above) threshold, as illustrated in Fig. 2(b), which
shows the modal gain Gn(N ) as a function of carrier density.

The points where ω̃n(N ) become real-valued, such that
Gn(N ) = 0, define the steady-state solutions (ωs, Ns) which
satisfy the oscillation condition

rL(ωs, Ns)rR(ωs) = 1, (ωs, Ns) ∈ R2. (7)

In the time domain, the steady-state solutions correspond
to continuous-wave (CW) operation at a certain frequency
and carrier density. The subscript “s” here denotes a set of
two indices, s = (n, j), corresponding to the jth steady-state
solution belonging to the nth instantaneous mode, ωn, j =
ω̃n(Nn, j ).

The steady-state solutions can further be divided into
steady-state modes and antimodes, depending on whether
the associated effective gain crosses zero in the posi-
tive [GNn(Ns) > 0] or negative [GNn(Ns) < 0] direction. In
Figs. 2(a) and 2(b), steady-state modes are marked with
filled circles, while antimodes are marked with empty cir-
cles. Only the steady-state modes can be stable, while

antimodes are always unstable and correspond to saddle
nodes [40].

As shown in Fig. 2(a), all steady-state solutions (ωs, Ns)
fall on the line Nth(ω), which solves the amplitude condition
|rL[ω, Nth(ω)]rR(ω)| = 1. The shape of Nth(ω) mimics the
reflection spectrum rR(ω), and is given by


g[Nth(ω)] = αi + 1

2L
ln

(
1

|r1rR(ω)|2
)

, (8)

where 
 is the confinement factor, g(N ) is the material gain,
αi represents intrinsic losses in the waveguide, and r1 is the
reflectivity of the left broadband mirror. The actual positions
of steady-state modes are then given by the phase condition
along the threshold carrier density curve,

arg[rR(ωs)] + arg{rL[ωs, Nth(ωs)]} = 2π p + φ0, (9)

where p is an integer, and φ0 is a global phase representing the
possible inclusion of some phase tuning mechanism. Numer-
ically, looking for solutions to the phase condition along the
threshold carrier density curve makes finding the steady-state
solutions a simple task. The instantaneous modes can then be
computed numerically with path continuation starting from
each steady-state solution.

Finally, if we consider a particular steady-state solu-
tion (ωs, Ns) belonging to the nth instantaneous mode s =
(n, j), then we define its sidemodes ω̃ms ≡ ω̃m(Ns) as the
other instantaneous modes, m �= n, evaluated at the particu-
lar steady-state carrier density Ns. Here, the subscripts “ms”
should be read as the mth sidemode of the steady-state solu-
tion s. The sidemodes thus solve the oscillation condition at
the carrier density level N = Ns,

rL(ω̃ms, Ns)rR(ω̃ms) = 1, s = (n, j), m �= n. (10)

If the laser oscillates in the steady-state mode s, then the
threshold carrier density Ns of that mode defines a particular
set of resonant modes that are simultaneously present in the
system, i.e., the sidemodes. The sidemodes play an important
role in the dynamics and the stability of the lasing mode, and
in particular, they may lead to “photon-photon resonances” in
the small-signal modulation response [11,37,40,41].

In Fig. 2(a) the sidemodes can be located by focusing on
a particular steady-state solution and looking horizontally at
other instantaneous modes. This is indicated by orange dashed
lines for the two lowest-threshold steady-state modes ω0,1 and
ω0,3, which both have a single sidemode, ω̃2(0,1) and ω̃1(0,3),
within the limits of the real frequency axis. The imaginary
parts of the sidemodes determine whether they are damped
[Im(ω̃ms) < 0, below threshold] or undamped [Im(ω̃ms) > 0,
above threshold]. Looking at the imaginary parts in Fig. 2(b),
the sidemodes are seen vertically from the associated steady-
state mode. All sidemodes are damped for both ω0,1 and
ω0,3, while e.g., ω−1,1 have an undamped sidemode on the ω̃0

branch.
To briefly illustrate the importance of sidemodes, consider

what happens as the pump rate is increased from below to
above threshold of a particular steady-state mode (ωs, Ns).
Letting Rp denote the pump rate and τs the carrier lifetime,
then immediately above the threshold Rp � Ns/τs, its stabil-
ity is determined by the positions of the sidemodes. If just
one sidemode experiences gain, Im(ω̃ms) > 0, the steady-state

063512-4



SELF-PULSING DYNAMICS IN MICROSCOPIC LASERS … PHYSICAL REVIEW A 109, 063512 (2024)

mode (ωs, Ns) is unstable; otherwise it is stable [40]. This
means ω0,1 and ω0,3 in Fig. 2 are both stable at threshold, since
all their respective sidemodes are below threshold.

Further, as the pump rate is increased above threshold, a
steady-state mode which is initially stable may become unsta-
ble due to, e.g., the presence of a weakly damped sidemode.
Similarly, steady-state modes, which are initially unstable but
only weakly suppressed, may become stable. These mode-
coupling phenomena are sometimes referred to as dynamic
instability and dynamic stability, respectively [40,42]. This
phenomenon of dynamic instability has also been addressed
theoretically and experimentally for two coupled photonic-
crystal lasers in Ref. [43].

In order to find the instantaneous modes, the wave number
k(ω, N ) = k(ωr, Nr ) + �k(ω, N ) is expanded as

2i�kL ≈ 1
2 (1 − iα)
vg[g(N ) − g(Ns)]τL + i(ω − ωs)τL,

(11)
where 
 is the confinement factor, vg is the group velocity,
τL = 2L/vg is the round-trip time in the active section, and
α is the linewidth enhancement factor. The reference point
(ωr, Nr ) can be any steady-state mode.

Returning to the instantaneous modes, they can be shown
to satisfy

dω̃

dN
= τL

τL + τR(ω̃)
× 1

2
(i + α)
vggN , (12)

where gN = gN (N ) is the material differential gain. Further-
more, τR(ω) is a complex time defined the same way as in
Ref. [44] by

τR(ω) ≡ −i
d

dω
ln rR(ω). (13)

Its real part corresponds to an effective round-trip time in
the PDR given by the frequency derivative of the phase.
In contrast, the imaginary part leads to additional phase-
amplitude coupling. Compared to the case without a PDR, dω

dN
is modified by a factor τL/[τL + τR(ω)], which appears as a
complex-valued weighting or confinement factor [39]. Thus,
we can define an effective confinement factor 
(ω) and an
effective linewidth enhancement factor α(ω) by


(ω)[i + α(ω)] ≡ 
(i + α)

1 + τR(ω)/τL
. (14)

With these definitions, we get

dω̃

dN
= 1

2
[i + α(ω̃)]
(ω̃)vggN . (15)

Defining a general differential gain function GN (ω̃, N ) ≡

(ω̃)vggN (N ), the modal differential gain for the nth in-
stantaneous mode is GNn(N ) = GN [ω̃n(N ), N]. Due to the
frequency dependence of the PDR, 
(ω) and α(ω) will vary
between the different steady-state solutions. The condition for
a steady-state solution (ωs, Ns) to be an antimode can now be
expressed as

GN (ωs, Ns) ∝ 
(ωs) < 0 (antimodes), (16)

while steady-state modes have 
(ωs) > 0.
We note that similar effective parameters have been derived

in Refs. [44,45], with the slight difference that instead of

(ω), Ref. [45] defines an effective relaxation oscillation fre-
quency, while Ref. [44] defines an effective photon lifetime.

Here, we take the effective confinement factor to be more
fundamental as, arguably, the effect on the photon lifetime and
the relaxation oscillation frequency is because of the modi-
fied confinement in the active section. Further, if the PDR is
only weakly dispersive, such that τR(ω) can be approximated
by its steady-state value, τR(ωs), for a particular steady-state
frequency ωs, the dynamics will be qualitatively similar to a
conventional Fabry-Perot laser, but with the rescaled param-
eters 
(ωs) and α(ωs). In this weakly dispersive limit, the
PDR results in a scaling of the modal differential gain GN =

(ωs)vggN , the linewidth, the relaxation oscillation frequency

ωR =
√

(Rp/Rp,th − 1)GN Ns/τs , and the photon lifetime τ p =
[
(ωs)vggth]−1, where gth = g[Nth(ωs)] is the material thresh-
old gain. These expressions agree with Refs. [37,39,44,45].

B. Dynamical model

The model we use is based on the iterative model in
Ref. [36] and also used in Ref. [12]. We define the slowly
varying envelopes A(t ) and A−(t ) by

A(−)(t )e−iωr t = 1

2π

∫ ∞

0
E(−)(ω)e−iωt dω. (17)

Using this definition of the Fourier transform along with
the wave-number expansion in Eq. (11), Eq. (3) can be trans-
formed into the time domain to give expressions for A(t ) and
A−(t ),

A(t ) = e
1
2 (1−iα)
vg[〈g(N )〉−g(Nr )]τL × A−(t − τL )

rR(ωr )
+ F (t ), (18)

where F (t ) is the inverse Fourier transform of F (ω), and
〈g(N )〉(t ) is the gain averaged over one round trip in the laser
cavity,

〈g(N )〉 = 1

τL

∫ t

t−τL

g[N (t ′)]dt ′. (19)

The reflected field A−(t ) is given formally by

A−(t ) =
∫ t

−∞
r̂R(t − t ′)A(t ′)dt ′, (20)

where r̂R(t ) is the impulse response function of the PDR,
which is the inverse Fourier transform of rR(ω), using the
same definition as in Eq. (17). We remark that the form of
A−(t ) given in Eq. (20) is used solely for analysis. For numer-
ical simulations, it is advantageous to describe A−(t ) in terms
of a rate equation derived from, e.g., coupled-mode theory.
Finally, the evolution of the carrier density is described by the
rate equation

d

dt
N = Rp − N

τs
− vgg(N )Np. (21)

Here, Np is the photon number density. In steady state, Np ∝
|A|2 with a proportionality constant given in Ref. [46]. As-
suming this proportionality to hold out of equilibrium, we
normalize |A|2 = Np.

C. Relaxation oscillations

Next, we perform a linear stability analysis of the steady-
state modes fulfilling 
(ωs) > 0. A key result regards the
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impact of a dispersive mirror on the relaxation oscillations.
Relaxation oscillations are intensity oscillations that occur
due to coupling between the carrier- and photon reservoirs.
The linear stability analysis is carried out by assuming pertur-
bations from steady state with characteristic time dependence
e−it . The real part Re() gives the angular frequency,
and Im() < 0 corresponds to damped oscillations, while
Im() > 0 means the oscillations are undamped. For a
steady-state mode to be stable, no eigenvalue  can have a
positive imaginary part.

For conventional Fabry-Perot lasers, the frequency and
damping rate of relaxation oscillations are determined by a
characteristic equation of the form [47]

−2 − iγR + ω2
R = 0, (22)

where the damping rate γR and relaxation resonance frequency
ωR are given by

γR = 1

τs
+ τpω

2
R, ω2

R = 
vggN

(
Rp − Ns

τs

)
. (23)

Here, τp = (
vggth)−1 is the photon lifetime, where gth =
g(Ns) is the material threshold gain. For lasers with dispersive
mirrors, we can derive a generalization of the above character-
istic equation to include the effect of a frequency-dependent
mirror (see Appendix B for the details)

−2 − iγR + 1
2ω2

R[H () + H∗(−∗)] = 0, (24)

where H () is given by

H () = (1 − iα)
eiτL − 1

rR (ωs+)
rR (ωs ) eiτL − 1

. (25)

The combined transfer function HP() = [H () +
H∗(−∗)]/2 relates the power to the carrier density, i.e.,
−iδP() ∝ HP()δN (). Physically, the two terms take
into account that intensity oscillations at a frequency 

generate two optical sidebands at the frequencies ωs ± . If
the reflectivity depends on frequency, these optical sidebands
will experience different loss and phase delays.

Equation (24) cannot be solved analytically in general.
However, if || is sufficiently small compared to the char-
acteristic frequency scales in r(ωs + ) as well as the inverse
round-trip time τ−1

l , then we may expand H () � H (0) +
H ′(0). For example, in the case of the coupled-cavity Fano
laser with the reflectivity given by Eq. (1), the approxima-
tion requires || � |ωs − ω± + iγ±|. This allows us to define
approximate relaxation resonance frequencies and damping
rates by

ω2
R ≡ ω2

R Re[H (0)], (26)

γ R ≡ γR − ω2
R Im[H ′(0)], (27)

where the prime denotes the derivative with respect to . The
characteristic equation then becomes

−2 − iγ R + ω2
R = 0. (28)

We have

H (0) = 1 − iα

1 + τR(ωs)/τL
= 
(ωs)



[1 − iα(ωs)], (29)

FIG. 3. Evolution of the eigenvalues of the linearization related
to the lowest-threshold steady-state mode as the pump rate is varied
for the case of (a) dispersive self-Q-switching and (b) beating oscilla-
tions. The green dashed curves show the approximation in Eqs. (26)
and (27), while the pink dotted curve shows the approximation in
Eq. (32). The red circles show the positions of the sidemodes  =
ω̃ms − ωs.

where we recall τR(ω) = −i∂ω ln rR(ω), and

H ′(0) = 1

2
τL(α + i)

r′′
R(ωs)/rR(ωs)

[τL + τR(ωs)]2
. (30)

Remarkably, the approximation for the relaxation oscillation
frequency matches the usual expression if the rescaled con-
finement factor is used.

The eigenvalues are, in general, functions of the pump rate.
As an example, in Fig. 3 we consider two sets of parameters
for the coupled-cavity Fano laser given in Table I, which
are also used later in Secs. III and IV, and plot the traces
of the eigenvalues in the complex plane as the pump rate
varies. The exact solutions to Eq. (24) are given in black,
while the approximations to the relaxation oscillation eigen-
values are given in dashed green, showing good agreement for
Re()/2π � 30 GHz. The points where the eigenvalues cross
the real axis, Im() = 0, correspond to Hopf bifurcations.

This general analytical result can be applied to a large
class of lasers and can be used to explain a number of re-
sults presented in the literature. Reference [48] considers the
case of a single-cavity Fano laser without a blocking hole
in the waveguide and where the lasing frequency coincides
exactly with the resonance peak of the cavity. Their results on
the relaxation oscillation frequency and damping rate agree
with the expressions above, and furthermore, we can now
easily evaluate the influence of detuning and the presence
of a blocking hole. Another example is a laser with weak
optical feedback with an effective reflectivity that can be
approximated as rR(ω) = r2[1 + κ exp(iωτ )], where κ is the
feedback strength and τ is the round-trip time in the feedback
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TABLE I. Parameters used in simulation. Parameters outside (in-
side) of parentheses are specific to simulations presented in Sec. III
(IV). Material parameters are based on Ref. [18]. We acknowledge
that the value for the carrier density is rather low, while the value
for the differential gain is rather high. The important quantity for
the dynamics, however, is the product gN N0, which is at a high but
realistic level.

Parameter Symbol Value

Material differential gain gN 5 × 10−12 cm2

Transparency carrier density N0 5 × 1015 cm−3

Carrier lifetime τs 0.28 ns
Confinement factor 
 0.01
Left mirror reflectivity r1 −0.99
Waveguide losses αi 10 cm−1

Reference length of laser cavity L 4.98 μm
Reference refractive index nr 3.5
Reference group index ng 3.5
Linewidth enhancement factor α 3.3
Parameters related to PDR
Reference wavelength λr 1554 nm
Cavity 1 resonance frequency ωc1 2πc/λr

Cavity 2 detuning from ωc1 � 0 (−100) GHz
Vertical scattering Q Qi 105

Cavity-waveguide Q Qw 750
Decay rate related to channel x γx (2πc/λr )/2Qx

Evanescent coupling rate μ 0.65 (0) γw

Indirect coupling phase θ −π/6 (0)
Fundamental steady-state mode ωs0 ωc1+0.65 γw (ωc1)

arm. In this case,

Re[H (0)] = 1 + κτ
τL

[cos(ωsτ ) − α sin(ωsτ )]

1 + (
κτ
τL

)2 + 2 κτ
τL

cos(ωsτ )
, (31)

which agrees with the modification of the relaxation oscilla-
tion frequency given in Ref. [49].

Returning to the general analysis, we observe that the
second derivative r′′

R(ωs) is decisive for the stability. In the
case where |rR(ω)| is at an extremum, we have Im[H ′(0)] ∝
α(arg rR)′′ + (ln |rR|)′′ − (arg rR)′2. This shows that the damp-
ing rate of relaxation oscillations increases near the maximum
of a reflection peak while it decreases near a minimum. In
fact, the second and third terms have clear physical interpre-
tations, corresponding to spectral filtering and amplification
and increased storage time in the passive section. This agrees
with the results and physical interpretations given in Ref. [23],
showing that a Fano laser operating at the reflection peak has
increased tolerance toward external feedback.

Finally, a positive curvature of the reflection spectrum
leads more readily to instabilities. In Ref. [13], the authors
analyze self-pulsing in a laser with reflection from a chirped
grating, and they also conclude that the phase curvature is de-
cisive for the stability. This insight can be used as a guideline
for designing self-pulsing lasers based on dispersive mirrors.

D. Photon-photon resonances

In addition to the eigenvalues of Eq. (24) that relate to
relaxation oscillations, another set of eigenvalues is related to
coupling between the steady-state mode and sidemodes. We

notice that H () has poles at the positions of the sidemodes
relative to the steady-state mode, ms = ω̃ms − ωs. Just above
threshold, where ω2

R ∼ 0+ is negligible, the poles ms are
exact eigenvalues. When further increasing the pump rate, the
eigenvalues move in the complex plane.

Writing  = ms + �, we can get the approximate ex-
pression

� ≈
1
2ω2

R

γR − ims
× 1 − iα

1 + τR(ω̃ms)/τL
× eimsτL − 1

imsτL
, (32)

which is valid for |�| � |ms|. The key point here is that
the first factor gives rise to an asymmetric mode coupling,
which dampens sidemodes on the blue side [Re(ms) > 0]
and amplifies sidemodes on the red side [Re(ms) < 0]. This
four-wave mixing effect, mediated by carrier oscillations, is
known as the Bogatov effect [42]. The effect is responsible for
the onset of beating oscillations (where the lowest-threshold
“blue” mode becomes unstable), as well as the termination
of beating oscillations due to so-called dynamic stability of
the “red” mode with higher threshold [40]. In Ref. [43], the
authors show that the effect can also be used to transfer energy
from the blue mode to the red mode in the case of two coupled
photonic crystal cavities.

Figure 3(b) shows an example of a case where a pair
of eigenvalues related to photon-photon resonances cross
the real axis, leading to instability. Specifically, we consider
the eigenvalues of the lowest-threshold steady-state mode
for the laser in Sec. IV, which has a weakly damped sidemode
near −93 GHz (red circle). When the pump rate is increased
above the lasing threshold, the eigenvalues related to this side-
mode move upward and become unstable. The approximation
given in Eq. (32) is shown as the dotted pink line in Fig. 3(b),
indicating good agreement with the numerical result.

III. APPLICATION: SELF-Q-SWITCHING

We now apply the general results derived above to the
coupled-cavity Fano laser [see Fig. 1(a)], which provides a
general platform to tailor the mirror dispersion. First, we con-
sider the possibility of self-Q-switching, i.e., the instability
related to relaxation oscillations leading to the self-pulsing
shown in Fig. 4(a).

FIG. 4. Time traces of the normalized power in the active sec-
tion during (a) dispersive self-Q-switching and (b) beating-type
oscillations. In (a), we observe a train of pulses with pulse widths of
∼20 ps and repetition rate of ∼15 GHz. In (b), we observe beating
oscillations, which in the frequency domain corresponds to dual-
mode (or two-color) lasing. We observe fast (∼93 GHz) sinusoidal
oscillations that result from the beating between two modes lasing si-
multaneously, which are locked together through carrier oscillations
in the active medium.
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(a) (e)

(f)

(g)

(b)

RO

(c)

(d) (h)

CW SM SMCWAM AM

FIG. 5. Figures related to self-Q-switching in the first column (a)–(d) and beating oscillations in the second column (e)–(h). (a and e) Mirror
reflectivities rR(ω) with |rR(ω)|2 in black (left axes) and arg[rR(ω)]/π in red (right axes). (b and f) Stability diagram in terms of frequency
and pump rate, showing the lasing threshold as a function of frequency, the various steady-state solutions, and the boundary for self-pulsing.
Description in the main text. (c and g) Bifurcation diagrams with N vs Rp. (d and h) Optical spectrum in color scale for varying pump rate.

Knowing that we need a positive curvature, we choose
parameters that lead to the reflection spectrum in Fig. 5(a),
where |rR(ω)|2 is shown in black (left axis) and φ(ω) is
shown in red (right axis). The frequency axis is �ν = (ω −
ωs0 )/2π , where the vertical line at �ν = 0 indicates the tar-
geted steady-state frequency ωs0 used in simulations unless
otherwise specified.

Figure 5(b) shows a stability diagram of steady-state solu-
tions in frequency ωs and pump rate Rp. The white region is
below the lasing threshold Rp < Nth(ω)/τs, while the colored
regions are above threshold. Further, the color indicates the
stability of steady-state solutions in that region, and if unsta-

ble, whether the undamped eigenvalues [Im() > 0] can be
attributed to relaxation oscillations (red, RO), unsuppressed
sidemodes (orange, SM), or antimodes (AM, gray). Green
(CW) denotes regions of stable CW lasing where all eigenval-
ues have negative imaginary parts. We indeed observe that the
self-pulsing threshold for undamped relaxation oscillations
is lowest near the point where |rR(ω)|2 has the largest pos-
itive curvature. Additionally, the circle markers on the lasing
threshold border indicate the frequencies {ωs} of the particular
set of steady-state solutions that coexist with a steady-state
mode at the indicated target frequency ωs = ωs0. That is,
inserting ωs = ωs0 in the phase condition Eq. (9) fixes the
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required global phase φ0, which in turn determines all other
steady-state solutions.

Figure 5(c) shows the bifurcation diagram in the (Rp, N)
plane for a choice of global phase giving rise to the steady-
state solutions indicated in Fig. 5(b). As the pump rate varies,
the lines show the position and stability of the various fixed
points and limit cycles. A continuous line denotes a stable
state with the type being indicated [off-state in black, CW in
green, and self-pulsing (SP) in blue]. A dashed line represents
an unstable state. The black diagonal, N = Rpτs, is the off-
state corresponding to a solution with zero photons in the
cavity. It is stable if all the instantaneous modes are below
threshold at N = Rpτs, i.e., Im[ω̃n(Rpτs)] < 0 for all n. The
horizontal lines are steady-state solutions. For the self-pulsing
states, the blue curves denote the limit cycle’s maximum and
minimum carrier density. Note that we are only considering
deterministic dynamics here, so spontaneous emission noise
is neglected. Finally, we note that the curve corresponding to
the limit cycle at higher carrier density is slightly jagged due
to the dynamics not being a simple period-one limit cycle but
containing additional frequency components.

We observe that the lowest-threshold mode is initially
globally attracting but becomes unstable through a Hopf bi-
furcation, giving rise to self-pulsing. Additionally, we observe
the existence of pump regimes where (1) a stable CW-state
coexists with a stable off-state, (2) a stable limit cycle coex-
ists with a stable off-state, (3) a stable limit cycle coexists
with a stable CW state, and (4) only nonstationary states
exist. This shows the rich landscape of possible dynamics in
the system. The various kinds of multistable regimes could
also be attractive for switching applications or for excitable
behavior [50].

Figure 5(d) shows a 2D map of the evolution of the op-
tical spectrum as a function of the pump rate, computed by
numerical integration of the dynamical equations and includ-
ing Langevin noise. Below the threshold for self-pulsing, the
two sidebands arising from relaxation oscillations can be ob-
served. Above the self-pulsing threshold at Rp ≈ 3.5Rp,th, we
observe the formation of a frequency comb. As the pump rate
further increases, more and more comb lines become visible,
which can be interpreted as four-wave mixing of the relaxation
oscillation sidebands and the carrier frequency. In the time
domain, this corresponds to self-pulsing, which manifests as
sinusoidal temporal modulation of the power at the onset of
the instability, evolving into a train of pulses when the pump
rate is increased. The dynamics are shown in Fig. 4(a), for a
pump rate well above the onset of self-pulsing. Typical pulse
widths are on the order of ∼10–20 ps, and repetition rates are
on the order of ∼10–20 GHz.

IV. APPLICATION: BEATING OSCILLATIONS

The second application we consider is the realization of
a dual-mode laser, which exhibits beating oscillations [see
Fig. 4(b)]. This type of self-pulsing consists of fast sinusoidal
oscillations with a frequency in the range of ∼20–200 GHz,
which can be tuned by the design of the passive reflector.
Physically, this type of dynamics is interpreted as the beating
between two modes that lase simultaneously and are locked
together through carrier oscillations in the active medium.

The requirement for beating oscillations is a weakly damped
sidemode, which is red-detuned from the lowest-threshold
steady-state mode [40,42].

We achieve beating oscillations with the reflectivity spec-
trum in Fig. 5(e), where the two cavity supermodes are
spectrally aligned, thus inducing a narrow transparency win-
dow where they overlap due to destructive interference.
As such, this is an example of electromagnetically induced
transparency (EIT) in optical microcavities [51]. The EIT
resonance arises due to strong Fano interference, that is, inter-
ference between different optical pathways. Importantly, the
EIT resonance is accompanied by a small wiggle or undula-
tion of the phase response. Due to the negative group delay
within the transparency window, the phase condition can be
satisfied on both sides of the transparency window.

In Fig. 5(f), we observe two steady-state modes with com-
parable thresholds, with the mode on the blue side (black
dot) having a slightly lower threshold. We observe that the
steady-state mode at �ν = 0 becomes unstable above a cer-
tain threshold when the pump rate crosses into the orange
region. On the other hand, the steady-state mode in the orange
region on the red side, which is initially unstable, becomes
stable at even higher pump rates. Of course, this boundary
collides with the laser threshold curve at the point where the
two modes have identical thresholds.

Conversely, when the lowest threshold mode is on the red
side, it is always stable. In the present case, the coupling
between these two modes is what gives rise to the dual-mode
operation. Further, the beat note frequency is approximately
given by the detuning � between the two cavities constitut-
ing the dispersive laser mirror. This parameter can be tuned
dynamically by electro-optic means or through design by
modifying the cavity geometry.

Figure 5(g) shows the bifurcation diagram. Again, we
observe various kinds of multistable behavior, but most impor-
tantly, there is a window between the instability of the lowest
threshold mode and the dynamic stability of the second-lowest
mode where beating oscillations occur.

Figure 5(h) shows the optical spectrum. The blue mode
starts to lase at Rp,th1, and we observe single-mode lasing until
Rp = Rp,H1, which constitutes the onset of dual-mode lasing.
At Rp = Rp,H2, the red mode becomes stable, and the dual-
mode lasing stops. Due to the inclusion of Langevin noise in
the simulations, outlines of both the red and blue modes can
be observed even when they do not lase.

Finally, we remark that the two steady-state modes are
resonant with different cavities, meaning that the photon den-
sities in the two cavities differ strongly and depend on the
oscillating mode. Therefore, if the two cavities are coupled to
different cross-ports, the two steady-state modes will have dif-
ferent output channels. Deliberately inducing mode-hopping
could then be used as a routing mechanism.

V. DISCUSSION

Comparing the coupled-cavity Fano laser to earlier demon-
strations and predictions of self-pulsing lasers, we wish
to highlight a few points. In Refs. [43,52,53], the au-
thors experimentally and theoretically investigate symmetric
coupled-cavity laser systems consisting of two coupled
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photonic crystal lasers. In Ref. [52] the authors demonstrate
spontaneous mirror symmetry breaking above a certain pump
rate, where the energy distribution will become asymmetric
and mainly concentrated in a single cavity. Additionally, they
predict regimes where the power will spontaneously oscillate
back and forth between the two nanocavities. Compared to the
present case, a major difference is that the two nanocavities
are both active and form two complete laser cavities, while in
our case, the coupled cavities are passive and merely work as a
frequency-dependent mirror. The mechanism for self-pulsing
in Ref. [52] is thus attributed to an ac Josephson-like effect,
although the mechanism appears somewhat similar to beating
oscillations.

In Refs. [43,53], the authors demonstrate switching be-
tween the bonding and the antibonding supermode mediated
by a region of beating oscillations. As in our case, the direc-
tion of the mode-coupling is from the blue mode to the red
mode and the mechanism is attributed to a Bogatov effect, but
it relies on the presence of two different active sites rather than
a dispersive reflector.

If we compare the coupled-cavity Fano laser in the self-
Q-switched regime to other self-pulsing lasers with dispersive
mirrors, such as the hybrid laser in Ref. [12] or qualitatively
similar devices in Refs. [14,54], the frequency combs also
emerge through undamped relaxation oscillations. Due to the
size of those macroscopic structures, they also produce much
higher output power. On the other hand, the Fano laser al-
lows extreme miniaturization and a lower threshold. It should
be noted that in contrast to the dispersive self-Q-switching
discussed in Sec. III, the beating-type oscillations can also
occur in lasers that are not based on PDRs. An example is
the self-pulsing square-microcavity laser in Ref. [55], where
mode-coupling occurs through spatial hole-burning, leading
to a spatial modulation of the refractive index.

VI. CONCLUSION

In conclusion, we have presented a general analysis of
lasers incorporating a passive dispersive mirror. The analysis
can be used to study a large class of lasers, and the insights
can be applied to tailor the dynamics of lasers. In particular,
we applied the model to a different laser geometry, which
provides a flexible platform for realizing many different types
of cavity dispersion. In combination with simulations, e.g.,
using FDTD, of the reflection spectrum in specific devices,
the model can be used as a design guideline. Finally, the model
may serve as a starting point for extending the formalism to
study active dispersive mirrors, where the gain and refractive
index vary in time due to nonlinearities in the cavities or the
presence of active material.
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APPENDIX A: THE COUPLED-CAVITY FANO MIRROR

In this section we consider a system of a waveguide with
two side-coupled cavities as in Fig. 1 in the main text, and
apply temporal coupled-mode theory [22,26] to calculate
the reflection spectrum of the effective mirror. The tem-
poral coupled-mode equations describe the slowly varying
envelopes a1(t ) and a2(t ) of the modes of the individual
cavities.

The governing equations are

d

dt
a(t ) = −i( − Iωr )a(t ) + dA+(t ), (A1)

A−(t ) = dT a(t ), (A2)

where a = (a1, a2)T , A+(t ) and A−(t ) are the incoming and
outgoing fields, ωr is a reference frequency, d = (d1, d2)T =
(
√

γc1eiφ1L ,
√

γc2eiφ2L+iθ )T is the vector of coupling constants
between waveguide and cavities, and  is the system matrix
given by

 =
(

ωc1 − iγc1 − iγi1 μ + i
√

γc1γc2eiφw

μ + i
√

γc1γc2eiφw ωc2 − iγc2 − iγi2

)

=
(

ω̃c1 μ̃

μ̃ ω̃c2

)
. (A3)

Here, ωc1,2 are resonance frequencies of the bare cavities, γc1,2

are decay rates related to coupling to the waveguide, γi1,2 are
decay rates related to intrinsic losses (e.g., vertical scattering),
and μ is an evanescent coupling rate assumed real.

Transforming (A1) into the frequency domain, using the
definition e−i(ω−ωr )t , gives the following solution:

a(ω) = [i( − Iω)]−1dA+(ω), (A4)

and the effective reflectivity rR(ω) becomes

rR(ω) = dT [i( − Iω)]−1d. (A5)

As long as the eigenvalues of  are nondegenerate, rR(ω) can
be expanded as

rR(ω) = d2
+

i(ω+ − ω) + γ+
+ d2

−
i(ω− − ω) + γ−

, (A6)

where ω± − iγ± are the eigenvalues of . The coefficients d2
±

can be written as

d2
± = 1

2

(
d2

1 + d2
2

) ± 1

2

(�̃/2)2
(
d2

1 − d2
2

) + 2μ̃d1d2√
(�̃/2)2 + μ̃2

, (A7)

where �̃ = ω̃c2 − ω̃c1. In the case of �̃ = 0, we have d2
± =

1
2 (d1 ± d2)2.

APPENDIX B: STABILITY ANALYSIS

In this section, we derive the characteristic equation (24),
starting from Eqs. (16)–(20) in the main text. For simplicity,
we assume that the contribution of spontaneous emission into
the lasing mode is negligible, such that the exact CW solu-
tions correspond to the solutions of the oscillation condition
rR(ωs)rL(ωs, Ns) = 1. The Langevin-noise term F (t ) can then
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be treated as a driving term in the linearized equations. The
CW solutions are then given by

A(t ) = Ase
−i(ωs−ωr )t , (B1)

A−(t ) = rR(ωs)Ase
−i(ωs−ωr )t , (B2)

N (t ) = Ns. (B3)

Setting d
dt N (t ) = 0 gives a relation between Ns and As,

Rp − Ns

τs
− vgg(Ns)|As|2 = 0, (B4)

where, without loss of generality, As can be taken as real.
We now linearize the system around a particular steady-

state solution,

A(t ) = [As + δA(t )]e−i(ωs−ωr )t , (B5)

A−(t ) = [rR(ωs)As + δA−(t )]e−i(ωs−ωr )t , (B6)

N (t ) = Ns + δN (t ). (B7)

Inserting in the dynamical equations (16)–(20), and keep-
ing only terms linear in δ, we get the linearized system

δA(t ) = 1

2
(1 − iα)
vggN AsτL〈δN (t )〉As

+ δA−(t − τL )

rR(ωs)
+ F (t ), (B8)

d

dt
δN (t ) = −

(
1

τs
+ vggN |As|2

)
δN (t )

− vggthAs[δA(t ) + δA∗(t )] + FN (t ), (B9)

where the brackets in 〈δN (t )〉 denote the same time average as
in Eq. (17) in the main text. We also added a potential driving
term FN (t ) in the carrier density equation.

In the complex frequency domain, the equations become

−X ()δA() = (1 − iα)γAN O()δN () + F (), (B10)

−iδN () = −γRδN () − 1
2γNA[δA() + δA∗(−∗)]

+ FN (), (B11)

where γR = 1
τs

+ vggN |As|2, γAN = 1
2
vggN As, γNA =

2vggthAs, and

X () = rR(ωs + )

rR(ωs)
eiτL − 1, O() = eiτL − 1

i
. (B12)

A third equation for δA∗(−∗) is obtained by replacing 

with −∗ in Eq. (B10) and then taking the complex conjugate.
Letting an overline denote the combined operation f () =
f ∗(−∗), and then omitting the arguments, the equations are
put on matrix form⎛

⎜⎝
−X 0 −γAN (1 − iα)O

0 −X −γAN (1 + iα)O
1
2γNA

1
2γNA −i + γR

⎞
⎟⎠

⎛
⎜⎝

δA

δA

δN

⎞
⎟⎠ =

⎛
⎜⎝

F

F

FN

⎞
⎟⎠.

(B13)
Taking the determinant of the matrix yields

D() = XX (−i + γR) − 1
2ω2

RO
[
X (1 + iα) + X (1 − iα)

]
,

(B14)
where ω2

R = γANγNA. The zeros of the system determinant
give the eigenvalues. The real part gives the oscillation fre-
quency of the perturbation, and the imaginary part gives the
growth rate, which is negative if the perturbation is damped.
Note that since X (0) = X ∗(0) = 0, then  = 0 is always an
eigenvalue. The fact that it is always an eigenvalue represents
the fact that the system is invariant with respect to a global
phase.

Finally, for X, X �= 0, which is the typical case above
threshold Rp > Ns/τs, we multiply the determinant with
−i/XX and arrive at the characteristic equation (22) in the
main text,

−2 − iγR + 1

2
ω2

R(H + H ) = 0, (B15)

H () = (1 − iα)
eiτL − 1

rR (ωs+)
rR (ωs ) eiτL − 1

. (B16)

The characteristic equation is now cast in a form that resem-
bles the usual case for a Fabry-Perot laser [47].
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