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Spectral switches of light in curved space
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Acting as analog models of curved spacetime, surfaces of revolution employed for exploring novel optical
effects are followed with great interest nowadays to enhance our comprehension of the universe. It is of general
interest to understand the spectral effect of light propagating a long distance in the universe. Here we address
the issue of how curved space affects the phenomenon of spectral switches, a spectral sudden change during
propagation caused by the finite size of a light source. Based on the point spread function of curved space under
the paraxial approximation, the expression of the on-axis output spectrum is derived and calculated numerically.
A theoretical way to find on-axis spectral switches is also derived, which interprets the effect of spatial curvature
of surfaces on spectral switches as a modification of the effective Fresnel number. We find that the spectral
switches on surfaces with positive Gaussian curvature are closer to the source compared with the flat surface
case, while the effect is opposite on surfaces with negative Gaussian curvature. We also find that the spectral
switches farther away from the light source are more sensitive to the change in Gaussian curvature. This work
deepens our understanding of the properties of fully and partially coherent lights propagating on two-dimensional
curved space.
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I. INTRODUCTION

Phenomena in curved spacetime and the physics behind
them have been fascinating people since Einstein proposed
general relativity. For example, black holes and their event
horizons around them, gravity waves, and the universe itself
all are still mysterious. In most cases, only passive observation
is possible as celestial bodies are far away and their gravita-
tional effect is weak. Fortunately, the idea of analogy provides
a new method for us to research them. Nowadays, a variety
of analog models have been developed to investigate effects
in curved spacetime, such as the water tank [1,2], the Bose-
Einstein-condensate system [3,4], light pulses in nonlinear
fiber optics [5], and quantum fluids of light [6,7] (see also the
reviews in [8–10]).

In condensed-matter physics, the theory of quantum parti-
cles confined in curved space was put forth and the geometric
potential was discussed [11]. Since the paraxial Helmholtz
equation of light on a surface is very similar to Schrödinger’s
equation, light and plasmonic beams are used to study the
propagation mechanism of quantum particles and quantum
effects [12–16]. Batz and Peschel considered optical effects
in curved space and regarded it as an analog model of general
relativity [17]. In this analog model, the curved spacetime
is reduced in dimensions and then turned into a two-
dimensional surface in this case. Such models can visually
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display the geometry of curved space and probably provide
new ideas for manufacturing optical devices. There has been
interesting research on general relativistic phenomena and
optical phenomena in curved space [17–25]. Among them,
surfaces with constant Gaussian curvature can act as analog
models of universes with nonvanishing cosmological con-
stants and are thus of particular interest in various works
[18–22]. For example, Gaussian beams can self-focus on
this type of surface with positive Gaussian curvature [18].
It has been theoretically and experimentally found that light
does not always gain coherence on this kind of surface, as
stated in the Hanbury Brown–Twiss effect [19]. The spectral
shift caused by the correlation of a light source has been
found to be enhanced by positive curvature and suppressed
by negative curvature [20]. The shape-preserving accelerating
beams have been theoretically and experimentally realized on
the sphere [21]. Recently, the branched flows of light were
also interestingly observed on a semispherical bubble [22].
Besides the surfaces of constant Gaussian curvature, Flamm’s
paraboloid has also been adopted because it is derived from
the Schwarzschild metric. Two Flamm’s paraboloids can be
joined together and form an analog model of wormholes. The
effect of tunneling was found when wave packets propagate
in this model [23]. There are also some theoretical works
considering the propagation of light on more general surfaces
of revolution [24–26].

Here we consider the effect of spectral switches of light,
a kind of spectral sudden change, on surfaces of revolution.
Spectral change of light has attracted a great deal of attention
because it can offer or influence the information we get from
the spectrum. For example, the Doppler effect can tell us the
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relative velocity between a source and an observer. Its further
work is the angular Doppler effect. It has applications in
rotational Raman scattering, fluorescence doublets, and so on
[27]. The theory was also developed to detect spinning objects
in astronomy [28]. The spectral change of light may also occur
in the propagation of incoherent or correlated light fields in
free space [29,30], and this effect is sometimes referred to
as the Wolf effect [31,32]. This effect has been experimen-
tally confirmed in different systems [33,34], such as partially
coherent light sources [33] and an acoustic experiment [34].
An application of the Wolf effect is spatial-coherence spectral
filters, which can be applied in separation of neighbor-
ing spectral lines, processing optical signals, and optical
coding [35,36].

Exploration of the spectral shift induced by a confined
aperture in the near zone led to the revelation of the spectral
switch, as initially proposed in [37]. The spectral switch was
found to be closely related to spectral anomalies [38]. The
definition of the spectral switch is the rapid spectral change
between a redshift and a blueshift in certain specific regions.
At those positions at which the spectral switch occurs, the
spectrum changes drastically and possesses two peaks with
the same height. This effect could be induced by the diffrac-
tion of fully coherent sources or partially coherent sources
obeying the scaling law [38]. For partially coherent sources
violating the scaling law, the spectral switch is both diffraction
induced and correlation induced [39]. The spectral switch has
been experimentally observed [40–43], including circular and
rectangular apertures [40], far-field off-axis spectral switches
[41], the 1 × N spectral switch [42], and spectral switches in
Young’s double-slit experiment [43]. There is also research
on spectral switches of scattering spectra [44–46]. The ef-
fect of spectral switches has important application in lattice
spectroscopy [47], spatial-coherence spectroscopy [31], and
digital data transmission [48,49]. Although so many stud-
ies have been done, optical systems in flat space were the
focus of all the previous research. In this work we explore
whether spectral switches can happen on two-dimensional
curved space and the way the spatial curvature influences the
positions of spectral switches.

II. OUTPUT SPECTRUM OF A FINITE LIGHT
SOURCE IN CURVED SPACE

A. Point spread function in curved space

A surface of revolution is produced by the rotation of
a curve about a certain axis; the curve is called the gener-
atrix. Each point on this surface can be expressed as �s =
(r(z) cos ϕ, r(z) sin ϕ, h(z)), where r(z) is the expression of
the generatrix which satisfies (dr/dz)2 + (dh/dz)2 = 1. The
parameter z represents the proper length along the generatrix
and ϕ represents the rotation angle. The Gaussian (intrin-
sic) curvature K = 1/R1R2 and the extrinsic (mean) curvature
H = (1/R1 + 1/R2)/2 are often used to describe the charac-
teristics of a surface, where R1 and R2 represent the radii of
the maximal and minimal circles, respectively, that are tangent
to the surface at the same point. If these two circles are on the
opposite sides of the surface, the Gaussian curvature K will be
negative. When the surface has a constant Gaussian curvature,

its generatrix is

r(z) = r0 cosq(z/R) =
{

r0 cos(z/R), q = 1
r0 cosh(z/R), q = −1,

(1)

where q = sgn(K ) and r0 is the radius of the equator. The
parameter R is the radius of the surface’s curvature and then its
Gaussian curvature is |K| = 1/R2. In the situation of K > 0,
the relative difference between R and r0 can influence the
shape of the surface. For R > r0, it is a spindle with |z| <

πR/2; for R = r0, it becomes a sphere with the same range
value for z; and for R < r0, it changes into a bulge with
|z| < R sin−1(R/r0). When K < 0, the shape of the surface is
always hyperboloid with |z| < R sinh−1(R/r0). The shape of
the surfaces with different R and r0 are shown in Fig. 1.

On a general surface of revolution, the light propagation
can be described by the scalar Helmholtz equation [17]

(�g + k2)� = −(H2 − K )�, (2)

where � is the light field,
�

g = 1√
g∂i(

√
ggi j∂ j ) is the co-

variant Laplace operator on a surface with the two surface
coordinate parameters xi and x j , gi j is the inverse form of
the metric of the surface gi j , g is the determinant of metric
det(gi j ), k = ω/c is the wave number, and c is the speed of
light in vacuum. With z for the proper length in the longitu-
dinal direction and ξ = r0ϕ for the arc length on the equator,
the metric of a general surface of revolution can be written as

ds2 = dz2 +
(

r(z)

r0

)2

dξ 2. (3)

Substituting Eq. (3) into Eq. (2) and assuming � =
A√
r(z)

v(z, ξ )eikzeiφ , under the paraxial approximation, one can
obtain

2ik
∂v

∂

+ ∂2v

∂ξ 2
= 0, (4)

where 
(z) = ∫ z
0 ( r0

r(z′ ) )2dz′ is the effective propagation dis-

tance elaborated in [24] and φ = 1
2k

∫ z
0 Veff(z′)dz′ is the

additional phase caused by curved surfaces with Veff(z) =
1
4 ( r′(z)

r(z) )2 − 1
2

r′′(z)
r(z) . Equation (4) has a similar form to the

Schrödinger equation. On the right-hand side of Eq. (2), the
extrinsic curvature H and the intrinsic curvature K are ne-
glected since the radius of surface R we consider here is much
larger than the wavelength. For example, the corresponding
values of K and H2 in table experiments are usually the order
of 100–102 m−2, while k2 is roughly 1014 m−2. By solving
Eq. (4), one obtains the point spread function of light that
spreads along ξ = const (the line of longitude) on the surface,
which is [24]

hq(η, ξ, z) =
√

kr0

2π i
r(z)
e(ik/2
)(η−ξ )2

eikzeiφ, (5)

where η is the abscissa on the line of nonequator latitude.

B. On-axis spectrum of light in curved space

In order to consider a finite light source, here we assume
that the size of the source is 2a, which can also be seen
as a beam of polychromatic partially coherent light passing
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FIG. 1. Different types of surfaces with constant Gaussian curvature and the curvilinear coordinates thereon: (a)–(c) surfaces with constant
positive Gaussian curvature and (d) a surface with constant negative Gaussian curvature. The z and ξ are two parameters of surfaces. The slit
is settled on (0,0) and its size is 2a. Light propagates from the slit in the direction of z. When K is positive, the relative size between R and r0

can influence the shape of the surface, such as (a) a spindle with R > r0, (b) a sphere with R = r0, and (c) a bulge with R < r0. Also shown is
(d) the shape of a hyperboloid no matter how we choose R and r0.

through a slit with a width of 2a, as shown in Fig. 1. The light
propagates in the direction of z > 0, i.e., the line of longitude
on the surfaces of revolution. The center of the slit is located
at the origin of the coordinate (z = 0, ξ = 0). Our aim is to
study the spectral change along the propagation, so we first
need to obtain the on-axis output spectrum.

The cross-spectral density of a polychromatic partially co-
herent plane light at the initial place can be expressed as [37]

Win(ξ1, ξ2, z = 0, ω) = S0(ω)e−(ξ2−ξ1 )2/2σ (ω)2
, (6)

where S0(ω) is the initial spectrum and σ (ω) is the rms
correlation width. Without loss of generality, we assume that
the source satisfies the scaling law and let σ (ω) = σ0

ω0
ω

. The
parameters ξ1 and ξ2 represent different points on the initial
plane of the light source. We also assume that the spectrum
of the source is a Lorentz type with ω0 the center (or peak)
frequency and  the half-width of the spectral line, which is
expressed as

S0(ω) = 2

(ω − ω0)2 + 2
. (7)

According to the theory of partially coherent light [50], the
cross-spectral density of the light field at the output plane z >

0 can be written as

Wout(η1, η2, z, ω) =
∫ a

−a

∫ a

−a
Win(ξ1, ξ2, z = 0, ω)

× hq(η1, ξ1, z)h∗
q(η2, ξ2, z)dξ1dξ2, (8)

where (η1, z) and (η2, z) are the different points on the output
end, hq is the point spread function introduced above, and h∗

q
is the conjugate function of hq.

Now we concentrate on the evolution of the light spectrum
along the propagation axis, i.e., the line of the longitude
by choosing η1 = η2 = 0, to achieve the on-axis output
spectrum, which can be expressed as

S(z, ω) = Wout(0, 0, z, ω)

= ωa2S0(ω)r0

cπ
r(z)

∫ 1

0

∫ 1

0
e−a2(u1−u2 )2/2σ (ω)2

× ei(ωa2/2c
)(u2
1−u2

2 )du1du2. (9)

In the case of fully coherent light, that is to say, when σ0 →
∞, the output spectrum becomes

S(z, ω) = r0

r(z)
S0(ω)[C(t
)2 + S(t
)2], (10)

where C(x) = ∫ x
0 cos(πu2/2)du is the cosine Fresnel inte-

gral, S(x) = ∫ x
0 sin(πu2/2)du is the sine Fresnel integral, and

t
 =
√

ωa2

cπ

. Note that 
 is a function of z. For the sake of

simplicity, we define z0 = a2/λ0 = ω0a2/2πc [37] and use
z/z0 to describe the propagation distance on axis. The Fresnel
number at z0 is 1, so z/z0 � 1 means the near-field region and
z/z0 	 1 means the far-field region.

III. RESULTS AND DISCUSSION

We know that when the weight of the spectral intensity
distribution changes, the observed color of light also changes
simultaneously. In many situations, the positions of the max-
imal intensities in spectral curves can usually indicate the
important information of the light sources or the light from
optical systems. In this context, as the peak frequency in the
spectrum shifts towards lower frequencies, the entire spectral
profile exhibits a redshift; conversely, as it shifts towards
higher frequencies, a blueshift is observed. For the discussion
of the redshift or blueshift of a spectral line, here we define
a relative spectral shift, without considering the actual shape
change of the spectral profile, that is, the relative difference
between the peak frequency of the output spectrum at a certain
position and the peak frequency of the initial spectrum, which
can be expressed as

α = ω1 − ω0

ω0
, (11)

where ω1 is the corresponding peak frequency of the output
spectrum at the observation position. Obviously, under this
definition of Eq. (11), when α > 0, it is a blueshift, while
for α < 0, it becomes a redshift. In the following, all our dis-
cussion of the redshift or blueshift is based on this definition.
From Eq. (9) one can find every ω1 numerically from the on-
axis output spectral information. When there are discontinuity
points in the change curve of ω1 vs the propagation distance
z, we call such an effect spectral switches.
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FIG. 2. Effect of spectral switches of a fully coherent light source on the surface with the constant Gaussian curvature K = 4 m−2.
(a) Relative spectral shift curve along the propagation axis. The discontinuity points occur at z/z0 = 0.1275, 0.1715, 0.2595, 0.5265, standing
for the positions of spectral switches. (b) Normalized spectral distributions of light at different on-axis positions (b1) z/z0 = 0.1220, (b2)
z/z0 = 0.1275, and (b3) z/z0 = 0.1350 near one of the spectral switches (z/z0 = 0.1275). (c) Spectrum profiles at different locations of
occurring spectral switches (c1) z/z0 = 0.1275, (c2) z/z0 = 0.1715, (c3) z/z0 = 0.2595, and (c4) z/z0 = 0.5265, corresponding to the fourth,
third, second, and first spectral switches, respectively, caused by different valleys of the modifier. Note that in (c1)–(c4), the black dashed
curves are the initial spectra, the red solid curves are the output spectra, and the blue dash-dotted curves denote the modifiers at different
propagation distances. Here the size of the slit is 2a = 1.0 mm and the parameters of the initial spectrum [black dashed lines in (b) and (c)]
are the center frequency ω0 = 3.2 × 1015 rad/s and the half-width  = 1 × 1015 rad/s.

Figure 2 shows the effect of spectral switches on a sur-
face with positive constant Gaussian curvature. In Fig. 2(a)
we observe the change of the relative spectral shift α along
the propagation axis. It can be seen that the relative spectral
shift α increases from the redshift to the blueshift repeatedly
as the propagation distance increases and it suffers sudden
drops from the blueshift to the redshift at certain positions
(denoted by the points c1, c2, c3, and c4) where spectral

switches happen. Figure 2(b) shows the changes of spectral
distributions near one of spectral switches, and the ripples of
spectral distributions originate from the diffraction of light by
the slit. Due to the diffraction of light, the maximal spectral
intensity gradually shifts and redistributes with the increase
of propagation distance z, and at specific positions there are
two maximal (equal) spectral intensities indicating the occur-
rence of the spectral switch. Accordingly, the relative spectral
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shift α changes drastically from positive to negative. Spectral
switches occur on these critical points and their spectra are
shown in Fig. 2(c).

Here we work out a theoretical method to search for these
critical positions of spectral switches, which can help us un-
derstand this effect on curved surfaces. The output on-axis
spectrum can be rewritten as

S(z, ω) = S0(ω)M(z, ω), (12)

where the function M(z, ω) is usually recognized as the mod-
ifier (or the transfer function). We need to find positions
where the output spectrum has two peaks with equal heights
and a valley between them, so we can turn to search for
the valleys of the modifier M(z, ω). From Fig. 2(c) we find
that the modifier has many peaks and valleys and different
spectral switches occur when different valleys of the modifier
correspond to the central frequency ω0. To facilitate further
discussion, we classify the spectral switches based on the
order of the valley that directly causes the spectral switch.
According to the classification, the four spectral switches
shown in Fig. 2(c) are, from left to right, the fourth spectral
switch, the third spectral switch, the second spectral switch,
and the first spectral switch, that is, spectral switches with
larger orders are closer to the source. Actually, there are more
spectral switches closer to the source, but we only show the
four farthest spectral switches in Fig. 2(c) for simplicity.

When the source is fully coherent with σ0/a → ∞,
the modifier can be written as M(z, ω) = r0/r(z)[C(t
)2 +
S(t
)2] according to Eq. (10), where t
 =

√
ωa2/πc
 can be

considered as a function of ω in this case and the modifier
M(z, ω) can be seen as M(z, t
(ω)). By taking the derivative
of the modifier to get the equation of the extreme point, we
have

∂M

∂ω
= ∂M

∂t


∂t

∂ω

= ∂M

∂t


√
a2

4πcω

= 0. (13)

Since there is always
√

a2/4πcω
 > 0, our aim is then turned
to search for the zero points that satisfy ∂M/∂t
 = 0, i.e., find
the local minimum values in M(z, t
). The expression is

C′(t
)C(t
) + S′(t
)S(t
) = 0. (14)

The zero points in Eq. (14) can be obtained numerically and
we denote the value of the independent variable of these zero
points by vi (i = 0, 1, 2, 3, . . .). The local minimum points
occur where i is an even positive integer. Therefore, the con-
dition for the mth local minimum of the modifier M(z, ω)
to occur is t
 = v2m (m = 1, 2, 3, . . .). When the mth local
minimum point of the modifier coincides with the central
frequency ω0, the on-axis output spectrum will be very close
to the spectral switch, so the approximation expression of the
mth on-axis spectral switch is


m = ω0a2

πcv2
2m

, (15)

with m = 1, 2, 3, . . .. We can understand Eq. (15) in an-
other way, that is, when the effective propagation distance

 reaches some specific values, the spectral switches will
occur. For example, the expression of effective propagation
distance on surfaces with constant Gaussian curvature is

FIG. 3. (a) Effective propagation distance 
 as a function of z
on different surfaces. Different horizontal lines denote the values of
the effective propagation distance 
m satisfied for different orders
m of spectral switches, i.e., Eq. (15). Here 2a = 1 mm. (b) Effect
of the slit size 2a on the positions zm of the first, second, and
third spectral switches on curved surfaces. In (a) and (b) surfaces
with curvatures of K = 100 m−2, K = 0, and K = −100 m−2 are
expressed as dash-dotted, dashed, and solid lines, respectively, and
the first, second, third, and fourth spectral switches are blue, red,
green, and orange, respectively. The source is fully coherent with
ω0 = 3.2 × 1015 rad/s.


 = R tan(z/R) for positive curvature and 
 = R tanh(z/R)
for negative curvature. The on-axis positions for generating
the first (m = 1, v2 = 2.3473), second (m = 2, v4 = 3.4284),
third (m = 3, v6 = 4.2492), and fourth (m = 4, v8 = 4.9299)
spectral switches at the fixed effective propagation distances
are depicted in Fig. 3(a). The intersection points where the
different horizontal colored lines cross the black solid, dashed,
and dash-dotted curves of effective propagation distances
represent the solutions to the theoretical approximation of
spectral switches. Spectral switches on surfaces with positive
curvature are closer to the source, whereas they are farther
from the source on surfaces with negative curvature.
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FIG. 4. Distributions of the relative spectral shift α on the different surfaces with various spatial curvatures. The value of Gaussian curvature
K is (a) 75, (b) 25, (c) 0, (d) −25, and (e) −75 m−2. Here the proper length (a) and (b) x = η cos(z/R) and (d) and (e) x = η cosh(z/R). The
other parameters are the same as those in Fig. 2.

In Fig. 3(b) we investigate the effect of the slit size 2a on
the spectral switches, by transforming Eq. (15) into zm(a) =
R tan−1

q (ω0a2/Rπcv2
2m). As the slit size 2a increases, all the

positions zm for the different spectral switches occurring
move away from the source. On the surface of negative curva-
ture, since the effective propagation distance increases much
more slowly as the value of z increases, the positions zm for
the emergence of the spectral switches increase dramatically
as the slit size becomes large. Solid curves in Fig. 3(b) show
that the first spectral switch disappears as the value of 2a
reaches around 0.8056 mm, the second spectral switch exists
until 2a is close to 1.1768 mm, and the third spectral switch
disappears when 2a is near 1.4584 mm. On the flat surface
of null curvature, the positions zm for these spectral switches
obey the quadratic functions of 2a. Contrarily, on the surface
of positive curvature, since the effective propagation distance

 increases rapidly with the increase of z, these values of zm

instead increase much more slowly than the corresponding
cases on flat surface as the slit size increases. Such interest-
ing phenomena further reveal the distinct impact of different
spatial curvatures on the spectral switches.

In Fig. 4 we demonstrate how the changes of spectral
switches evolve from the on-axis situations into the near-axis
cases. Here the abscissa η is transformed into the proper
length x = η cos(z/R) for K > 0 and x = η cosh(z/R) for
K < 0 in Fig. 4. We choose the vicinity of two spectral
switches (z/z0 = 0.1727 and 0.2641) on the flat surface for
comparison, as shown in Fig. 4(c). In the case of the positive
curvature [Figs. 4(a) and 4(b)], these two spectral switches are
both closer to the source. In the case of the negative curvature
[Figs. 4(d) and 4(e)], the farther spectral switch is stretched
out of the area and the higher-order spectral switches also
move away from the source. In Fig. 4 we can see that both the
on-axis and off-axis spectral switches are all compressed or
stretched due to the increase of the spatial curvature. Although
the actual positions for these on-axis and off-axis spectral

switches are different, the rules for the on-axis and near-axis
cases are the same. Thus we focus further on the on-axis
spectral switches in the following discussion.

Inspired by the previous work [38], spectral switches in
three-dimensional (3D) flat space occur when the Fresnel
number at the center frequency is an even integer, that is,
N (ω0) = 2m (m = 1, 2, 3, . . .). If we define the effective Fres-
nel number Neff = ωa2/2πc
 on surfaces of revolution, the
quantity t
(ω0) can be expressed as t
 = √

2Neff. Analo-
gously, spectral switches on 2D surfaces of revolution occur
when the effective Fresnel number at the center frequency
satisfies Neff(ω0) = z0/
 = v2

2m/2 (m = 1, 2, 3, . . .). Hence,
spectral switches for a fully coherent source are also diffrac-
tion induced. The difference comes from the infinitesimal dr
in 2D space and rdrdθ in 3D space. In 2D curved space,
another notable distinction arises from the nonuniform values
of local maxima in the modifier. Consequently, the assigned
position corresponds not to the precise spectral switch point
but rather to a redshift point slightly preceding it. In contrast,
within 3D flat space, the derived expression enables the deter-
mination of the exact spectral switch points. The specific form
of the modifier in 3D flat space can be found in Ref. [38].

TABLE I. Comparison between the positions of on-axis spectral
switches obtained from Eq. (15) and the exact numerical method. The
four on-axis spectral switches are chosen in the surface of revolution
with the Gaussian curvature K = 4 m−2 and the light source is fully
coherent.

Method/Order First Second Third Fourth

Eq. (15) (z/z0) 0.5310 0.2628 0.1727 0.1287
numerical method (z/z0) 0.5265 0.2595 0.1715 0.1275
relative error 0.75% 1.07% 0.99% 0.54%
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Table I presents a comparison of the predicted positions of
on-axis spectral switches between the exact numerical method
and the theoretical Eq. (15). We use the numerical method to
estimate the effectiveness of Eq. (15). As is shown in Table I,
we choose four different spectral switches, calculate their
positions in both ways, and compare the results. The spectral-
switch positions given by Eq. (15) are all slightly larger than
their exact positions obtained by the numerical method. The
decrease in the values of the local maxima of the modifier with
increasing frequency, as illustrated in Fig. 2(c), results in a
subtle advanced shift in the positions where spectral switches
occur. However, the relative errors are all under 2%, which
shows that Eq. (15) works for the cases of fully coherent light.
Hence, it is affirmed that Eq. (15) can be initially employed to
approximate the positions, followed by a numerical method
to precisely determine the locations of spectral switches. It
is worth noting that the theoretical method introduced above
does not include the influence of r0, which is eliminated in
the expression of effective propagation distance 
. However,
the value of r0 can influence the range of z of the curved
surface based on Eq. (1), potentially resulting in the absence
of certain spectral switches due to being out of range.

Now let us discuss how the curvatures of surfaces and the
spatial correlation of the light source influence the behaviors
of on-axis spectral switches. Figure 5(a) displays that the
curvatures of curved surfaces do not impact the redshift or
blueshift values on either side of the discontinuity point (the
location of the spectral switch). However, the curvatures do
play a role in influencing the rates of change for the relative
spectral shifts and the positions of spectral switches. It can
be seen that, for the K < 0 case, the relative spectral shift
curve is stretched larger as the absolute value of K increases.
This property indicates that the spectral shift is decelerated in
the curved space with negative constant curvatures, resulting
in the locations of occurring spectral switches farther away
from the light source. In the K > 0 case, the curve of the
relative spectral shift is shrunken, indicating the acceleration
of the spectral shift in curved space with positive Gaussian
curvatures and resulting in the locations of spectral switches
closer to the source for larger values of K . With the increase
of K , these curves are more and more shrunken.

Figure 5(b) shows the changes of the relative spectral shifts
for different values of the spatial correlation length σ0. When
the light sources are partially coherent, the magnitudes of the
relative spectral shifts become smaller as the value of σ0 de-
creases. Meanwhile, as the value of σ0 decreases, the relative
spectral shift curve smooths away the discontinuity point at
the farthest position of the light source, and the amount of
blueshift and redshift corresponding to other discontinuity
points will also decrease. For example, the spectral switch
happens near z/z0 = 0.26 on the flat surface. Its blueshift has
decreased from 0.167 to 0.123 and its redshift value has de-
creased from 0.193 to 0.171. Thus, as the source changes from
fully coherent light to partially coherent light, the valley of the
modifier becomes shallower, which may lead to the valley of
the output spectrum also becoming shallow and disappearing.
That may finally result in the disappearance of the spectral
switch phenomenon.

In order to study the change of the fully coherent light
source’s spectral switch position with Gaussian curvature K

FIG. 5. Effects of (a) the curvatures of surfaces and (b) the spatial
correlation of light on the behaviors of spectral switches. In (a) the
light sources are fully coherent, i.e., σ0/a → ∞. In (b) the surface
has the constant Gaussian curvature K = 4 m−2.

in more detail, we expand the range of |K| to [1, 200] m−2

and select 21 different values of K , including ten negative K ,
ten positive K , and one null K . For each K , we calculate the
precise positions of three different kinds of spectral switches.
The results are shown in Fig. 6. It is worth mentioning that
for positive curvature the range of z is |z| < πR/2 and for
negative curvature its range becomes |z| < R sinh−1(1) with
R = r0. Additionally, on surfaces with negative Gaussian cur-
vature, as the value of |K| increases, certain spectral switches
may not occur due to the fact that the positions for occurrence
of the corresponding order spectral switches are beyond the
range of z; hence the number of points of each spectral switch
in Fig. 6 is actually smaller than 21.

Figure 6 shows that the curves are monotonically decreas-
ing with the increase of K from negative to positive. This
phenomenon can be explained by the decelerating and acceler-
ating properties of the curved surfaces. The negative curvature
decelerates the spectral shift, causing the relative spectral shift
curve to be stretched, thereby increasing the distance of spec-
tral switch positions away from the source. As K increases,
the decelerate property is weakened. In contrast, the positive
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FIG. 6. Effect of space curvatures on positions of on-axis spec-
tral switches. Here three kinds of spectral switches, corresponding,
from top to bottom to the second-, third-, and fourth-order spectral
switches, are demonstrated. The parameter R = r0 is chosen.

curvature accelerates the spectral shift, resulting in the relative
spectral shift curve being shrunken and the positions of spec-
tral switches being closer to the source. As K increases, the
acceleration property becomes more pronounced. Therefore,
in the process of K changing from negative to positive, the
spectral switches are first away from the source and then keep
approaching the source. The curves in the second quadrant are
shorter than those in the first quadrant. This is because some
of the spectral switch points are stretched off the surface when
K < 0.

By comparing the corresponding curves of different kinds
of spectral switches, it can also be seen that the sensitivity
of different spectral switches to K change is different. The
overall slope of the curve corresponding to the second spectral
switch is greater than that of the third spectral switch, and the
overall slope of the third is greater than that of the fourth.
Among these three types of spectral switches, the second
spectral switch is the most sensitive, followed by the third and

the fourth. So the smaller the order of the spectral switch is,
the more sensitive it is to the change of Gaussian curvature K .

IV. CONCLUSION

We have investigated the phenomenon of spectral switches
in 2D curved space, which is described here by surfaces of
revolution with constant Gaussian curvature. We have derived
the expression of the output on-axis spectrum from a finite
source with width 2a by using the paraxial approximation. By
defining the effective propagation distance on curved surfaces,
the theoretically approximate solution of the on-axis spectral
switch was presented and the on-axis spectral switches were
classified. Similar to flat space, spectral switches of fully co-
herent sources in curved space are also induced by diffraction.
Nevertheless, the curvature of curved surfaces changes the ef-
fective propagation distance of light and thus leads to different
effective Fresnel numbers in curved space. This theoretical
method can provide sufficient precision for estimating the
positions of spectral switches in curved space with constant
Gaussian curvature.

Comparing the relative spectral shift curves for different K ,
we found that positive Gaussian curvature has a longitudinal
compression effect on the relative spectral shift curve and
the negative Gaussian curvature surface has a longitudinal
stretching effect on the curve. This effect becomes more and
more evident with the increase of K , but the jump magnitudes
at these discontinuity points on the curves do not change
compared with that in flat space. It also reveals the change
of the positions of spectral switches with the change of K for
the fully coherent light and shows the influence of the spatial
coherence of light on the on-axis spectral change for the poly-
chromatic partially coherent light source during propagation.

The effects of off-axis spectral switches and various sur-
faces of revolution are open to further exploration. These
results on the spectral effects of light in curved space can
promote an understanding of the change of light spectra in
non-Euclidean space.
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