
PHYSICAL REVIEW A 109, 063511 (2024)

High-order harmonic spectroscopy for probing intraband and interband dynamics
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Regarding the high-order harmonic generation (HHG) of solids, the intra- and interband contributions have
been disputed for over a decade now. The prior scheme in this context has been limited to resolve the temporal
HHG profile. In this work we propose that the real-space intra- and intercell dynamics in crystal structure
respectively correspond to the reciprocal-space inter- and intraband dynamics. Thus, we utilize the polarization-
resolved symmetry of the HHG yield to clarify its dominant term among the inter- and intraband contributions.
For simplicity, we necessarily exclude the impact of the propagation effect and therefore take the monolayer
MoS2 as the representative target material. Robustness of this correspondence scheme has been demonstrated by
distinguishing the dominant contribution in the parallel HHG spectra. According to the change of the symmetry
in the polarization-resolved harmonic yields, in the case of the tuning carrier distribution the transition of the
dominant term between intra- and interband contributions has been verified. This work paves an alternative way
to resolve the intra- and interband dynamics based on the structural symmetries of the atomic layer materials.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an extreme
photon-upconversion process under the highly nonlinear light-
matter interactions. Gas HHG was observed more than three
decades ago [1,2], and its physical mechanism was clarified by
the three-step process [3,4]. This incontrovertible mechanism
paves the avenue to generate extremely short light pulses and
provides a spectroscopic tool to control and image the laser-
induced electron dynamics in matter [5–11]. HHG in solids
has attracted much interest as it may have various applica-
tions ranging from the novel light sources to the probe of the
quasiparticle dynamics in condensed matter [12–19].

Ghimire et al. performed the experiment in the mid-
infrared (MIR) field and thought that the underlying HHG
mechanism is the intraband Bloch oscillations [13,20]. How-
ever, Vampa et al. experimentally certified that the interband
mechanism under the electron-hole recollision is the main
source of HHG radiations for MIR driving pulses by adding
a weak second-harmonic beam to study the emission pro-
cess [21]. Furthermore, solid-state HHG experiments were
also achieved in the longer wavelength towards the terahertz
field, and the intraband mechanism was found to be domi-
nant in this wavelength regime [22–24]. Thus, there are two
main mechanisms resulting in HHG of solids that are usually
considered. The first one is the intraband Bloch oscillations.
The another one is interband polarization, which has much in
common with the three-step model used to explain gas HHG.
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The most straightforward approach to disentangling intra-
and interband dynamics is to use a theory that allows the
HHG yields from the intra- and interband contributions to
be calculated separately, such as the semiconductor Bloch
equations (SBEs). However, the theoretical confirmation of
dominant dynamics is also a challenge. For example, one finds
that the separation between intra- and interband contributions
is gauge dependent under the Bloch-state basis [25]. In ad-
dition, one does not know how to choose dephasing time in
a physically meaningful way and does not necessarily give a
clear answer to the relative dominant contribution between the
two mechanisms in the measurable total HHG yields. These
issues have been discussed extensively in the past decade and
the dispute is not settled yet.

The HHG in bulk and layered materials has been investi-
gated experimentally; however, the theoretical interpretation
of the experimental HHG spectra requires carefulness in the
SBE simulations. It is important to identify an experimentally
observable feature in HHG spectra, which enables the direct
differentiation between intra- and interband mechanisms. Ac-
cording to same experiments, the dominant mechanism can
be identified by measuring the attosecond chirp in the time-
frequency profile [26], but for a specific harmonic order, this
way is not applicable. To address these issues, an intrinsic
spectral characteristic reflecting the dominant contribution in
solid HHG is indispensable.

Essentially, the bulk samples adopted in experimental
HHG have a thickness of approximately 200 µm [27,28], in
which the radiated harmonic photons will undergo the prop-
agation and self-absorption processes in solid-state medium.
Especially for the transmission spectrum, the high-order har-
monic signals collected by the spectrometer inevitably include
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the impact of propagation and self-absorption [29–31]. For
the disputes about the intra- and interband contributions in
bulk materials, it is a great challenge to make an agreement
between simulation of SBEs and HHG experiment [32–37].
In addition, the relative contribution between intra- and
interband dynamics will also be varied by the propagation
under various cases. For simplicity and clarity, the atomic
monolayer materials will avoid the abovementioned drawback
and thus serve as an ideal platform to specify the signature of
intra- and interband dynamics in polarization-resolved HHG
spectra.

In this work, we uncover the intrinsic signature that the
symmetry of the polarization-resolved harmonic yield could
directly characterize the dominant contribution in the experi-
mental HHG spectra. To unveil the solid HHG mechanisms,
we introduce an intrinsic connection between the real- and
k-space perspectives, and we derive a correspondence that
the intra- and interband emissions can be demarcated by the
translation and rotation symmetries of the crystal structure.
This paper is organized as follows. In Sec. II, we present
the theoretical methodology. In Sec. III, we systematically
discuss the HHG in monolayer MoS2. We summarize our
paper in Sec. IV. Atomic units are used throughout this paper,
unless specified otherwise.

II. THEORETICAL METHODOLOGY

A. Electron dynamics correspondence between
real and reciprocal spaces

First, we present the reciprocal-space perspective for the
electrons in solids driven by laser fields with the vector poten-
tial A(t ). Under the single-particle model, the time-dependent
Hamiltonian reads Ĥ(t ) = [p + A(t )]2/2 + V (r), which con-
sists of the field-involved kinetic energy and the crystal po-
tential. The instantaneous eigenstates and eigenvalues of Ĥ(t )
are denoted as |n, k〉 and εn(k), and the former are the Hous-
ton states 〈r|n, k〉 ≡ e−iA(t)·rφnk = eik·runk(r), labeled by the
shifted crystal momentum k(t ) = k + A(t ) and the band in-
dex n, where k is the initial crystal momentum [38–40]. Under
the basis of Houston states |n, k〉, the time-dependent state
can be expanded as |�(t )〉 = ∑

n

∫
BZ Cn(k, t )|n, k〉dk, where

n, A(t ), and Cn(k, t ) are the energy band index, the vector
potential defined as − ∫ t

−∞ F(t ′)dt ′, and the time-dependent
coefficients, respectively. The field-induced nonlinear current
is J(t ) = 〈�(t )|v̂|�(t )〉, and the expectation value of velocity
operator v̂ = i[Ĥ(t ), r].

The gauge covariant form of the coordinate operator is
r = i∇k + A [41]. Here ∇k = δnm∇kδ(k − k′) is the gradi-
ent operator which acts on all matrix elements to the right.
The diagonal and off-diagonal matrix elements of operator
A are the Berry connection An(k) and the transition dipole
moment dnm(k), respectively. Thus, the total current could be
expressed as

J(t ) =
∑

n

∫
BZ

ρk
nn∇kεn(k)dk +

∑
n �=m

∫
BZ

iεnm(k)ρk
mndnm(k)dk.

(1)

Here, ρk
nn (or ρk

nm) are the diagonal (or off-diagonal) el-
ements of the density matrix, related to the coefficients
as ρk

nm = Cn(k, t )C∗
m(k, t ). εnm(k) is the energy difference

between bands n and m. The total current consists of the
intra- and interband currents. The intraband current is char-
acterized by the diagonal elements of the velocity matrix as
vnn = ∇kεn(k). Furthermore, the interband polarization cor-
responds to the off-diagonal elements of the velocity matrix
as vnm = iεnm(k)dnm(k).

Next, we revisit the coordinate operator r under the real-
space perspective, via decomposing this operator as r = R +
rc [41,42]. Here rc represents the coordinate within the unit
cell with reference to the arbitrary origin of coordinates in the
unit cell, while R denotes the location of lattice sites. Under
the Houston state basis |n, k〉, the matrix elements of r are

〈m, k′|r|n, k〉 =
∫
V

φ∗
mk′rφnkdr. (2)

We expand the integral of Eq. (2) into two characteristic
integrals over the unit cells as follows:∫
V

φ∗
mk′rφnkd3r =

∑
Ri

∫
C

u∗
mk′ (rc + Ri )unkei(k−k′ )·(rc+Ri )drc

=
∑

Ri

Ri ei(k−k′ )·Ri

∫
C

u∗
mk′unkei(k−k′ )·rc drc

︸ ︷︷ ︸
XR

+
∑

Ri

ei(k−k′ )·Ri

∫
C

u∗
mk′unk rc ei(k−k′ )·rc drc

︸ ︷︷ ︸
XC

.

(3)

Here the subscripts V and C respectively represent the inte-
grals within the whole sample volume and the unit cell, and
Ri is the location of lattice sites with the site index i. The
integral in Eq. (3) is composed of two parts labeled as XR and
XC . The structural symmetry of lattice sites is encoded in the
term XR, and XC denotes the centroid of the electronic wave
packet within unit cells. We further simplify them into

XR = δnmi∇k′δ(k − k′), (4a)

XC = δnmδ(k − k′)An(k) + (1 − δnm)δ(k − k′)dmn(k).

(4b)

Therefore we can also identify r = δnmi∇kδ(k − k′) + A,
which is consistent with the expression presented in Blount’s
work [41]. The Eqs. (4a) and (4b) imply that there is one-to-
one correspondence for coordinate operator r between real-
and k-space representations, i.e.,

R = δnmi∇kδ(k − k′), rc = A. (5)

Thus, the velocity operator in real space can be further rewrit-
ten as v̂ = v̂intercell + v̂intracell, where v̂intercell = i[Ĥ(t ), R]
describes the cell-to-cell diffusion of the electronic wave
packet, while v̂intracell = i[Ĥ(t ), rc] denotes the local oscilla-
tion of the electronic wave packet within the unit cell, and this
similar dynamics in real space was preliminarily discussed in
one-dimensional representation [43]. Considering the spatial
features of these two velocity operators, we also call the
expectations 〈v̂intercell〉 and 〈v̂intracell〉 as the inter- and intracell
velocities, respectively.

It is easy to obtain that [H(t ), R]n �=m = 0 and
[H(t ), rc]nn = 0; hence, the nondiagonal matrix elements
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FIG. 1. (a) Top view of the monolayer MoS2 (leftmost panel) and
the angle θ denoting the crystallographic orientation with respect to
the MIR laser polarization direction (red arrow). Two right panels re-
spectively show the intracell (60◦ × l) and intercell (30◦ + 60◦ × l)
structure symmetries. (b) High-order harmonic spectra obtained from
simulation (blue dash curve) and experiment [49] (gray shadow-
zone curve). To reproduce the HHG spectrum, the laser wavelength
(4130 nm) adopted in the experiment is used in the theoretical
simulation.

of v̂intercell and the diagonal matrix elements of v̂intracell make
no contributions to the currents. We can further deduce the
matrices of the inter- and intracell velocities as

〈v̂intercell〉 =
∑

n

i[H(t ), R]nn =
∑

n

vnn, (6a)

〈v̂intracell〉 =
∑
n �=m

i[H(t ),A]nm =
∑
n �=m

vnm, (6b)

in which n and m denote the indices of energy bands. Con-
sequently, the intra- and interband transition dynamics in
k space, which are respectively represented by

∑
n vnn and∑

n �=m vnm, correspond one-to-one to the real-space wave-
packet dynamics involving 〈v̂intercell〉 and 〈v̂intracell〉. This
intrinsic correspondence between the real space and the k
space offers a joint and complementary perspective to probe
the wave-packet dynamics in the HHG process.

B. Semiconductor Bloch equations

Based on the nearest-neighbor (NN) tight-binding model,
the Hamiltonian of the monolayer MoS2 reads [44,45]

H0(k) =
[

�/2 h1 f (k)

h1 f ∗(k) −�/2

]
, (7)

where f (k) = exp(i akx√
3

) + 2 exp(−i akx

2
√

3
) cos( aky

2 ) is deter-
mined by the crystal symmetry shown in Fig. 1(a). In addition,
the lattice constant a, the band gap �, and the NN hopping
term h1 are 5.9 a.u., 1.8 eV, and −0.39 eV, respectively.
Diagonalizing the field-free Hamiltonian H0(k), one can
obtain the energy-band dispersion εm. The dipole matrix el-
ements are calculated as dmn = i〈umk|∇k|unk〉, where |unk〉 is
the cell periodic part of the Bloch function. The theoretical

simulations are performed by the scheme of SBEs under the
Houston representation. The SBE reads

∂tρ
k
mn =−iεk

mnρ
k
mn − (1 − δmn)

ρk
mn

T2

− iF(t ) ·
∑

f

[
ρk

m f dk
f n − dk

m f ρ
k
f n

]
, (8)

which indicates the time-dependent evolution of the electron
density ρk

mn. The dephasing time T2 adopts 5.2 fs [46] and
characterizes the relaxation process of the system. The Fermi-
Dirac distribution determines the initial electronic population
in the valence and conduction bands, described as ρk

nn =
[exp( εn(k)−μ

kBT ) + 1]−1. T is chosen as the room temperature.
The chemical potential μ is 0 eV, corresponding to the top of
the valence band, unless specified otherwise. The monolayer
MoS2 is driven by the linearly polarized laser pulses with a
Gaussian envelope. In our theoretical simulations, the laser
wavelength, full width at half maximum, and intensity are
3.8 µm, ten optical cycles, and 0.6 TW/cm2, respectively. We
numerically solve the time-dependent evolution of the SBEs
via the Crank-Nicolson method, and then we obtain the intra-
and interband currents as

Jintra (t ) =
∑
k∈BZ

∑
n

ρk
nn∇kεn(k), (9a)

Jinter (t ) =
∑
k∈BZ

∑
n �=m

iεnm(k)ρk
mndnm(k). (9b)

The total current is Jtotal(t ) = Jinter (t ) + Jintra (t ). Finally,
the high-order harmonic spectrum is obtained from the
Fourier transform (FT ) on the total current and given by

I (ω) ∝ ω2|FT {Jtotal(t )}|2. (10)

The high-order harmonic spectrum along a certain direction n̂
could be given by In̂(ω) ∝ ω2|FT {Jtotal(t ) · n̂}|2.

To clarify the role of the anomalous current in the SBEs
simulations, we make a semiclassical discussion about the
perpendicular high-order harmonic emissions. Under the adi-
abatic theorem with first-order correction [47], the interband
current of Eq. (9b) could be transformed to the anoma-
lous current janom = F(t ) × �(k), where �(k) = ∇k × A(k)
and A(k) are the Berry curvature and the Berry connection,
respectively. Broken inversion symmetry in the monolayer
MoS2 gives rise to the nonzero Berry curvature around
the K and K′ valleys in the reciprocal space. Consider-
ing the fact that interband transition between valence and
conduction bands mainly occurs around two valleys [48],
thus the anomalous current contributed by the Berry cur-
vature can be simplified as the summation of these two
valleys [16,49,50]. Here this anomalous current is given by
Janom(t ) = ∫

BZ janom(k)δ[k − A(t ) − K/K′]dk and one can fi-
nally deduce Janom = F(t )

∑
K/K′ �[K/K′ + A(t )] [50]. The

time-reversal symmetry �(−k) = −�(k) and the Kramer de-
generacy K′ = −K ensure the relation as �[K′ + A(t )] =
−�[K − A(t )]. For each type of valley, the time-dependent
Berry curvatures around K/K′ satisfy the �[K − A(t )] =
�[K − RθA(t )], where the Rθ indicates rotation operation
with θ = 2π

3 . Finally, one could obtain

Janom(t ) = F(t )��K(A(t )), (11)
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and ��K(A(t )) = �[K + A(t )] − �[K − A(t )] represents
the Berry curvature difference between the points K + A(t )
and K − A(t ). Hence, the orientation dependence of ��K de-
termines the anomalous current and subsequently affects the
polarization-resolve patterns of the perpendicular high-order
harmonic yields.

C. Gauge invariance of intra- and interband HHG

Under the Bloch basis, the separation between intra- and
interband currents had been proven to be gauge-dependent
physical quantities [25]. In this work we employ the Hous-
ton basis to expand the time-dependent states, which are
gauge covariant and will give rise to the gauge-independent
separation of the intra- and interband currents. The random-
gauge time-dependent Hamiltonian is written as Ĥg = [p̂ −
Ag(t )]2/2 + V (r) + g(r, t ), where Ag(t ) and g(r, t ) are the
vector potential and the scalar potential in the random gauge,
labeled as subscript g. The gauge freedom of the electromag-
netic field demands the gauge transformations to be satisfied
as follows:

Ag(t ) → Ag(t ) + ∇�(r, t ),

g(r, t ) → g(r, t ) − ∂t�(r, t ).
(12)

Here �(r, t ) is a differentiable real function. The Hamiltonian
turns out to be Ĥ′ = [p̂ − Ag(t ) − ∇�(r, t )]2/2 + V (r) +
g(r, t ) − ∂t�(r, t ). The corresponding phase transforma-
tion on the wave function, i.e., |�g(r, t )〉 → |� ′(r, t )〉 =
ei�(r,t )|�g(r, t )〉, is made to maintain the invariant of the time-
dependent Schrödinger equation. Thus, the wave function in
the g gauge is related to the velocity-gauge wave function
by |�g(r, t )〉 = ei�(r,t )|�v (r, t )〉, and the same transforma-
tion also holds for the instantaneous eigenstates, indicated
as |n, k〉g = ei�(r,t )|n, k〉v . Under these two gauges, the wave
functions can be denoted as

|�g(r, t )〉 =
∑
nk

Cg
n (k, t )|n, k〉g,

|�v (r, t )〉 =
∑
nk

Cv
n (k, t )|n, k〉v.

(13)

The relation between wave function coefficients is Cg
n (k, t ) =∑

mq〈n, k|gei�(r,t )|m, q〉vCv
m(q, t ), where 〈n, k|gei�(r,t )

|m, q〉v = δmnδ(q − k). Thus, we can obtain the coefficients
of the adiabatic basis, which are gauge invariant, i.e.,
Cg

n (k, t ) = Cv
n (k, t ). Furthermore, the gauge independence of

the density matrix elements is also clarified.
As shown in Eq. (9a), the intraband current is composed of

the diagonal part of the density matrix and the group-velocity
term, both of which are gauge-independent arguments. For the
interband current shown in Eq. (9b), the further two arguments
on the right-hand side are both gauge independent. The tran-
sition dipole elements are gauge invariant and denoted as

〈n, k|gr̂|m, q〉g = 〈n, k|ve−i�(r,t )r̂ei�(r,t )|m, q〉v
= 〈n, k|v r̂|m, q〉v. (14)

Hence, the interband current is gauge independent, which
means that the results of distinguishing the intra- and in-
terband contributions of HHG under the adiabatic basis are
robust and reliable in this work.

FIG. 2. Parallel harmonic components obtained from the theo-
retical simulations. In panels (a) and (b) the HHG spectra along two
characteristic directions are separated into the intra- and interband
contributions. Panels (c) and (d) respectively show the polarization-
resolved yield patterns for odd- and even-order harmonics. In panel
(c), the intra- and interband contributions have been specified care-
fully, and the weaker contribution terms have been multiplied by a
factor to distinguish the dominate term.

III. RESULTS AND DISCUSSIONS

A. Comparison between experimental and simulated
HHG spectra in monolayer MoS2

For the spectral measurements of HHG experiments in
monolayer MoS2, one usually performs the acquisition of
high-harmonic signals along the parallel (‖) and perpendicular
(⊥) directions relative to the laser-polarized direction [49].
To make a demonstration, we here theoretically reproduce the
experimental high-order harmonic spectrum along the parallel
direction of the driving field. As shown in Fig. 1(b), the
representative spectrum along θ = 0◦ exhibits the 6th to the
13th harmonic of the fundamental field centered at a photon
energy of 0.30 eV. In the experimental spectrum (gray-shaded
curve) [49], one can observe that the even-order harmonic
intensities are much lower than those of odd-order harmon-
ics, and the experimental HHG spectrum characterizes the
strongest signal strength at the 7th harmonic. Both of these
spectral features have been confirmed by our theoretical high-
order harmonic spectrum, as shown in the blue-dashed curve
of Fig. 1(b). To make an insight into the observable HHG
spectra, in Figs. 2(a) and 2(b) we have separated out the intra-
and interband contributions. Excluding the 3rd harmonic, one
finds that the interband current dominates both the odd- and
even-order harmonics. Contrary to the odd-order harmonics,
the even-order harmonics are entirely determined by the inter-
band components.

Figures 2(c) and 2(d) respectively display the odd- and
even-order harmonic symmetries of the harmonic yields,
which are obtained from the rotation of the linearly polar-
ized laser fields. Note that, for convenience, in Fig. 2(c) the
weaker contribution terms have been magnified by a factor.
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FIG. 3. Perpendicular harmonic components obtained from the
theoretical simulations. (a) High-order harmonic spectrum and its
contribution separation spectra along θ = 30◦. (b) Polarization-
resolved patterns of the total harmonics yields. (c) Berry curvature
difference ��K of the valence band around the K point. The high
symmetry directions of �-K and M-K are marked. (d) Polarization-
resolved yield patterns obtained from the semiclassical calculations
of Eq. (11).

Keeping the negligible intraband contribution in the even-
order harmonic in mind, in Fig. 2(d) only the total or
interband contribution is shown here. Apart from the 3rd
harmonic whose symmetry of the measurable harmonic
yields is θ = 30◦ + 60◦ × l , with l being an integer, one
can observe that the harmonic maximal yields are along
θ = 60◦ × l , which is consistent with the experimental
measurements [49].

Next we turn to the case where the directions of the
fundamental and the harmonic fields are perpendicular.
Figures 3(a) and 3(b) respectively exhibit one representa-
tive HHG spectrum and its orientation-dependent feature.
Similar to the experimental HHG spectra in Ref. [49],
only even-order harmonics emerge in the HHG spectra,
and their orientation-dependent yield patterns are maximal
along θ = 30◦ + 60◦ × l . It is worth emphasizing that in
Fig. 3(a) the even-order harmonic spectrum of the perpen-
dicular component is also entirely dominated by interband
contributions. To comprehend the perpendicular even-order
component, we resort to the anomalous current derived from
the Berry curvature ��. One observes that the maximal val-
ues of ��K are along the direction of θ = 30◦ + 60◦ × l ,
as shown in Fig. 3(c). Based on Janom(t ) in Eq. (11), we
calculate the perpendicular harmonic components from ��K.
The calculated HHG patterns are presented in Fig. 3(d)
and reach a great agreement with the SBEs’ patterns in
Fig. 3(b).

We have reproduced the parallel and perpendicular har-
monic components emerging in the HHG experiments of the
monolayer MoS2, and their patterns of the anisotropic har-
monic yields have been verified.

B. Correspondence between the polarization-resolved
symmetry of the measurable total HHG yields

and the dominant contribution term

Several studies have discussed the real-space perspective
of electron dynamics under Wannier representation, which is
dual to the k-space dynamics [51,52]. However, Wannieriza-
tion reduces the electron dynamics to an intercell electron
hopping, in which the intracell electron transport is lost. Nev-
ertheless, several works have clarified the significant role of
the intracell electron dynamics [53,54]. Considering the fact
that the inter- and intracell dynamics can be reflected by
the symmetries of the crystal structure, the correspondence
deduced in Sec. II A provides an ingenious avenue to discern
the dominant mechanism between intra- and interband contri-
butions. In fact, the chemical bonds describe the distribution
of valence electrons among lattice sites. When the crystalline
materials are irradiated by the linearly polarized laser fields,
electronic migration or oscillation tends to take place along
the intracell directions in which atoms form bonds [55,56],
thereby giving rise to interband HHG. In addition, the laser-
driven electronic wave packet is also inclined to transport
between the adjacent unit cells, known as intercell dynamics
that leads to the intraband emissions of HHG. For simplic-
ity, we here designate the polarization-resolved yield patterns
of the intra- and intercell HHG as the intra- and intercell
symmetries.

Before one straightforwardly adopts the intra- and intercell
symmetries to identify the inter- and intraband mechanisms,
one should emphasize that the Wigner-Seitz cell is chosen
as the primitive cell. Furthermore, considering the anoma-
lous velocity of the electronic wave packet deviates from
the direction of the driving laser fields, the correspondence
between the reciprocal space and the real space is inapplicable
for the perpendicular harmonic components. Next we consider
the yield patterns of the parallel harmonic components and
unravel their underlying intra- and interband signatures from
the perspective of inter- and intracell symmetries.

In the right two panels of Fig. 1(a), θ = 30◦ + 60◦ × l and
θ = 60◦ × l are inter- and intracell symmetries, respectively.
Based on the mentioned correspondence shown in Sec. II A,
in Figs. 2(a) and 2(b) one could predict that the interband
mechanism dominates the all high-harmonic orders except
for the 3rd harmonic determined by intraband mechanism. To
verify the predictions of the intra- and interband mechanisms,
in Figs. 2(c) and 2(d) we separate the intra- and interband con-
tributions for two representative cases. In Figs. 2(c) and 2(d),
one can also observe that the 3rd harmonic is dominated
by the intraband current, but all the other harmonics are
contributed by the interband current. To exclude the impact of
the dephasing time, Figs. 4(a) and 4(b) show the HHG spec-
tra under various dephasing times, in which their intra- and
interband contributions have also been separate. In Figs. 4(a)
and 4(b), one can see that the relative contributions between
the intra- and interband currents are totally consistent with
those in Figs. 2(c) and 2(d). Note that the separation of intra-
and interband contributions is to illustrate the validity of our
proposal. Our proposal is based on the polarization-resolved
symmetry of the measurable total HHG yield. Finally, one
can conclude that the proposal of fingerprint identification
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FIG. 4. Impact of the dephasing time T2 on the intra- and
interband contributions. Parallel high-order harmonic spectra vary-
ing with T2 along two characteristic directions (a) θ = 0◦ and
(b) θ = 30◦.

can be effectively used to recognize the intra- or interband
mechanism in the HHG process.

C. Transition of the dominant mechanism

Proposal of the fingerprint identification could also pre-
dict the mechanism transition between intra- and interband
contributions. The HHG process in experiments would be
controlled by the doping or depletion of the carriers [57–59].
In Figs. 5(a1) and 5(b1), we illustrate two schematic dia-
grams with different chemical potentials μ. For the cases with
chemical potentials μ = 0 and −0.24 eV, Fig. 5(c) exhibits
the polarization-resolved yield pattern of the 5th harmonic.
According to the rule that the intracell (60◦ × l) and inter-
cell (30◦ + 60◦ × l) symmetries respectively correspond to
the dominant contributions of inter- and intraband currents,
in Fig. 5(c) one could predict that the dominant mechanism

FIG. 5. Transition of the dominant contribution currents under
the tuning chemical potential μ. Schematic diagrams for μ = 0 eV
(a1) and μ = −0.24 eV (b1). Parallel high-order harmonic spec-
tra along two characteristic directions θ = 0◦ and 30◦ respectively
present in panels (a2) or (b2) and panels (a3) or (b3). (c) Polarization-
resolved patterns of the 5th harmonic under two chemical potentials.

has been changed from the interband contribution (red solid
pattern) into the intraband contribution (blue dash pattern). In
Figs. 5(a2) and 5(a3) and Figs. 5(b2) and 5(b3), the separated
HHG spectra along two characteristic directions (θ = 0◦ and
30◦) show that the inter- and intraband currents respectively
determine the 5th harmonic emissions in the cases μ = 0 and
−0.24 eV, which reach a great agreement with the predicted
results via the fingerprint identification.

IV. CONCLUSIONS

In summary, the electronic wave-packet dynamics can be
decomposed into the local oscillation within the unit cell
and the diffusion among various unit cells, which are called
s intra- and intercell dynamics, respectively. According to
the characteristics of the wave-packet dynamics, we deduce
a correspondence that the intra- and intercell dynamics in
real space respectively characterize the inter- and intraband
currents in reciprocal space. The spectroscopic symmetries
have been obtained from the polarization-resolved measur-
able HHG spectra via rotating the crystal angle with respect
to the polarization direction of the laser fields. Considering
the fact that the parallel components of HHG spectra reflect
the electronic dynamics along the laser-driving direction, we
regard their polarization-resolved symmetries as fingerprints
to compare with the intra- and intercell symmetries in the
crystal structure, distinguishing the dominant mechanism of
high-order harmonic emission in the HHG spectra of mono-
layer MoS2.

A detailed recipe can be summarized as follows. First, one
chooses the Wigner-Seitz cell as the primitive cell of the crys-
talline structure. Then, the intra- and intercell symmetries of
the crystalline structure can be clearly and uniquely defined.
Finally, one can compare the symmetry of the polarization-
resolved yield of the given harmonic order with the defined
intra- or intercell symmetry to confirm its inter- or intraband
dominant mechanism.

Beyond the scheme of the attosecond chirp distinguishing
the dominate mechanism [26], in this work we introduce an
alternative proposal that the HHG mechanism can be clarified
by the intra- and intercell symmetries in the crystal structure.
Note that our proposal is more suitable to the cases excluding
the intricate propagation effect. By distinguishing the intra-
and interband mechanisms in the carrier’s doping or depletion
solids, our work provides a promising way to enhance and op-
timize the attosecond light source from the solid-state HHG.
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