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Non-Euclidean conformal devices with continuously varying refractive-index profiles
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Either conformal transformation optics or geodesic mapping provides a design method to bend light rays
in two-dimensional space with a nonuniform refractive-index profile. In this paper, we combine both methods
above to design a conformal invisible cloak based on bispheres with a refractive-index profile varying from 0
to 10.7, smaller than 24.6 for the previous case of a single sphere. Moreover, we obtain an omnidirectional
retroreflector and a specular reflector by making position adjustments to mirrors, and achieve a similar invisible
effect by tuning sizes of the bispheres. Our work expands the toolkits for designing conformal devices with a
continuously varying index profile.
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I. INTRODUCTION

From the geometric perspective of gravity in general rel-
ativity, the mass-energy distribution is viewed as the source
of the curvature of space-time [1]. This geometric notion
therefore inspired the transformation optics [2,3] to treat the
electromagnetic materials as the curvature of electromagnetic
space, which gives an intuitive recipe for designing versa-
tile optical devices. Due to the deformations induced by
coordinate transformations, the electromagnetic permittivity
and permeability tensors in transformation-designed devices
exhibit inherent inhomogeneity and anisotropy, which hin-
ders their pragmatic realization. With the development of
metamaterials [4–7] made of artificially structured units, a
two-dimensional (2D) reduced version of the invisible cloak
was fabricated with split-ring resonators [8]. Thereafter, var-
ious transformation-designed and metamaterials-fabricated
devices were reported, including carpet cloaks [9,10], field
rotators [11,12], field concentrators [13,14], field shifters
[15,16], transmuted singular devices [17,18], and optical illu-
sion devices [19,20]. The comprehensive details are available
in the reviews [21–24]. Such an electromagnetic paradigm to
design new functional devices also applies well to other wave
realms [25–27]. More exhaustive development of transforma-
tion optics can be found in its roadmap [28].

As a special branch of transformation optics, conformal
transformation optics [2,29] provides an analytic toolkit for
determining a nonuniform, isotropic refractive-index profile,
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to control light rays precisely in 2D space. In the very first
design of optical invisible cloak based on conformal trans-
formation optics [2], the guiding profile of refractive index
placed in the upper Riemann sheet of the analytic mapping
was discontinuous along the branch cut to the lower Riemann
sheet, which results in unavoidable reflections and compro-
mises its perfect cloaking effect. Such a discontinuous index
issue was leveraged by adding a Mikaelian lens as a guiding
refractive-index profile to design for a transparent device with
an optimized index range [30,31]. This issue was resolved
because the added profile made up for the discontinuity along
the branch cut [30]. It was also noted that the index-guiding
profile can be mapped to a non-Euclidean surface with a
uniform index profile under the concept of the geodesic map-
ping [32,33]. Furthermore, inspired by the broadband property
of non-Euclidean cloaking [34], conformal transparent and
invisible devices were achieved with a continuously vary-
ing refractive-index profile based on the composition of the
conformal mapping and the geodesic mapping from a 2D non-
Euclidean space [35], significantly improving the cloaking
effect.

In this paper, we further design conformal devices with
non-Euclidean geometry in the framework of conformal
transformation optics with geodesic mapping, which may
yield practical optical devices with a continuously varying
refractive-index profile. In Sec. II, we construct a non-
Euclidean virtual space with equisized bispheres and mirrors
to create a conformal invisible cloak for both light rays and
waves at eigenfrequencies. The required refractive-index pro-
file varies continuously from 0 to 10.7, smaller than 24.6
for the previous case of a single sphere [35]. By reorienting
the mirrors from horizontal to vertical, we also achieve an
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FIG. 1. Conformal invisible cloak based on equisized bispheres. (a) The non-Euclidean virtual space comprises a meshed planar surface
with equisized bispheres connected by a bifurcated red line and the two mirrors are indicated by solid black circles. (b) By geodesic mapping,
bispheres are mapped to two Maxwell’s fish-eye lenses on two distinct vertical planes, deliberately separated to enable visualization of the light
rays on each plane. (c) By exponential conformal mapping, the two vertical planes in (b) are mapped to the two ribbon-shaped regions bounded
by a dashed black and the middle solid black line. (d) An alternative intuitive representation of (b) involves curling the two ribbon-shaped
regions into two cylinders. By conformal dual-logarithmic mapping with a linear term, the upper and lower sheets in virtual space in panel (d)
are mapped to physical space of the invisible device with refractive-index profile ranging 0–10.7. The red curve and thick black lines represent
images of the branch cut and mirrors, respectively. (f) A Gaussian beam impinges on the device at the angle of π/4 rad.

omnidirectional retroreflector in Sec. III. With both horizontal
and vertical mirrors present, it works as a specular reflector in
Sec. IV. In Sec. V, we demonstrate that the cloaking effect for
light rays remains even when the sizes of the bispheres differ.
Finally, we conclude in Sec. VI.

II. NON-EUCLIDEAN CONFORMAL INVISIBLE CLOAK
BASED ON EQUISIZED BISPHERES

Let us revisit the method of combining the conformal
mapping and the geodesic mapping to map a non-Euclidean
space with a uniform refractive-index profile to a physical
space with a nonuniform refractive-index profile. Convention-
ally, conformal mapping [2,29] is an analytical function [36]
that can link points between the z complex plane (physical
space) and the w complex plane (virtual space). The angle-
preserving condition leads to the following relation between
the refractive-index profiles n(z) and n′(w) in both virtual
and physical spaces,

n(z) =
∣∣∣∣
dw

dz

∣∣∣∣n′(w). (1)

This relation indicates that two planes with refractive-index
profiles satisfying Eq. (1) are optically equivalent for light

rays. In fact, 2D surfaces are all conformal flat with the
metric tensor components gi j = n2δi j , where δ is the Kro-
necker delta symbol, i( j) is the tensor rank index, and n is
the scaler function [37]. Such a scaler n can be treated as
the refractive-index profile for light rays traveling on the sur-
faces. Thus we can calculate light trajectories by solving the
geodesic equation on curved surfaces. The coordinate trans-
formation between curved surfaces is referred to as geodesic
mapping in this paper. This widely utilized geodesic mapping
[32,33] works from a plane lens with a rotationally symmetric
refractive-index profile n(r) to a surface of revolution with
a uniform refractive-index profile n′(h) = 1, which is written
as

ρ = n(r)r and dh = n(r)dr, (2)

where ρ represents the radial coordinate, and h denotes the
length measured along the meridian from the north pole on
the surface of revolution. We will employ this geodesic map-
ping in the subsequent design which maintains 2D rotational
symmetry.

We now present a design of the conformal device based on
equisized bispheres. As shown in Fig. 1(a), a non-Euclidean
virtual space (w2) is constructed comprising a meshed surface
and equisized bispheres. The meshed plane is intrinsically flat
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and can be represented by a complex variable, to which bi-
spheres are affixed along a red line that bifurcates into two red
quarter arcs with the radius r0. On the bispheres, the two black
closed circles through the north and south poles are mirrors
for incident light, which can be simulated by the boundary
condition of a perfect electrical conductor [38]. Light rays
with different colors in Fig. 1(a) propagate on the plane at the
incident angle π/4 toward the red line. When the light rays
meet on the red line, they enter the bispheres and travel along
the geodesic lines (great circles). After being reflected by the
mirrors twice, the light rays return to the red line, resuming
their original positions and directions. They then continue to
propagate further along straight lines on the plane. Rays that
avoid the red line follow the straight paths on the plane, as
indicated by two green lines. In such non-Euclidean virtual
space, two mirrors prevent light rays from reaching into the
two half spheres. When observed away from the bispheres, all
light rays appear to propagate in the original direction as if the
bispheres and mirrors are invisible.

Next, we shall perform three mappings for the virtual
space depicted in Fig. 1(a) in sequence to design our de-
vice, which respectively are geodesic mapping described in
Eq. (2) and Fig. 1(b), exponential mapping in Fig. 1(c), and
dual-logarithmic mapping in Fig. 1(e). First, we exclusively
apply the geodesic mapping to each of bispheres, resulting in
two Maxwell’s fish-eye lenses with refractive-index profiles
n(w1) = 2/[1 + (|w1|/r0)2] on the two vertical planes, as il-
lustrated in Fig. 1(b). The two vertical planes are deliberately
spaced apart to visualize light rays on them. The south poles
S1/S2 in Fig. 1(a) are projected to the centers of two vertical
planes in Fig. 1(b), while the north poles N1/N2 in Fig. 1(a)
project to the infinities of two vertical planes in Fig. 1(b). The
two solid black circles in Fig. 1(a) are mapped to two vertical
solid black lines in Maxwell’s fish-eye lenses in Fig. 1(b). In
this paper, the non-Euclidean geometry is chosen as the bi-
sphere, making the associated geodesic mapping the so-called
stereographic projection from north poles. In general, other
geodesic mapping also works for nonspheres with rotational
symmetry. Subsequently, we employ exponential conformal
mapping w1 = exp(w) to map two Maxwell’s fish-eye lenses
on vertical planes in Fig. 1(b) to two ribbon-shaped regions in
Fig. 1(c). In each ribbon-shaped region located between the
dashed black line and the middle solid black line (crossing the
red line), a truncated Mikaelian lens of a width 4π is used,
with the refractive-index profile n(w) = 1/ cosh[Re(w)/4].
For visual clarity, we coil the two ribbon-shaped regions into
two cylinders with the perimeter 4π , as illustrated in Fig. 1(d).
Using the dual-logarithmic mapping with a linear term w =
z + α ln(z−β ) − α ln(z + β ) [30], we map the Riemann sur-
face in Fig. 1(c), which consists of an infinite complex plane
(lower sheet) and the ribbon-shaped plane (upper sheet), to
the physical space represented in Fig. 1(e). Here parameters
α and β are chosen as 4 and 0.3125, respectively. Under this
dual-logarithmic mapping, the red branch cut is mapped to the
circlelike red closed curve, and the three straight mirrors are
mapped to a small circlelike black closed curve attached by
two straight black lines, as depicted in Fig. 1(e).

Thus from a non-Euclidean virtual space and then using the
three mappings described above, we design a conformal in-
visible device with the continuously varying refractive-index

profile ranging 0–10.7 as illustrated by the background con-
tour plot in Fig. 1(e). The expression of this index profile,
based on Eqs. (1) and (2), is

n(z) =
⎧⎨
⎩

∣∣1 + 2αβ

z2−β2

∣∣, outside red curve
∣∣1 + 2αβ

z2−β2

∣∣ · 1
cosh(Re(w)/α/2) , inside red curve

.

(3)

The numerical result in Fig. 1(e) from COMSOL Multi-
physics demonstrates that parallel light rays incident on the
device are bent by a nonuniform refractive-index profile and
reflected by mirrors twice, rendering the region inside the
small black closed curve undetectable. The propagation of a
Gaussian beam also reveals the trajectories of light rays of our
design in geometrical optics, as shown in Figs. 1(e) and 1(f).

Moreover, conformal transformation optics is applicable
not only for geometric optics but also under discrete eigen-
frequencies for wave optics [39]. Since waves accumulate an
additional phase when propagating on bispheres in Fig. 1(a),
the broken phase at the branch cut generally disrupts the
cloaking effect. Nevertheless, at discrete frequencies, the
additional phase can be a multiple of 2π , resulting in an
undetectable effect. The discrete frequencies for waves on
the sphere are associated with spherical harmonic functions,
which are written as

λ = 2πr0√
l (l + 1)

, (4)

where l is any positive integer. For a plane wave with l = 10
impinging on the cloaking device, the plane wave front is
preserved when it leaves the red circle as shown in Fig. 2(a).
Compared with the scenario depicted in Fig. 2(b), the plane
wave front becomes distorted after encountering the bare mir-
rors, producing a clearly observable reflection pattern. This
comparison demonstrates the effectiveness of the conformal
invisible cloak with a continuously varying refractive-index
profile, which is designed based on two tangent spherical
geodesic lenses. The integration of scattering field, defined by
the integration of absolute value of scattering electric field on
the circle with radius 2α, namely 8 m here, is plotted for both
the cloaking device and the bare mirrors in Fig. 2(c). This phe-
nomenon indicates that the scattering of our devices at integer
multiples of l are significantly reduced, consistent with our
previous studies [30,35]. These reductions of scattering fields
at eigenfrequencies can perform better if we choose a larger
integral circle in the numerical simulation. It is known that
conformal transformation optics leads to an inhomogeneous
refractive-index profile occupying the entire plane. Inspired
by previous approaches [40,41] to characterizing the scatter-
ing of a cloaked object, we further quantify the performance
of our cloaking device under truncated circle with the radius
r, as shown in the dashed green circle in Fig. 2(a), by the
integration of scattering field along the circle with the radius 8
m at the wavelength with l = 10 as shown in Fig. 2(d). Com-
paring to the reference value of the integration of scattering
field for the cloaking device and the bare mirrors, it turns out
that the truncated cloaking device with the radius larger than
6.3 m has a good cloaking effect. This is indicated by the red
asterisk intersected by the solid green line and the dashed red
line.
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FIG. 2. Cloaking effect at eigenfrequencies. A plane wave with l = 10 impinges on the cloaking device (a) and the bare mirrors (b) with
an incident angle of π/4 rad. (c) The integration of scattering field along the circle with the radius 8 m for the cloaking device and the bare
mirrors at different wave lengths represented by l from Eq. (4). (d) The integration of scattering field along the circle of radius 8 m for the
truncated cloaking device varies with the truncation radius r, denoted by the dashed green circle in (a), at the wavelength with l = 10. The
reference value of the integration of scattering field for the cloaking device and the bare mirrors are illustrated with red and black dashed lines,
respectively.

We have successfully demonstrated the invisible effect of
the conformal device based on bispheres at the geometric
optics and wave regimes. The designed index profile can be
explicitly expressed in Eq. (3). In Sec. III, we will slightly
change the position of the mirrors to achieve an omnidirec-
tional retroreflector and a specular reflector. And in Sec. IV,
we adjust the size of the bispheres allowing for designing
various invisible devices.

III. OMNIDIRECTIONAL RETROREFLECTOR

To create an omnidirectional retroreflector, we reconfigure
the bispheres and their connection to the meshed planar sur-
face in non-Euclidean virtual space, as depicted in Fig. 3(a)
in comparison to Fig. 1(a). We attach the entire red branch
cut to the half equator of the lower sphere, rather than at-
taching two quarter equators in both spheres in Fig. 1(a).
While the meshed planar surface exhibits some differences
here, it remains flat as depicted in Fig. 3(a). Since there is
no contact point between the upper sphere and the meshed
planar surface, it kisses the lower sphere at the symmetric
point K , corresponding to points K and K ′ in the following
figures. Moreover, we position the longitude N1KS1 and the
half equator as intersecting mirrors depicted within two black
solid half circles. In this non-Euclidean virtual space, any light
rays reflected by mirrors within the lower sphere return along

their incident directions without entering the upper sphere, as
exemplified by the blue light ray depicted in Fig. 3(a). Con-
sequently, the upper sphere remains inaccessible to external
light rays, resulting in the invisibility of the upper sphere. We
also designate the longitude N2KS2 in the upper sphere as the
mirror, which can be combined with the longitude N1KS1 to
correspond to the line mirrors passing through points K and
K ′ as depicted in Fig. 3(b). The dashed longitude, together
with the solid N2KS2, forms a great circle dividing the entire
upper sphere into two halves, which are mapped to the right
Maxwell’s fisheye in Fig. 3(b).

Utilizing the same geodesic mapping from Figs. 1(a) to
1(b), bispheres in Fig. 3(a) are projected onto two vertical
Maxwell’s fisheye planes in Fig. 3(b). When the blue light
ray traverses the red branch cut to the left Maxwell’s fish-
eye plane, it follows the guidance of the inhomogeneous
refractive-index profile, reflects twice off the mirrors, and
returns to its original impinging direction without noticing the
right Maxwell’s fisheye plane. If the light rays enter from the
right, the branch cut will appear on the right Maxwell’s fisheye
plane.

By employing the same exponential mapping from
Figs. 1(b) to 1(c), the left Maxwell’s fisheye plane in Fig. 3(b)
is projected onto the middle ribbon-shaped region between
two black solid lines on the upper sheet in Fig. 3(c). Mean-
while, the right Maxwell’s fisheye plane, intersected by the
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FIG. 3. Omnidirectional retroreflector based on bispheres. (a) Non-Euclidean virtual space. (b) The intermediate space after geodesic
mapping. (c) Riemann surface. (d) An alternative representation of Riemann surface. (e) Refractive-index profile and light ray trajectories.
(f) A Gaussian beam impinges on the device at an incident angle of π/4 rad.

solid and the dashed rays, is mapped to two ribbon-shaped
regions, each bounded by a solid and a dashed line. The blue
light ray will be guided back to the opposite propagating di-

rection by the upper sheet of the Riemann surface in Fig. 3(c).
For visual clarity, similar to Fig. 1(d), we coil the middle
ribbon-shaped region into the lower cylinder in Fig. 3(d),

FIG. 4. Specular reflector based on bispheres. (a) Non-Euclidean virtual space. (b) Intermediate space after geodesic mapping. (c) Riemann
surface. (d) An alternative intuitive representation of Riemann surface. (e) Refractive-index profile and light ray trajectories. (f) A Gaussian
beam impinges on the device at an incident angle of π/4 rad.
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FIG. 5. Conformal invisible cloak based on bispheres of different sizes. (a) Non-Euclidean virtual space. (b) Intermediate space after
geodesic mapping. (c) Riemann surface. (d) An alternative representation of Riemann surface. (e) Refractive-index profile and light ray
trajectories. (f) A Gaussian beam impinges the device at an incident angle of π/4 rad.

while two ribbon-shaped regions remaining on the sides are
combined to coil into the upper cylinder.

Under the same dual-logarithmic mapping from Figs. 1(c)
to 1(e), we achieve an omnidirectional retroreflector in
Fig. 3(e), with a refractive-index profile identical to that de-
picted in Fig. 1(e). The only distinction is the replacement
of two horizontal black mirrors depicted in Fig. 1(e) with
two vertical black mirrors in Fig. 3(e). The parallel light rays
will reflect back to their original direction, with only a slight
transverse side step. The retroreflection effect under numerical
simulation for a Gaussian beam is depicted in Fig. 3(f).

It is evident that the non-Euclidean geometry components
and mappings are the same for the invisible cloak in Fig. 1 and
the omnidirectional retroreflector in Fig. 3. In the subsequent
sections, we continue to illustrate the theme of our paper that
the mirror designs can be applied to a variety of optical de-
vices with in the same refractive-index profile, thus expanding
application ranges for conformal transformation optics.

IV. SPECULAR REFLECTOR

To design a specular reflector, we utilize the same non-
Euclidean virtual space and the mirrors in Fig. 1(a). Moreover,
we adopt two extra mirrors, depicted as two quarter circles
situated on the equators of both spheres, linking the red branch
cut and the longitude circle mirror, as shown in Fig. 4(a). In
this non-Euclidean virtual space, all light rays undergo specu-
lar reflection three times by the mirrors, preventing entry into
the two half spheres bounded by mirrors, which is illustrated
by two typical blue and orange light rays in Fig. 4(a). Con-

sequently, the two half spheres also remain invisible. In the
intermediate space of Fig. 4(b), following the same geodesic
mapping from Figs. 1(a) to 1(b), the blue and orange light
rays reflect twice off the mirrors and go back to the branch
cut, appearing as if they have undergone specular reflection
by the branch cut. Similarly, Fig. 4(c) illustrates the same
Riemann surface via exponential mapping from Figs. 1(b) to
1(c), with inclusion of two segments of mirrors represented by
two thick black solid lines connecting to the red branch cut,
perpendicular to the three thick black solid parallel lines. An
alternative representation of the Riemann surface in Fig. 4(d)
demonstrates that the blue and orange light rays are spectrally
reflected to the branch cut, with the additional reflection pro-
vided by two mirrors shaped like thick black quarter circles.

Utilizing the same dual-logarithmic mapping from
Figs. 1(c) to 1(e), we obtain the specular reflector depicted
in Fig. 4(e), characterized by an identical refractive profile to
that of Figs. 1(e) and 3(e). The distinction lies in the inclusion
of all mirrors depicted in Figs. 1(e) and 3(e). Parallel light rays
are spectrally reflected towards the red circlelike line, which
corresponds to the red branch cut in Fig. 4(c). The reflection
effect for a Gaussian beam is illustrated in Fig. 4(f).

V. CONFORMAL INVISIBLE DEVICE WITH BISPHERES
IN DIFFERENT SIZES

Now, let us adjust the sizes of bispheres in the non-
Euclidean space to design conformal invisible devices. As
shown in Fig. 5(a), the radii of two spheres are 0.5r0 and
1.5r0 respectively, which differ from those in Fig. 1(a). The
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two mirrors marked by black circles are positioned on two
longitude circles of the two spheres. Consequently, the red
branch cut is divided into two segments with a width ratio
of 1:3. Here, two half spheres with different radii remain
invisible. In the intermediate space depicted in Fig. 5(b) fol-
lowing the same geodesic mapping from Figs. 1(a) to 1(b),
the blue and orange light rays maintain their original direc-
tion upon exiting the branch cut. After the same exponential
mapping from Figs. 3(b) to 3(c), its corresponding Riemann
surfaces are illustrated in Fig. 5(c). There are three solid
black lines representing mapped mirrors, with the middle one
shifted to a quarter distance, different from that in Fig. 1(c).
Therefore, two-sided mirrors are positioned at the distances
of 0.5r0 and 1.5r0 from the two end points of the branch
cut, respectively. The blue and orange light rays demonstrate
the invisible cloaking effect in both the Riemann surface de-
picted in Fig. 5(c) and its alternative intuitive representation in
Fig. 5(d). After applying the same conformal dual-logarithmic
mapping from Figs. 1(c) to 1(e), the refractive-index profile
of the invisible device ranges 0–14.3, as shown in Fig. 5(e).
The middle mirror in Fig. 5(c) is mapped to two black curves
touching the red circlelike curve in Fig. 5(e), and the other
two mirrors are mapped to form a closed black curve near the
center. The propagations of parallel rays in Fig. 5(e) and of
the Gaussian beam in Fig. 5(d) illustrate the cloaking effect,
similar to those in Figs. 1(e) and 1(f), respectively. However,
their eigenfrequencies differ due to the different sizes chosen
according to Eq. (4). Consequently, the cloaking effect is
absent for this invisible device in the wave optics regime.

VI. CONCLUSION AND DISCUSSION

In conclusion, we further explore designing conformal
devices with a continuously varying refractive-index profile
in the framework of conformal transformation optics with
geodesic mapping starting from non-Euclidean virtual space,
therefore expanding the toolkit applications for practical ap-
plications. Through adjustments in the sizes of bispheres and
the positions of mirrors, we demonstrate cloaking and reflec-
tion effects tailored for specific purposes.

Combined with the quasiconformal method, our work
holds promise for creating finite-size optical devices by
incorporating slightly anisotropic media [9]. Even further,
conformal transformation optics will greatly facilitate optical
simulations to mimic challenging-to-observe cosmological
phenomena, including black holes [42], gravitational lensing
[43], and Einstein’s rings [44]. Our design strategy utilizing
non-Euclidean spaces and Riemann surfaces may find broader
applications on their optical analog with continuously varying
refractive-index profiles.
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