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Chiral spontaneous emission propagation based on a honeycomb photonic crystal slab
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We propose the direction-tunable chiral photonic propagation of spontaneous emission based on magnetic
helicity and finite-size effect in a topological honeycomb photonic crystal slab. The chiral edge state channels
are excited by emitters with magnetic polarization due to the C6 symmetry, where their propagation directions
are tuned by the emitter’s position on the magnetic helicity pattern. Meanwhile, the finite size of the honeycomb
photonic crystal brings chirality oscillation, which also decides the chirality of photonic propagation. This
method of controlling chiral transport in two-dimensional designs can be extended to a three-dimensional
silicon-based photonic crystal slab containing a silver split ring resonator as the emitter providing spontaneous
emission, which is convenient to fabricate via existing nanotechnology. Moreover, we show the magnetic Purcell
effect with chiral transport in the three-dimensional topological PC slab structure. Our research reduces the
threshold of on-chip photonic transmission under topological protection, which is helpful for single-photon
sources, photonic integrated chip manufacturing, and quantum information processing.
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I. INTRODUCTION

Chiral light transport is one of the essential characteristics
of topological photonic structures, which has been performed
on a variety of platforms, such as magnetic photonic crys-
tals (PCs) [1–3], coupled-resonator optical waveguides [4–6],
and valley photonic structures [7–10]. Transporting inside
the structures is more suitable for integrating the topologi-
cal photon channels on chips than at the interfaces, which
leads to the demands based on pseudospin designs, especially
honeycomb lattices with C6 symmetry [11–15]. By control-
ling the intercell and intracell interaction of C6 lattices, the
interface between the two semi-infinite two-dimensional (2D)
honeycomb PCs supporting pseudospin up and down states,
respectively, works as the photon channel [11,16–18]. The
chiral propagation excited by sources with magnetic spin
formation provides photonic guidance following the slope
of edge state bands, which determines the directions of the
photonic stream [11,18–20]. However, when constructing a
specific structure, the band-based direction judgment from
reciprocal space must be more intuitive and often restricted
by structural changes in the simulations and experiments. New
direction judgments based on the real-space mode distribution
are required for practical fabrication, which is convenient
to control the chiral channels working in the desired way.
Meanwhile, it might be intuitively assumed that the bulk band
theory of infinite periodic PCs determines chiral propagation
in finite-size PCs. The influence of the finite-size effect on
chiral transport may not be overlooked.

*pengchao@pku.edu.cn

So far, researchers have widely explored the nature of topo-
logical photonics and proposed many experiments in which
the bulk band theory of infinite periodic PCs determines chi-
ral propagation in finite-size PCs [3,21–27] to approach the
motivation of realizing controlled and highly efficient pho-
ton transmission on-chip and boosting quantum manipulation
[4,13,28–32], but there is still a considerable distance to go.
For example, topological states based on some 2D photonic
structures, especially honeycomb lattices, only exist in trans-
verse magnetic-like (TM-like) modes with Hx, Hy, and Ez

[11,14,33,34], which requires perfect electric conductors such
as metallic plates at the top and bottom interfaces of the PC
slabs to eliminate the transverse electric-like (TE-like) modes
with Ex, Ey, and Hz. However, when considering on-chip pho-
tonic integrating, there is still trouble in fabricating metallic
plates together with dielectric lattices in the three-dimensional
(3D) slab for existing processing micro- and nanotechnologies
such as deposition, electron-beam lithography (EBL), and in-
ductively coupled plasma (ICP) etching [35–39]. Meanwhile,
as the current usual chiral emitters, quantum dots need low
temperatures and a strong magnetic field [13]. These diffi-
culties limit the practical applications of on-chip topological
chiral photonic channels.

In this work, we propose the direction-tunable chiral pho-
tonic propagation of spontaneous emission based on the
magnetic helicity and finite-size effect in a topological honey-
comb PC slab matching the present manufacturing of on-chip
photonic integrating. We reveal the principle of chiral trans-
port depending on the emitter’s position inside the PC upon
the magnetic helicity distribution of TM modes, acting as a
new real-space judgment of chiral directions in 2D simulation.
More importantly, we found a phenomenon of “chirality oscil-
lation” caused by the finite-size effect in the frequency range
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FIG. 1. (a) Schematic diagram of the single hexagon artificial cell composed of six cylinders as the building block of the 2D honeycomb
photonic lattices. (b) The band-gap structures of C6 lattices in (a) with different a0/R. (c) Schematic diagram of the 2D supercell structure,
which is periodic in the x direction, and of ten artificial cells for both topological (a0/R = 2.9) and trivial (a0/R = 3.1) regions in the y
direction. (d) The projected band-gap structure of supercell in (c) showing the two edge state bands corresponding to pseudospin up and down
states from C6 symmetry. (e) The electric field distribution for unidirectional propagation excited by a chiral emitter through the edge state
channel giving the eigenfrequency f 2D

e = 185.37 THz.

of edge state channels, which also influences the photonic
chiral propagation. The tunable chiral modes based on these
principles in the 2D structures can be extended to modes
in a 3D topological PC slab with SiO2-PC-SiO2 sandwich
structures. By careful design, the 3D slab structure is con-
venient for fabricating via existing nanotechnology, including
deposition, EBL, and ICP etching. A silver split ring resonator
(SRR) can be utilized as the chiral emitter instead of quantum
dots so that the entire system can work at room temperature.
Moreover, we show the tunable magnetic Purcell enhance-
ment excited by SRR combined with chiral transport in the
3D topological PC slab structure. Our research reduces the
threshold of on-chip chiral photonic application under topo-
logical protection, which is helpful for single-photon sources,
photonic integrated chip manufacturing, and quantum infor-
mation processing.

II. 2D MODULE OF HONEYCOMB
PHOTONIC CRYSTAL SETUP

The 2D honeycomb photonic lattices are triangularly
paved with hexagon artificial cells composed of six cylinders
[Fig. 1(a)]. Considering the harmonic TM modes of electro-
magnetic wave, namely, the modes with out-of-plane Ez and

in-plane Hx and Hy, a pseudo-time-reversal symmetry can be
obtained by the two 2D irreducible representations of the C6

symmetry group from artificial cells’ geometry, which leads
to the two pseudospin states corresponding to positive and
negative angular momenta of Ez [11].

The intercell and intracell interaction of C6 lattices de-
termine the photonic topological property, which can be
quantified by a0/R, where a0 donates lattice constant and R
represents the distance between cylinders and the cell cen-
ter. The cylinders of artificial cells are set as silicon in the
working wavelength with permittivity εd = 12 and diameter
d = 2a0/9, while the other space is filled with silica εa = 2.
The band-gap structures varying with a0/R are given in
Fig. 1(b). The balance of intercell and intracell interaction of
C6 lattices is at a0/R = 3, where the Dirac point appears at the
� point. When the lattices shrink to a0/R = 3.1, the intracell
interaction holds the dominant position, and the photonic band
gap is open, leading to the topological trivial structure. While
the lattices expand to a0/R = 2.9, the intercell interaction
dominates the lattices, and the band gap reopens near the
Dirac point with a band inversion, which means the topologi-
cal property changes.

The honeycomb topological photonic waveguide struc-
ture comprises two 2D C6 PCs with different a0/R and
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FIG. 2. Chiral photonic propagation determined by magnetic helicity. (a) The magnetic helicity pattern for the pseudospin up states from
the positive-slope band branch at k = −0.03π/a0, consisting of (b) blue-red, (c) red-blue-red, and (d) single-blue types of lattice elements
distinguished by the central colors that red represents σ → 1 while blue means σ → −1. (e) The positions of emitters marked by L1–L5,
M1–M6, and R1–R5 corresponding to (b)–(d) around the interface of the two 2D honeycomb PCs. The (f) left and (g) right chiral propagation
in the areas of σ = −1 and σ = 1, respectively. The (h) right and (i) left chiral propagation excited by the emitter near the edge of the entire
PC structure in the areas of σ = 1 and σ = −1, respectively. The size of (f)–(i) is Nx = 14, Ny = 4. The emitter takes the form of (1, i, 0) with
the frequency f 2D

e = 185.37 THz.

topological properties. Here, we use the supercell structure
shown in Fig. 1(c) for simulation with a0 = 740 nm, which
is periodic in the x direction and of ten artificial cells for both
topological (a0/R = 2.9) and trivial (a0/R = 3.1) regions in
the y direction. The band gap is given in Fig. 1(d) with
clearly two edge state bands corresponding to pseudospin
up and down states from C6 symmetry. The band with a
positive slope represents the pseudospin up state, while the
negative slope means the pseudospin down state. These bands
of edge states lead to the available photonic channels under
topological protection; for example, Fig. 1(e) shows the elec-
tric field distribution for unidirectional propagation excited
by a chiral emitter through the edge state channel with the
eigenfrequency f 2D

e = 185.37 THz. Moreover, the positive
and negative slope of edge state bands originating from pseu-
dospin up and down states imply that this topological photonic
channel supports chiral light transport.

III. CHIRAL PHOTONIC PROPAGATION DETERMINED
BY MAGNETIC HELICITY PATTERNS

According to the band theory of infinite periodic PCs, the
chiral direction strictly obeys the slope of edge state bands.
However, the band-based judgment from reciprocal space is
not intuitive enough to construct a specific topological waveg-
uide due to the lack of the emitter’s position information.
Here, we propose the direction-tunable chiral spontaneous
emission based on the magnetic helicity, a method containing
position information based on real-space mode distribution,
which is convenient for controlling the chiral channels work-
ing in the desired way. It is worth noting that magnetic helicity
is a generalization from the band theory, which avoids the

influence of finite size. Therefore, the PC size should be
unchanged when exploring the chiral transport for different
emitter positions in the practical situation. The magnetic he-
licity, similar to its electric version [40,41], can be defined as

σz = 2 × Im(HxH∗
y )

|Hx|2 + |Hy|2 ; (1a)

σx = 2 × Im(HyH∗
z )

|Hy|2 + |Hz|2 ; (1b)

σy = 2 × Im(HzH∗
x )

|Hz|2 + |Hx|2 . (1c)

Considering the TM modes in the 2D situation, Hz ≡ 0,
leading to σx = σy = 0, thus only σz should be concerned. The
total magnetic helicity σ = σz ∈ [−1, 1].

Based on the supercell shown in Fig. 1(c), we can ob-
tain the distribution of magnetic helicity via electromagnetic
modes. For the pseudospin up states from the positive-
slope band branch, the magnetic helicity pattern is shown as
Fig. 2(a) at k = −0.03π/a0 corresponding to the red point
in Fig. 1(d), where red represents helicity σ → 1 while blue
means σ → −1. The helicity patterns are almost the same
for other values of k from the positive-slope band branch. In
contrast, for the pseudospin down states from the negative-
slope branch, the signatures of helicity are all opposite. Here,
we take the pseudospin up states at k = −0.03π/a0 as an ex-
ample. The pattern comprises three types of lattice elements,
distinguished by the central colors, i.e., blue-red, red-blue-red,
and single-blue types, as shown in Figs. 2(b), 2(c), and 2(d),
respectively. These three types all consist of red and blue
areas, i.e., σ → ±1.
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The helicity pattern functions as a map for emitters to
obtain chiral direction. To excite the edge states, the emitters
of spontaneous emission must have the form of magnetic
spin, namely, S± ∼ H0(x̂ ∓ iŷ). We use the emitters with the
left and right magnetic spin forms (1,±i, 0) to excite the
chiral modes. Sixteen points are chosen to place the emitters
corresponding to the three types of lattice elements, marked
by L1–L5, M1–M6, and R1–R5, around the interface of the
two 2D honeycomb PCs [Fig. 2(e)]; it is clear that points
L4, L5, M2, M3, R4, and R5 correspond to the up and down
positions of the blue-red type [Fig. 2(b)]; points L1, L2, M4,
M5, R1, and R2 correspond to the up and down positions
of the red-blue-red type [Fig. 2(c)], points L3, M1, M6,
and R3 correspond to the center positions of the single-blue
type [Fig. 2(d)]. Then, finite-element simulations are per-
formed using commercial COMSOL MULTIPHYSICS software,
which can simulate optical modes and photon propagation
for various photonic structures [29,42–44]. The entire model
is surrounded by the perfect-matched-layer (PML) boundary
condition. During the investigation of chiral transport for dif-
ferent emitter positions, the PC size should be fixed. When the
fixed x-directional period of PCs is not too large, i.e., Nx < 30
in our simulation, by collecting all results of light propagation
excited by the emitter with the spin form (1, i, 0) and fre-
quency f 2D

e = 185.37 THz with different emitter’s positions,
we find that when the emitter is placed in the area of helicity
σ = −1 marked in blue, including the positions L1, L3, L4,
M1, M2, M4, M6, R1, R3, and R4, the photons are guided
to the left side [Fig. 2(f)], while the photons turn to the right
side [Fig. 2(g)] with the emitter in the area of σ = 1 marked
in red, including the points L2, L5, M3, M5, R2, and R5. The
directionality of chiral propagation is robust in that it cannot
be broken by impurities and waveguide bents, which has been
proven in plenty of research [12–14,22]. Moreover, the chiral
direction remains when emitters are placed near the edge of
the entire module. As shown in Fig. 2(h), the emitter in the
area of σ = 1 excites the propagation of the right direction,
while moving the emitter to σ = −1, the light propagation is
partly eliminated because the PML boundary absorbs photons
in the left direction [Fig. 2(i)]. Also, when the emitter takes the
other spin form (1,−i, 0), the situations of chiral photon prop-
agation are opposite. We point out that during the discussion
of tuning chiral transport by the emitter’s position, the PC size
and emitter frequency should be unchanged. The influence of
the finite-size effect is elaborated in Sec. IV.

IV. CHIRAL PHOTONIC PROPAGATION
DETERMINED BY FINITE SIZE

The finite-size effect cannot be well explained by the bulk
band theory of infinite periodic PCs. The method of magnetic
helicity distribution we propose in Sec. III is a generalization
from the band theory with additional position information,
which cannot fully address this problem. Instead, we consider
a finite-size PC, in which a length L in the x direction gives
rise to discrete wave vectors with δk = π/L and discrete
eigenfrequencies accordingly. As shown in Fig. 3(a), these
discrete eigenfrequencies can be marked as f1, f2, . . . , fn, and
for f < f1 or f > fn, the bulk modes will interfere with the
edge state channel. A similar effect has been discussed in

the context of miniaturized bound states in the continuum
(BICs) in the theory [45] and experiments [38]. We present
a simplified analytic model to depict the finite-size effect
in honeycomb topological PCs (Appendix A). Then, we re-
veal a phenomenon denoted as “chirality oscillation,” which
can be understood from the interaction between the left and
right chiral modes at the finite size boundary, similar to the
hybridization of chiral edge states in Su-Schrieffer-Heeger
(SSH) models [46].

The discrete eigenfrequencies in finite-size PCs can be
solved by numerical simulation (COMSOL MULTIPHYSICS).
We take the size Nx = 30, Ny = 10 as an example. In the
frequency range of edge states, this finite-size PC gives eigen-
frequencies f 2D

e = f1, f2, . . . , f6, shown in Fig. 3(b), which
belongs to a series of edge states but folded by finite size.
Note that these solutions are not pseudospin states and show
no chirality, confirmed by the results of the electromagnetic
field excited by a chiral emitter.

We fix the emitter at an unchanged position for fair compar-
ison. In particular, we take the emitter as (1, i, 0) at point L3 as
an example. The eigenfrequency points divide the frequency
range of the edge state into several intervals, where the chiral
emitter can excite light transporting with different chirality,
showing as chirality oscillation [Fig. 3].

To quantitatively determine the direction of chiral propa-
gation, we define the parameter

Cln = ln

∫
EleftdS∫
ErightdS

. (2)

Cln > 0 means left propagation, and Cln < 0 means right
propagation. We choose the two left and right zones with the
same area S near the interface between the two honeycomb
PCs, and integrate the electromagnetic field. Note that when
f < f1 = 182.78 THz or f > f6 = 188.96 THz, bulk modes
will interfere with the edge state channels. The zero points
of Cln are also the eigenfrequency points f1 ∼ f6. It is readily
found that the chirality in one interval separated by two eigen-
frequency points is opposite to its neighbor two intervals. The
whole curve of Cln shows the chirality oscillation.

The chiral direction of one interval is determined by the
parity of the two eigenmodes at the beginning and end points
of the interval. The parity here refers to the mirror-x parity
about the x = 0 axis of the PC. The parity of eigenmodes orig-
inates from the finite size, which can be seen in Appendix A.
Considering the chiral emitter (1, i, 0) at the fixed L3 point,
if the beginning point’s eigenmode is odd symmetric and the
end point’s eigenmode is even, this interval experiences odd
to even symmetry, then the chiral direction is left. Otherwise,
the chiral direction is right if the interval experiences even to
odd symmetry.

The eigenmodes’ parity can be seen through the Ez pat-
tern. For example, as shown in Figs. 3(c)–3(e), we identify
that the parity of the three neighbor eigenfrequency points
f2 = 184.08 THz, f3 = 185.35 THz, and f4 = 186.38 THz
is even, odd, and even symmetric, respectively. According
to the theory above, the interval ( f2, f3) supports the right
chiral direction, while the interval ( f3, f4) supports the left
one. One can verify the chiral direction by choosing any
frequency point that belongs to the intervals, such as the cases
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FIG. 3. Chiral photonic propagation determined by finite size. (a) Schematic diagram of the discrete eigenfrequencies dividing the range
of edge state into several intervals. (b) Chirality oscillation with finite size Nx = 30, Ny = 10. Cln > 0 means left chiral direction, and Cln < 0
means right. The parity of eigenmodes shown by Ez pattern with finite size Nx = 30, Ny = 10 and different eigenfrequencies (c) f2 = 184.08
THz, (d) f3 = 185.35 THz, and (e) f4 = 186.38 THz, respectively. The parity refers to the mirror-x parity about the x = 0 axis of the PC marked
in red dash lines in (c)–(e). The chiral transport with finite size Nx = 30, Ny = 10 and frequencies (f) fa = 184.70 THz and (g) fb = 186.00
THz, respectively. (h) Chirality oscillation with finite size Nx = 100, Ny = 10. The chiral emitter takes the form of (1, i, 0) at the L3 point.

of fa = 184.70 THz and fb = 186.00 THz shown in Figs. 3(f)
and 3(g), respectively.

The chirality dependency on the parity holds for all finite
sizes of PC. When comparing Nx = 30, Ny = 10 and Nx =
40, Ny = 10, they happen to have the same eigenfrequency
point f1 = 182.78 THz. However, for Nx = 30, Ny = 10, the
eigenmode is odd symmetric, while for Nx = 40, Ny = 10, the
eigenmode is even, so they will give different chiral directions
if we choose a frequency point nearby, like f = 183.00 THz
gives left direction for Nx = 30, Ny = 10 while right direction
for Nx = 40, Ny = 10. Note that the chiral emitter (1,−i, 0)
at point L3 or (1, i, 0) at point M3 gets opposite situations.

We note that the phenomenon of chirality oscillation still
happens in large sizes, even in the case of Nx = 100, Ny =
10 [Fig. 3(h)]. Besides, if the system’s loss can be well
controlled, the finite-size chirality can still exist, as seen in
Appendix B. If Nx → ∞, the interaction between the left
and right chiral modes vanishes, then the transport behavior
follows the chirality given by the bulk band theory.

From the view of chiral photonic propagation in finite-
size PCs, we can explain the chiral inversion by changing
finite sizes with emitter (1, i, 0) at point L3, as shown in
Figs. 4(a)–4(c), which is just a manifestation of the chiral-
ity oscillation. The corresponding chirality oscillation near
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FIG. 4. The chiral inversion as a piece of chirality oscillation. The photonic propagation with the size of (a) Nx = 26, Ny = 6, (b) Nx = 30,

Ny = 6, and (c) Nx = 34, Ny = 6. Chirality oscillation with different finite sizes (d) Nx = 26, (e) Nx = 30, and (f) Nx = 34. The emitter at point
L3 takes the form of (1, i, 0) with the frequency f = 185.37 THz.

f = 185.37 THz for Nx = 26, Nx = 30, and Nx = 34 can be
shown in Figs. 4(d)–4(f). The change of Nx will slowly move
the eigenfrequency. Note that the results are almost unaffected
by the y direction for Ny � 4. When fixing the frequency
of emitter at f = 185.37 THz, it will excite the left chiral
direction for Nx < 30 shown in Fig. 4(a) because the interval
of f experiences odd to even symmetry as shown in Fig. 4(d).
Then, the frequency f will cross one of the eigenfrequency
points at Nx = 30, so we obtain almost no chirality, as shown
in Figs. 4(b) and 4(e). When Nx > 30, the emitter’s frequency
gets into another interval with opposite chirality, so the emitter
(1, i, 0) excites the right directional transport, as shown in
Figs. 4(c) and 4(f). Therefore, the change of chirality deter-
mined by finite size can be explained.

Within each chiral interval, the method of tuning chiral
direction by the emitter’s position in Sec. III is still valid. For
example, one can choose an emitter with any chirality and a
given frequency, putting it into any position in the given PC
structure to test the chiral direction. Then, one can predict the
chiral direction of any emitter by using the helicity pattern
map. In other words, both the magnetic helicity pattern and
the finite size of topological PCs control the chiral direction.

In summary of the finite-size effect, we found the phe-
nomenon of chirality oscillation in the frequency range of
edge states caused by the hybridization of edge states in
honeycomb topological PCs. The finite-size effect gives rise
to discrete eigenfrequency points with no chirality, which
divides the spectrum into several intervals with different chi-
rality from their neighbor intervals, showing the chirality
oscillation. As a result, the chirality in each interval depends
on the chiral emitter and the parity of the two eigenmodes at
the ending points of the interval. Such a complex behavior of
chiral propagation indeed cannot be explained from bulk band
theory.

V. CHIRAL PROPAGATION BASED ON HONEYCOMB
PHOTONIC CRYSTAL SLAB

For experimental and practical applications, the proposal
of 2D tunable chiral photonic guiding modes based on mag-
netic helicity and finite size should be extended to its 3D
version, which is limited by the present ability of microfab-
rication. The 2D tunable chiral photonic waveguides designed
in three dimensions are TM-like modes with Hx, Hy, and Ez,
which requires perfect electric conductors to eliminate the
TE-like electromagnetic components, i.e., Ex, Ey, and Hz. In
the previous research [11,14,33,34], metallic plates covered
at the interfaces of PCs can play a role in keeping TM-like
electromagnetic fields; nevertheless, they can only be utilized
in some small-scale demonstration experiments. When con-
sidering on-chip photonic integration, it is hard to fabricate
large bulk metal covering dielectric lattices in the 3D slab for
existing processing nanotechnology.

An available way is to construct the 3D topological PC
slab structures in TM-like modes hybrid with Hz components
due to the finite size in the z direction, similar to the works
of couple-wave theory for photonic crystal surface-emitting
lasers [47–50] and bound states in the continuum [38,51,52].
In our work, we construct the 3D honeycomb topological
waveguide slab with SiO2-PC-SiO2 sandwich structures based
on the results of the 2D chiral photonic guiding modes from
magnetic helicity and finite size [Fig. 5(a)]. Note that the
chiral emitter in the 3D module should be a physical entity,
which is a silver SRR in our design. The SRR can be excited
either endogenously or exogenously for the photonic chip.
Also, because of the tiny size contrast to the PC structure, the
SRR can still be treated as a point when focusing on the chiral
light transport. Since the 3D topological PC slab is extended
by 2D structure, it inherits all the parameters of 2D cases, like
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FIG. 5. Chiral propagation based on honeycomb photonic crystal slab. (a) Schematic diagram of the 3D honeycomb topological SiO2-PC-
SiO2 sandwich slab structure with the PC layer’s thickness h = 650 nm and silica layers’ thickness hsilica = 1403.6 nm, surrounded by the
PML layers with dpml = 701.8 nm. (b) Schematic diagram of the 3D supercell structure, which is periodic in the x direction, of five artificial
cells for both topological (a0/R = 2.9) and trivial (a0/R = 3.1) regions in the y direction, and covered by silica and PML layers at the top and
bottom faces in the z direction. The inset in (b) shows the eigenfrequency f 3D

e of pseudospin up state at k = −0.03π/a0 varying with h. (c) The
electric field distribution of pseudospin up edge state at k = −0.03π/a0 by the supercell of (b), giving f 3D

e = 213.59 THz. (d) and (e) The left
and right chiral propagation excited by the emitter at points L3 and M3, respectively. (f) and (g) The right and left chiral propagation excited
by the emitter near the edge of the entire structure in the areas of σ = 1 and σ = −1, respectively. The size of (d)–(g) is Nx = 14, Ny = 4.
(h)–(j) The chiral photonic propagation with the PC size of Nx = 20, Ny = 6; Nx = 26, Ny = 6; and Nx = 30, Ny = 6, respectively.

a0 = 740 nm, εa = 2, εd = 12, d = 2a0/9, and a0/R = 2.9
for topological regions, and a0/R = 3.1 for trivial regions.
Additionally, the SiO2-PC-SiO2 sandwich structure is com-
prised of a PC layer with the thickness h = 650 nm and two
upper and lower silica layers with hsilica = λ3D

e = c/ f 3D
e =

1403.6 nm. Then, the SiO2-PC-SiO2 sandwich is surrounded
by the PML layers with the thickness dpml = λ3D

e /2 = 701.8

nm. The eigenfrequency f 3D
e is solved in a 3D supercell

structure [Fig. 5(b)], which is periodic in the x direction,
of five artificial cells for both topological (a0/R = 2.9) and
trivial (a0/R = 3.1) regions in the y direction, and covered
by silica and PML layers at the top and bottom faces in the
z direction. It is noted that the 3D simulation costs much
more time and resources, including cores and memories, than

063504-7



QIAN, YIN, ZHOU, WANG, CHEN, AND PENG PHYSICAL REVIEW A 109, 063504 (2024)

2D simulation, so it is difficult to obtain the complete 3D
band-gap structure like the 2D cases [Fig. 1(d)], but we can
solve some particular eigenvalue points based on the results
of 2D cases. At k = −0.03π/a0 from the positive slope band
branch, the eigenfrequency of pseudospin up edge state is
f 3D
e = 213.59 THz in 3D conditions [Fig. 5(c)], which is

larger than f 2D
e = 185.37 THz in 2D situations because of

the influence of extra Hz components depending on the PC’s
thickness h. The larger thickness h leads to smaller f 3D

e , and
if h is large enough, f 3D

e → f 2D
e , which can be seen in the

inset of Fig. 5(b). For example, when h = 2000 nm, we get
f 3D
e = 189.75 THz at k = −0.03π/a0, very close to the f 2D

e .
Also, h cannot be too small; otherwise, it will be hard to
find the eigenfrequency due to the disturbances of Hz com-
ponents. Therefore, it is suitable to set h = 650 nm in our
simulation.

Then we discuss the chiral propagation using the 3D topo-
logical PC waveguide with the size of Nx = 14, Ny = 4 by
setting the magnetic spin emitter with f 3D

e = 213.59 THz as
the form of (1, i, 0) at the points shown in Fig. 2(e) in the xy
plane with z taking the center value z = 0. The results of chiral
propagation are almost the same as those in 2D conditions:
when the finite size of Nx is not too large, the emitter in the
areas of σ = −1 makes photons turn left, while σ = 1 leads
to right-guided photons. For example, the emitter (1, i, 0) at
point L3 excites the chiral left propagation [Fig. 5(d)], while
at point M3 for right propagation [Fig. 5(e)]. If the emitter
is close to the edge of the entire system, the chiral photonic
direction shows robustness against the effect of the edge. As
shown in Fig. 5(f), the emitter’s place of σ = 1 allows light
to turn right, while shown in Fig. 5(g), the σ = −1 place
makes the left propagation absorbed by PML layers, leaving
the weaker field distribution similar to those in 2D cases like
Fig. 2(i).

The influence of topological PC size should also be consid-
ered carefully. It costs plenty of computing resources in the 3D
large-size simulation due to the over 107 degrees of freedom.
Besides the size of Nx = 14, Ny = 4 shown in Figs. 5(d)–
5(g), we also simulate with the larger size Nx = 20, Ny = 6
[Fig. 5(h)], Nx = 26, Ny = 6 [Fig. 5(i)], and Nx = 30, Ny = 6
[Fig. 5(j)] with the emitter (1, i, 0) at point L3. In the study of
2D cases, we find the direction of chiral photon propagation
is affected by the size of the entire PC structure with a critical
size of Nx = 30, Ny = 6 [Figs. 4(a)–(c)]. Similarly, the simu-
lations of 3D cases give the critical size for 3D conditions near
Nx = 26, Ny = 6. Comparing the electric field distributions
with different sizes [Figs. 5(h)–(j)], besides the major electric
parts in the chiral left direction, some minor components exist
in the right direction, and get larger with the increment of
PC size. When the size increases to Nx = 30, Ny = 6, the
major photonic channel changes to the right direction. This
chirality inversion has been explained in Sec. IV as a piece
of chirality oscillation. Therefore, the influence of size in the
chiral direction still exists in the 3D situation, which should be
taken into consideration in the practical fabrication. Overall,
it is meaningful to show that the method of controlling the
chiral photon transport based on magnetic helicity σ and finite
size Nx still works for a 3D honeycomb topological PC slab,
which means people can tune the chiral channels directly with
real-space judgment in the fabrication.

VI. DISCUSSION ON PURCELL EFFECT
AND EXPERIMENTAL IMPLEMENTATION

Since we propose that we can utilize silver SRR as the chi-
ral emitter, it is necessary to discuss the details of the SRR’s
function, especially the spontaneous emission enhancement,
i.e., the Purcell effect in the topological waveguide. Most
studies of the Purcell effect focus on the electric, not magnetic,
response because the electric dipole response is always the
most powerful in electromagnetic radiation, and the magnetic
dipole response will be much weaker. However, the electric
Purcell effect systems cannot match the magnetic spin form
of the emitter and excite chiral propagation, which requires
a magnetic response. So far, the magnetic Purcell effect has
been explored in theory [53,54] and realized by metamateri-
als [55], nanoantennas [56], and nanocavities [57,58]. Here,
we take the silver SRR structure [Fig. 6(a)] as the mag-
netic nanoantenna to achieve an excellent magnetic response,
widely used in metamaterials research [59–61].

The resonant frequency of SRR should be the same as the
eigenfrequency f 3D

e , which we set as 213.59 THz [Fig. 6(b)],
so that the size of the silver SRR is Rout = 35 nm, Rin = 25
nm, w = 10 nm, and dc = 27.66 nm, where w donates the
width of the split, dc is the depth of the ring, and Rout and Rin

represent the outer and inner radius of the ring, respectively,
shown in Figs. 6(a) and 6(b). The dielectric constant of silver
is taken from the experimental data [62]. We take the same
axis orientation as Fig. 5(a). The ring plane of SRR is parallel
to the xz plane, and the emitter is placed at the center of the
ring, which is also point L3 or M3. The topological PC’s
size is Nx = 14, Ny = 4, so that no chiral oscillation should
be considered here.

The Purcell factor of spontaneous emission is defined as
F = γ /γ0 [63], where γ and γ0 donate the spontaneous emis-
sion rate in the systems and vacuum, respectively. In our
structure, the total rate γtot can be divided into several contri-
butions: the absorption part γabs, the left and right propagation
part γleft and γright by edge state channel, and the scattering
part γsc, i.e., γtot = γabs + γleft + γright + γsc. For every term,
γi/γ0 = Wi/W0 (i = tot, abs, left, right, sc), so the simula-
tion of spontaneous emission rate can be turned into the
simulation of energy [29,43]. Wtot and W0 are the total emitted
energy in the systems and free space, respectively, obtained by
surface integrals of a nanosphere enveloping the emitter over
the energy flows. Wabs is the absorption for the silver SRR as
the mathematical form of the volume integrals of energy loss.
Wleft and Wright are the energy guided into the chiral left and
right edge state channels, respectively, given by the surface
integrals of the cross section of the honeycomb PC structures
over the energy flows. Wsc is the energy dissipation into the
far field, given by the surface integrals over energy flows on
boundaries without edge state channels.

We first discuss the chiral enhanced spontaneous emis-
sion with different split directions. When placing the SRR
containing emitter (1, i, 0) at point M3, the chiral propa-
gation turns right [Figs. 6(c) and 6(d)], the same as those
without SRR [Fig. 5(e)]. When the split of SRR is in the
+x direction, namely, the right direction, the Purcell factors
Ftot = 8.64, Fabs = 5.88, Fleft = 0.13, Fright = 0.55, and Fsc =
2.08, showing that Fleft/Fright = 1:4.10, brings the chiral right
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FIG. 6. Magnetic Purcell effect combined with chiral photonic propagation based on honeycomb photonic crystal slab. (a) Schematic
diagram of the silver SRR with Rout = 35 nm, Rin = 25 nm, w = 10 nm, and dc = 27.66 nm. (b) The absorption spectrum of the silver SRR
in (a) showing the resonant frequency at 213.59 THz. (c)–(h) The chiral Purcell enhancement transport depends on different emitter positions,
emitter polarizations, and split directions, which are (c) point M3, (1, i, 0), +x direction, (d) point M3, (1, i, 0), −x direction, (e) point L3,
(1, i, 0), +x direction, (f) point L3, (1, i, 0), −x direction, (g) point M3, (1, −i, 0), +x direction, and (h) point M3, (1,−i, 0), −x direction,
respectively. The ring plane of SRR is parallel to the xz plane and the emitter is at the center of ring.

photonic propagation [Fig. 6(c)]. Meanwhile, the split of the
−x direction, namely, the left direction, leads to the right
chiral light transport [Fig. 6(d)], giving the Purcell factors
Ftot = 8.37, Fabs = 5.73, Fleft = 0.08, Fright = 0.29, and Fsc =
2.27, showing that Fleft/Fright = 1:3.49. In contrast, the Purcell
factors of PC structures without SRR are Ftot0 = 3.41, Fleft0 =
0.12, Fright0 = 0.51, and Fsc0 = 2.78, leading to Fleft0/Fright0 =
1:4.17. Note that Fabs0 = 0 due to no metal SRR. It is obvious
that the magnetic Purcell factor of ∼100 is three orders of
magnitude smaller than the electric Purcell factor because the
radiation term for the magnetic dipole usually has the same
magnitude as the electric quadrupole, which is much weaker
than an electric dipole. The effective chiral magnetic Purcell
factor Fev = Fleft + Fright is only 7.89% and 4.40% for the
split’s +x and −x direction, respectively, because the scatter-
ing and metallic absorption waste most of the photonic energy.
Though the spilt’s direction cannot change the chirality, it
helps enhance the effective spontaneous emission Fev by a
range of 79%, and chirality Fleft/Fright by a range of nearly
17%, when matching the chiral propagation.

Then, we change the position of SRR containing emitter
(1, i, 0) to point L3, and the chiral propagation turns left with
the split in the +x and −x directions [Figs. 6(e) and 6(f)],
the same as those without SRR [Figs. 5(d) and 5(h)–(j)]. For
the +x split’s direction, the Purcell factors Ftot = 7.27, Fabs =
5.79, Fleft = 0.12, Fright = 0.04, and Fsc = 1.31, showing that
Fleft/Fright = 2.77:1, leads to the chiral left photonic prop-
agation [Fig. 6(e)]. For the −x split’s direction, the Pur-
cell factors are Ftot = 7.49, Fabs = 5.80, Fleft = 0.18, Fright =
0.05, and Fsc = 1.46, with the chirality Fleft/Fright = 3.67:1.
In contrast, the Purcell factors of PC structures without SRR

are Ftot0 = 2.04, Fleft0 = 0.18, Fright0 = 0.05, and Fsc0 = 1.81,
leading to Fleft0/Fright0 = 3.57:1. Here, the effective chiral
magnetic Purcell factor Fev = Fleft + Fright is only 2.25% and
3.03% for the split’s +x and −x direction, respectively, which
is even smaller than the results of point M3, due to the longer
distance from point L3 to the interface. Also, it is the emitter’s
position caused by magnetic helicity σ , not the split’s direc-
tion, that changes the chirality, but the split’s direction helps
enhance Fev and Fleft/Fright by a range of nearly 35% and 32%,
respectively, when matching the chiral propagation.

Changing the spin of the emitter can also directly af-
fect the chiral direction excited by SRR. As shown in
Figs. 6(g) and 6(h), the emitter (1,−i, 0) at point M3 excites
the left chiral light transport, opposite to those of (1, i, 0)
[Figs. 6(c) and 6(d)]. The results of Purcell factors for emitter
(1,−i, 0) are almost mirror symmetric to those of (1, i, 0).
For the split’s +x direction, we obtain that Ftot = 8.35, Fabs =
5.73, Fleft = 0.28, Fright = 0.08, and Fsc = 2.25, with the chi-
rality Fleft/Fright = 3.42:1. For the split’s −x direction, Ftot =
8.77, Fabs = 5.88, Fleft = 0.54, Fright = 0.13, and Fsc = 2.21,
with the chirality Fleft/Fright = 4.06:1. In contrast, the Purcell
factors of PC structures without SRR are Ftot0 = 3.39, Fleft0 =
0.51, Fright0 = 0.12, and Fsc0 = 2.75, leading to Fleft0/Fright0 =
4.10:1.

Therefore, the silver SRR with magnetic response can per-
fectly work as a chiral emitter, providing a method of tuning
the chiral direction of spontaneous emission enhancement
by controlling the emitter’s positions and polarizations and
the split’s directions. The emitter’s positions, determined by
magnetic helicity and its polarizations, can directly decide
the chiral photonic propagation when fixing the finite size
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of photonic structure to avoid chiral oscillation. The split’s
directions cannot change the chirality but help enhance the ef-
fective spontaneous emission and chirality. However, because
of the significant metallic absorption and radiative scattering,
the effective Purcell factor is not satisfactory, which means it
may not be a good choice if one prioritizes the efficiency of
photon utilization.

Finally, we briefly address the possibility of the experimen-
tal realization of our proposal. The 3D honeycomb topological
PC slab structure can be fabricated with the existing pro-
cessing micro- and nanotechnologies. The topological system
works in the wavelength range between 1400 and 1620 nm,
corresponding with optical communication bands. As the
relative permittivity of the materials is set at 12 and 2, respec-
tively, the structure can be fabricated in silicon and silicon
dioxide. The lattice constant a0 = 740 nm, cylinder diameter
d = 164 nm, and cylinder height h = 650 nm in silicon can
be realized with normal nanofabrication techniques such as
EBL and ICP etching [37–39]. To realize the top-down inverse
symmetry, the PC structure can be fabricated on a standard
SOI chip. Then, the silicon PC structure can be covered with
a silicon dioxide layer by spin-coating of polymer hydro-
gen silsesquioxane (HSQ) or direct silicon dioxide deposition
[35,36,64,65]. The possible difficulty may be realizing the
silver SRR as an emitter, because depositing metal nanostruc-
tures into PCs is challenging. However, the proposal of silver
SRR is worth trying because it only needs room temperature,
which will be cheaper and more accessible than quantum dots
requiring low temperature and strong magnetic field [13]. The
excitement of SRR can be either endogenous (such as dyes)
or exogenous (such as outer pump) for the 3D photonic chip.
Overall, because of the total consideration of feasibility in the
design processing, it is promising to realize our proposal of
the direction-tunable chiral spontaneous emission based on
the topological honeycomb PC slab experimentally. Varieties
of designs can be derived from our structures, such as air-hole
photonic crystals.

VII. CONCLUSION

In conclusion, we propose direction-tunable chiral spon-
taneous emission based on magnetic helicity and finite-size
effect in a topological honeycomb PC slab. We reveal the
principle of chiral directions tuned by the emitter’s position
upon the magnetic helicity distribution of TM modes as a new
real-space judgment of chiral directions. More importantly,
we found a phenomenon of chirality oscillation caused by the
finite size of honeycomb topological PCs in the frequency
range of edge state channels, which also decides the pho-
tonic chiral propagation. This method of controlling 2D chiral
modes can be extended to the 3D topological honeycomb
PC slab with SiO2-PC-SiO2 sandwich structures containing a
silver SRR as the emitter. By careful design, the 3D slab struc-
ture is convenient for fabricating the present manufacturing of
on-chip photonic integration. Also, the SRR makes the entire
system work at room temperature without a strong magnetic
field. Our research reduces the threshold of on-chip chiral
photonic application under topological protection, which is
helpful for single-photon sources, photonic integrated chip
manufacturing, and quantum information processing.
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APPENDIX A: A SIMPLIFIED ANALYTIC
FRAMEWORK OF FINITE-SIZE HONEYCOMB

TOPOLOGICAL PC STRUCTURE

For the Ez components of TM modes inside the honeycomb
topological PC structure with finite size in the x direction, we
have

Ez =
∑

m

Ez,me−imβ0xe−iqxx. (A1)

Here, m is an arbitrary integer, β0 = 2π/a0 represents the
Bloch wave vector, and qx means the wave vector of edge
state modes in the x direction. According to the finite-size
coupled-wave theory [38,45], Ez can be described by the basic
waves R and S as

Ez = (Re−iβ0x + Seiβ0x )e−iqxx. (A2)

The boundary conditions for the finite-size PC are

S|L/2 = rR|L/2, R|−L/2 = r′S|−L/2. (A3)

Here, L represents the PC length in the x direction, and r and r′
represent the effective reflectivity. Boundaries could mix the
edge state modes with wave vectors qx and −qx, i.e.,[

R
S

]
= C1

[
V11

V21

]
e−iqxx + C2

[
V12

V22

]
eiqxx. (A4)

Here, C1,C2 represent the overlapping coefficients, and
Vi j (i, i = 1, 2) represents the element of the basis vector.
Combining Eq. (A3) with Eq. (A4), we have∣∣∣∣(V21 − rV11)e−iqxL/2 (V22 − rV12)eiqxL/2

(V11 − r′V21)eiqxL/2 (V12 − r′V22)e−iqxL/2

∣∣∣∣ = 0. (A5)

Then, we obtain the edge state mode wave vector inside the
finite-size PC as

qx = 1

2iL
ln

[
(V21 − rV11)(V12 − r′V22)

(V11 − r′V21)(V22 − rV12)

]
+ nπ

L
. (A6)

n should be the integer. Then, we have

C2 = −V21 − rV11

V22 − rV12
e−iqxLC1,

= (−1)n+1

√
(V21 − rV11)(V11 − r′V21)

(V22 − rV12)(V12 − r′V22)
C1. (A7)

It is easy to prove that V11 = V22,V21 = V12, and if r = r′, we
have C2 = (−1)n+1C1. For C2 = C1, we have

Ez = Re−iβ0x + Seiβ0x

= (V11e−iqxx + V12eiqxx )e−iβ0x

+ (V21e−iqxx + V22eiqxx )eiβ0x. (A8)
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It is easy to prove that

Ez(−x) = (V11eiqxx + V12e−iqxx )eiβ0x

+ (V21eiqxx + V22e−iqxx )e−iβ0x

= Ez(x). (A9)

For C2 = −C1, we can get Ez(−x) = −Ez(x) in the same
way. Therefore, if n is even, C2 = −C1, and Ez is an odd
mode in the x direction, while if n is odd, C2 = C1, and Ez

is an even mode in the x direction. This characteristic of
eigenmode parity leads to the chirality oscillation in the main
text.

APPENDIX B: CHIRALITY OSCILLATION
UNDER MATERIAL LOSS

One may be concerned about the impact of material loss on
chiral propagation. Here, we give an imaginary part for εa and
εd ranging from 0i to 0.05i in the 2D cases. The results are in
Fig. 7. The loss nearly does not affect the eigenfrequencies,
so we can still see the curves of chirality oscillation with a
reduced amplitude; a larger loss leads to a smaller amplitude.
If the loss is too large, such as the imaginary part over 0.05i,

FIG. 7. Chirality oscillation considering material loss with finite
size Nx = 30, Ny = 10. The chiral emitter takes (1, i, 0) at the L3
point.

the PC cannot support light transport, and the amplitude of
Cln tends to zero gradually, meaning no chiral propagation.
Therefore, chirality oscillation still happens in moderate lossy
systems with finite size.
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