
PHYSICAL REVIEW A 109, 063333 (2024)

Controlling vortex lattice structure of binary Bose-Einstein
condensates via disorder-induced vortex pinning
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We study the vortex pinning effect on the vortex lattice structure of the rotating two-component Bose-Einstein
condensates (BECs) in the presence of impurities or disorder by numerically solving the time-dependent coupled
Gross-Pitaevskii equations. We investigate the transition of the vortex lattice structures by changing conditions
such as angular frequency, the strength of the inter-component interaction and pinning potential, and the
lattice constant of the periodic pinning potential. We show that even a single impurity pinning potential can
change the unpinned vortex lattice structure from triangular to square or from triangular to a structure which is
the overlap of triangular and square. In the presence of a periodic pinning potential or optical lattice, we observe
the structural transition from the unpinned vortex lattice to the pinned vortex lattice structure of the optical lattice.
In the presence of a random pinning potential or disorder, the vortex lattice melts following a two-step process
by creation of lattice defects, dislocations, and disclinations, with the increase of rotational frequency, similar to
that observed for single-component Bose-Einstein condensates. However, for the binary BECs, we show that the
two-step vortex lattice melting also occurs with increasing strength of the intercomponent interaction.
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I. INTRODUCTION

Studies of multicomponent Bose-Einstein condensates
(BECs), either of the same atomic species [1–5] or of different
atomic species [6–9], have become a subject of recent interest.
This is because of the fact that the presence of two compet-
ing energy scales of intra- and intercomponent interaction,
the multicomponent BEC presents novel and fundamentally
different ground-state scenarios and vortex lattice structures
than that of the single-component BECs. Binary BECs have
been realized in various setups: a single isotope in two differ-
ent hyperfine states [10], two different isotopes of the same
alkali metal [7], or two distinct elements [7,11]. By varying
the particle numbers of the components, it is possible to
go continuously from regimes of interpenetrating superfluids
to those with separated phases [12]. The equilibrium vortex
lattice structure of rotating single-component BECs is the
well-known Abrikosov vortex lattice or triangular (hexagonal)
vortex lattice. On the other hand, a rich variety of vortex
lattice structures occurs in rotating multicomponent BECs,
such as interlaced square vortex lattice which has been ob-
served in rotating spinor BECs [13]. It has been shown that
by varying the strength of the intercomponent interaction for
binary BECs the interlocked vortex states undergo a phase
transition from triangular to square lattices, then to double-
core lattices, and finally leading to nonperiodic interwoven
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serpentine vortex sheets [14–17]. More recently, it has been
shown that in rotating binary dipolar BECs a new vortex
lattice structure is caused by the long-range interactions [18].
For unequal masses of two species of binary BECs, the two
condensates rotate at different speeds due to the disparity
in masses and show vortex synchronization leading to the
formation of bound pairs and the locked state of the two
vortex lattices [19,20]. For attractive interaction between the
two components of the binary BECs, the system exhibits
nontriangular geometry of the vortex lattices, such as square
and two-quantum-vortices [21]. It has been further shown
that for unequal masses of the atoms, exotic vortex lattice
configurations which include the honeycomb, kagome, and
herringbone can exist in binary repulsive BECs [22].

In the past few years, the study of the effect of impurity
pinning potential on vortex dynamics in BECs has gained
importance. A few examples are vortex lattice melting in the
presence of random impurities or disorder and its usefulness
to study melting problems, in general [23,24], Anderson local-
ization [25], superfluid behavior [26], turbulent dynamics in
BECs induced by stirring mechanism due to time-dependent
impurity position [27,28], etc. Rotating BECs with impuri-
ties provide a system where it is possible to display, in a
controlled way, the interplay between interaction and disor-
der in the vortex dynamics. This competition is responsible
for the vortex lattice melting in BECs, which mimics the
observed vortex lattice melting in type II superconductors
[29]. Such melting is fundamentally different from the more
conventional thermal melting. In this case, the transition can
be driven by vortex pinning due to point disorder rather
than temperature. It was originally proposed in the context
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of vortex matter in high-temperature superconductors [30,31].
High-temperature superconductors have two order param-
eters, the s-wave and d-wave order parameters, and the
superconductivity of the high-temperature superconductors
depends on impurity doping [32]. The vortex dynamics
in high-temperature superconductors are described by two-
components Ginzburg-Landau theory in the presence of an
applied magnetic field [33–36]. The melting process of the
vortex lattice in low-temperature superconductors has been
studied extensively to explore its role in the critical current
of such superconductors. In this context, the study of the
impurity-induced vortex pinning and vortex lattice structure in
binary BECs is important as it might mimic the vortex lattice
dynamics in high-temperature superconductors, which have
two order parameters. The identical idea of melting due to
random pinning has also been used by Tsiok et al. and recently
[37] among others. Likewise, the effects of periodic impurities
on vortex dynamics in BECs have generated great interest
recently due to their applicability in various fields such as the
physics of Josephson junction arrays, fractional quantum Hall
effect, etc. These studies are done by loading the BECs on a
rotating optical lattice, and experiments employing BECs in
a rotating optical lattice have led to the observation of some
of these physical phenomena [38,39]. For weak optical lattice
potential, the pinning of vortices by the optical lattice has
shown rich vortex lattice structures [40–44]. Similar studies
on honeycomb optical lattices have shown interesting moving
vortex phases which are useful for studying the anomalies in
the critical current of type II superconductors [45]. Very re-
cently, experimental and theoretical studies of ultracold gases
on quasicrystalline optical lattice potential have been reported
[46,47]. Quasicrystalline potentials have long-range order but
are not periodic. However, very few studies are related to the
vortex lattice structures of the binary BECs in the presence of
periodic pinning or optical lattice where the presence of the
intercomponent interaction further enriches the vortex lattice
structures [48,49].

In this paper, we study the effects of impurities or disorder
on the equilibrium vortex lattice structures of the rotating
binary BECs. The presence of the impurity potential adds
another energy scale to the problem besides the other two
competing energy scales of intra- and intercomponent inter-
actions in binary BECs. Competition between these energy
scales allows controlling the equilibrium vortex lattice struc-
tures of the rotating binary BECs via disorder-induced vortex
pinning. We show that even a single impurity can change the
vortex lattice structure from triangular to square and also from
triangular to a distorted lattice. The structure of the pinned
vortex lattice depends on the commensurate or incommen-
surate positions of the impurities w.r.t. the positions of the
vortices of the unpinned lattice, i.e., vortex lattice without
impurities. Maximum changes in the unpinned vortex lattice
structures occur when the impurities are in incommensurate
positions. In the presence of periodic impurities or periodic
pinning potentials, which can be created by optical lattices,
we show that the vortex lattices acquire the structure of the
optical lattice due to the pinning of the vortices by the opti-
cal lattice potential. In the presence of random impurities or
disorder, the vortex lattice melts following a two-step melting
process by creating an increasing number of lattice defects,

dislocations, and disclinations, with increasing rotational fre-
quency and strength of the random pinning potential. Further,
it is shown that the vortex lattice melting of binary BEC in
the presence of the disorder is also possible with increasing
strength of the intercomponent interaction. To characterize
the equilibrium structure of the vortex lattices, we calculate
the condensate densities of the components of the binary
BEC and its corresponding structure factor profiles. To find
the lattice defects in the disordered vortex lattices we plot the
Delaunay triangulated disordered vortex lattice showing the
lattice defects.

II. THEORETICAL MODEL OF ROTATING BINARY BEC
AND THE COUPLED GROSS-PITAEVSKII

EQUATIONS FOR THE SYSTEM

We begin with the effective two-dimensional (2D) Gross-
Pitaevskii (GP) energy functional E [ψ1, ψ2] = ∫

E2D(r) d2r
expressed in terms of the binary condensate wave functions
ψ j for the jth component ( j = 1, 2), where the energy density
is given by

E2D(r) =
2∑

j=1

(
h̄2

2mj
|∇ψ j |2 + Vj |ψ j |2 + g j j

2
|ψ j |4

−�ψ∗
j Lzψ j

)
+ g12|ψ1|2|ψ2|2, (1)

where ψ∗
j is the complex conjugate of ψ j . Here mj repre-

sents the atomic mass of the jth component, g j j = 4π h̄2a j

mj

the intracomponent interaction strength, g12 = 2π h̄2a12
m12

the in-
tercomponent interaction strength, m12 = m1m2

m1+m2
, a j and a12

the corresponding s-wave scattering lengths, � the rotational
frequency, Lz the angular momentum in the z direction, with
normalization condition

∫
(|ψ j |2 dx dy = Nj , and N = N1 +

N2 the total number of particles in the system. The po-
tential Vj (x, y) consists of two parts Vj (x, y) = Vj,trap (x, y) +
Vj,impurity (x, y), the harmonic trap potential and the impu-
rity potential, respectively. The harmonic trap potential has
the form Vj,trap (x, y) = 1

2 mjω
2
⊥(x2 + y2), where ω⊥ is the ra-

dial harmonic frequency. For a single impurity at position
(x0, y0), we take the impurity potential as Vj,impurity (x, y) =
V0 j exp{−[(x−x0 )2+(y−y0 )2]

(σ/2)2 }, where V0 j denotes the strength of
the impurity potential interacting with the jth component and
σ is the width of the potential. For the periodic distribution of
impurities that can be created by the optical lattice, the impu-
rity potential is taken as the optical lattice potential Vimpurity =
Vlattice(r) = ∑

n1,n2
V0 exp{−[|r−rn1 ,n2 |2

(σ/2)2 }, where rn1,n2 = n1a1 +
n2a2 denotes the lattice points, n1 and n2 are integers. For
the triangular optical lattice, the two lattice unit vectors are
given by a1 = a(0, 1) and a2 = a(±1/2,

√
3/2) and for the

square optical lattice a1 = a(1, 0) and a2 = a(0, 1) [42,50].
In the following, we denote the spatial coordinates, time, con-
densate wave function, rotational frequency, and energies in
units of ah, ω−1

⊥ , a−3/2
h , ω⊥, and h̄ω⊥, respectively, where ah =√

h̄/mω⊥. From Eq. (1) we obtain the 2D time-dependent
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coupled dimensionless GP equations (GPE) as

i
∂

∂t
ψ j (x, y, t ) =

[
− 1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ Ṽj (x, y)

+g̃ j j |ψ j (x, y, t |2 + g̃12|ψ3− j (x, y, t )|2

−�Lz

]
ψ j (x, y, t ), (2)

where g̃ j j = 4πNaj

ah

√
λ

2π
, g̃12 = 4πNa12

ah

√
λ

2π
, λ = ωz

ω⊥
, and

Ṽj (x, y) = 1
2 (x2 + y2) + Vj,impurity (x, y). For random impu-

rity potential V1,impurity = V2,impurity = ∑
n1,n2

VR exp{−[|r−rn1 ,n2 |2
(σ/2)2 },

where VR is drawn from the distribution [−V0,V0).

III. NUMERICAL DETAILS

The split-step fast-Fourier method [51] is used to solve the
dimensionless coupled GPE equations [Eq. (2)] using imagi-
nary time propagation. We consider the Thomas-Fermi wave
function in the absence of rotation, ψTF(x; � = 0), as the
initial condition [52]. Nevertheless, we adjust the wave func-
tions of both components to be slightly different in order to
make the initial condition asymmetric. We then introduce the
rotation of desired frequency � to generate the vortices in the
system. In the numerical simulations, we consider 512 × 512
grid points for a domain size 32 × 32 and 1024 × 1024 grid
points for a domain size 54 × 54. We fix both the masses
the same and g̃11 = g̃22 = 2000 unless otherwise mentioned.
Additionally, N1 = N2 is considered. Our motivating exam-
ple is that of a mixture of 2D BECs of 87Rb atoms in the
different hyperfine spin states; the mass equality suggests
our focus on a scenario of two hyperfine states of the same
gas, in particular 87Rb [23]. In the absence of rotation and
optical lattice potential, the dimensionless chemical potential

can be estimated from the expression μ̃ =
√

g̃11+g̃12

π
. In full

dimension, μ = μ̃h̄ω⊥. The parameters varied are the strength
of the intercomponent coupling δ = g̃12

g̃ j j
, the rotational fre-

quency �, and the strength of the impurity potential. We
calculate the structure factors profiles of the vortex lattices
in terms of the spatial density of the condensate components
as S j (k) = ∫

dx dy|ψ j (x, y, t )|2eik·r, j = 1, 2. The structure
factor profiles provide information about the periodicity of the
condensate density. We also plot the Delaunay triangulated
lattice of the condensate densities to determine the number
of nearest neighbors of the vortex lattice to show lattice dis-
order through the creation of the lattice defect dislocations
and disclinations. Dislocations are lattice defects consisting
of pairs of fivefold or sevenfold and disclinations are isolated
fivefold or sevenfold coordinate axes respectively. For finding
the dislocations and disclinations the boundary coordinates
are not considered. In order to study the effect of random
pinning potential due to random impurities or disorder on
the vortex lattice, we generate random potential Vimpurity by
considering a square optical lattice Vlattice(r), where we fix
the width of each Gaussian peak σ to 0.5 and distance be-
tween each peak, a, to 1. The height of each peak, V0, has
been changed with the help of random numbers which are
uniformly distributed over [−V0,V0] [29].

FIG. 1. Condensate densities with color bars (a) |ψ1|2 and
(b) |ψ2|2 (right) without an impurity for δ = 0.6 and � = 0.71. The
corresponding structure factor profiles are given in the inset.

IV. EFFECT OF IMPURITIES OR PINNING CENTERS
ON THE EQUILIBRIUM STRUCTURES

OF UNPINNED VORTEX LATTICES

A. Effect of single impurity

To see the effect of a single impurity on the vortex lattice
structure, we consider the equilibrium vortex lattice in the
presence of a single impurity. In the absence of any impurity,
the rotating binary BECs with equal intracomponent inter-
action but varying intercomponent interaction and rotational
frequency show rich equilibrium vortex lattice structures [14].

In the presence of an impurity, the vortex lattice structures
are expected to get distorted due to the pinning of the lattice
vortices with the impurity. We first show that the presence of
even a single impurity can change the unpinned equilibrium
vortex lattice structures of a binary BEC. We fix the impurity
position (x0, y0) near the trap center and in the middle of the
two vortices of the unpinned triangular vortex lattice as it pro-
vides maximum distortion of the vortex lattice. Additionally,
we set V01 = V02.

We choose the interaction parameter between compo-
nents δ and the rotational frequency �, which corresponds
to a triangular vortex lattice ([14]). Figure 1 shows the un-
pinned density profiles of the triangular vortex lattices of the
two components. The corresponding structure factor profiles
shown in the inset have six peaks as expected for a regular
hexagonal Abrikosov lattice.

Interestingly, in the presence of a single impurity, the
vortex lattice structures change from triangular to square lat-
tice. This is shown in the density profiles in Fig. 2, and
the corresponding structure factor profiles display four peaks
as expected for a square lattice structure. This is because
the vortices of both components near the impurity compete
with each other to become pinned with the impurity. Since
the impurity strength V0 � μ, neither of the vortices suc-
ceeds, and, as a result, the entire vortex lattice rearranges
to a square lattice to minimize the lattice potential energy
Elattice = 〈ψ (x; �)|Vlattice|ψ (x; �)〉.

To understand this transition, we calculated the equilibrium
lattice structure starting from a vortex-free ground state and
the corresponding lattice potential energies by varying the
impurity strength. The results are shown in Fig. 3, where
Elattice is normalized with the Elattice0 = 〈ψ (x; � = 0)|Vlattice

|ψ (x; � = 0)〉. As expected, in the presence of an impurity,
the lattice potential energy decreases as a result of the pinning
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FIG. 2. Condensate densities with color bars (a) |ψ1|2 and
(b) |ψ2|2 for δ = 0.6, � = 0.71 in the presence of a single impurity at
(x0 = 0, y0 = −0.5) with strength V01 = V02 = 1. The corresponding
structure factor profiles are given in the inset.

of the vortex with the impurity. As shown in the figure, there
are three regimes with increasing strength of the pinning po-
tential. In the first regime, we get higher Elattice, which remains
nearly flat in the second regime. In the third regime, we see
a lower Elattice for a further increase in impurity strength. In
the first regime, for weaker strength of the impurity potential
(V0 � μ) vortices of both components are weakly pinned,
resulting in square lattices. In the second regime, V0 from 3
to 23, we observe the pinning of the vortices of one of the
components. However, the square-vortex lattice is unchanged.
In the third regime, vortices of both components are pinned
at impurity, and as a result, we see maximum vortex lattice
distortion.

Figure 4 shows a cross section (x = 0 slice) of the density
profiles as shown in Fig. 3. The total density ρT = |ψ1|2 +
|ψ2|2 is also shown in the same figure (black curve). As
mentioned above, for weak pinning the vortex lattice under-
goes a transition to the square lattice (Fig. 2 and the first
figure from the left in the density profiles in Fig. 3) from the
unpinned triangular lattice (Fig. 1). A smoother total density
ρT is favorable for the square lattice [14], which results in the

FIG. 3. Lattice energy versus impurity strength for a single impu-
rity placed at (x0 = 0, y0 = −0.5). The corresponding vortex lattice
and structure factors of one of the components corresponding to the
red points are given the bottom left inset (a)–(c), where the blue dot
shows the position of a single impurity. The top right inset shows
the normalized total energy E/E lattice0 calculated from Eq. (1) as a
function of the V0. The other parameters are δ = 0.6 and � = 0.71.

shift of the positions of the vortex cores in such a manner that a
peak in the density of one component is located in the density
hole of the other, resulting in a decrease of Elattice/Elattice0.
This is shown in the cross section plots in Fig. 4(a). With
increasing strength of the pinning potential, the vortex lattice
becomes more disordered resulting in fluctuations of the total
density as shown in Figs. 4(b)–4(f). It is to be noted that the
decrease in Elattice/Elattice0 with well-defined transition points
is not quantified in the normalized total energy E/Elattice0 as
shown in the top right inset of Fig. 3. This further manifests
that Elattice/Elattice0 is the right parameter to quantify a vortex
matter transition in presence of a lattice potential [42].

An additional numerical experiment is carried out by con-
sidering the ground state of the vortex in Fig. 1 as the initial
condition. The final vortex ground state of a V0 is used as
the initial condition for the simulation at V0 + ε, where ε

denotes a small increment in V0. This is unlike the case shown
in Fig. 3, where the initial condition is always a vortex-free
state ψTF(x; � = 0). The increase in impurity strength does
not affect the geometry of the triangular lattice for V0 < 47,
as shown in the inset of Fig. 5. This shows the presence of
coexisting solutions for the same parameters set. Moreover,
the order-disorder transition of the vortex lattice occurs at a
higher strength compared to Fig. 3.

B. Effect of periodic impurities

The vortex lattice structures of the rotating binary BECs
can be controlled via the pinning of the vortices by periodic
impurities or a periodic pinning potential. Experimentally
such effects are created by loading the rotating BECs on
a corotating optical lattice [38]. It is well known that the
addition of periodic artificial pinning centers helps to real-
ize other vortex arrangements and many dynamical phases
[45,53]. In the context of superconductors, vortex pinning
due to periodic pinning centers helps in increasing the critical
current and controlling the fluxon dynamics [54].

We have simulated the coupled 2D Gross-Pitaevskii equa-
tions in the presence of optical lattices of triangular and
square geometries. We show that the presence of a weak
periodic optical lattice potential leads to a transition from
the unpinned vortex lattice structures to the structures of the
optical lattice due to the pinning of the vortices by the optical
lattice. We show that for binary BECs the intercomponent
interaction δ plays a very crucial role in controlling the vortex
lattice structures of each component. This is due to the differ-
ence in condensate densities produced by the intercomponent
interaction.

In cases where the symmetries of the unpinned vortex
lattice and the optical lattice are the same, we choose different
lattice constants of the two lattices so as to demonstrate the
perfect pinning of the unpinned vortex lattice to the optical
lattice. After perfect pinning, the lattice constants of the orig-
inal unpinned lattice match exactly that of the optical lattice.

For example, for the choice of parameters δ = 0.2 and
� = 0.76, the unpinned vortex lattice is triangular [14] with
lattice constants determined by a = 2.2, and therefore to show
perfect pinning of the vortex lattice, we choose a triangular
optical lattice with different lattice constants for a = 2.28.
Similarly, for δ = 0.7 and � = 0.76 the unpinned vortex
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FIG. 4. One-dimensional view of condensate densities ρT (0, y) = |ψ1|2 + |ψ2|2 (black), |ψ1(0, y)|2 (red), and |ψ2(0, y)|2 (blue) of the
cases shown in Fig. 3 for V0 = (1, 2, 10, 20, 28, 40) (a)–(f).

lattice is square [14] with lattice constants determined by
a = 2.12, and accordingly to show pinning we choose square
optical lattice with different lattice constants a = 2.20. We
observe that a lower pinning strength of the optical lattice
is required for pinning when there is a matching between
the symmetries of the unpinned vortex lattice and the optical
lattice. To show this we consider pinning of unpinned vortex
lattice of various symmetries by a triangular optical lattice
with lattice constants determined by a = 2.28. For unpinned
vortex lattice of different symmetries, we consider cases with
increasing values of the intercomponent interaction parame-
ter δ as 0.2, 0.5, and 0.8, keeping the rotational frequency
the same as � = 0.76. For these cases, the corresponding
unpinned vortex lattices are triangular, overlap, and square,
respectively [14]. The corresponding triangular pinned vortex
lattices are shown in the inset of Fig. 6. From Fig. 6 we
can see that increasing the strength of the triangular optical
lattice is required for pinning as the symmetry of the unpinned
vortex lattice changes from triangular to overlap to square.
Figure 6 further shows the respective lattice energies of the
unpinned triangular and square lattices for various strengths
of the triangular optical lattice. In both cases the lattice energy
decreases with the increasing strength of the optical lattice
due to pinning. However, for the triangular lattice case, the

FIG. 5. Lattice energy versus impurity strength for a single im-
purity placed at (x0 = 0, y0 = −0.5) starting from a vortex ground
state shown in Fig. 1. The corresponding vortex lattice and structure
factors of one of the components corresponding to the red points are
given the inset (a)–(c), where the blue dot shows the position of a
single impurity.

lowering of the lattice energy is lesser as compared to that
of the square lattice case due to the same symmetry of the
unpinned vortex lattice and the pinning optical lattice.

Figure 7 shows the pinning of the unpinned square vor-
tex lattice to the square optical lattice with lattice constants
determined by a = 2.12. For this, we take parameter values
as δ = 0.7 and � = 0.76 which gives an unpinned square
vortex lattice [14] with lattice constants determined by a =
2.2. Comparison of Figs. 6 and 7 shows that it requires more
strength of the optical lattice to pin a square unpinned vortex
lattice to a triangular optical lattice compared to the pinning
of a square unpinned vortex lattice to a square optical lattice.

V. EFFECT OF RANDOM IMPURITIES OR DISORDER

In BECs the random impurities or disorder is created and
controlled by the laser speckle method [55,56]. For a single-
component BEC it has been shown that the vortex lattice
melts with increasing strength of disorder due to pinning
of the vortices with the random impurities [23]. Also, for a
fixed strength of the disorder and with increasing strength of
the rotational frequency, the vortex lattice gets increasingly
disordered leading to the melting of the vortex lattice. The
vortex lattice gets disordered by the creation of lattice defects,

FIG. 6. Lattice energy versus impurity strength for a triangular
optical lattice for δ = 0.2, δ = 0.5, and δ = 0.8 for the fixed rotation
strength � = 0.76 and the lattice constant a = 2.28. The condensate
density of the first component |ψ1|2 in the inset shows the pinned tri-
angular vortex lattices for (a) δ = 0.2, V0 = 11, (b) δ = 0.5, V0 = 20,
and (c) δ = 0.8, V0 = 42. The second component |ψ2|2 also exhibits
the triangular vortex lattice.
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FIG. 7. The condensate densities with color bars (a) |ψ1|2 and
(b) |ψ2|2 show the pinned square vortex lattices with lattice constant
a = 2.2 for δ = 0.8, � = 0.76 and V0 = 35.

dislocation, and disclination. Such melting of vortex lattice
follows two steps. In the first step, the positional order of
the unpinned vortex lattice disappears, but the orientational
order is retained. In the second step, both positional and
orientational order disappears. In the first step of melting,
only dislocations are created whose number increases with
increasing rotational frequency, and the second step involves
the creation of both dislocations and disclinations [29].

The two-step vortex lattice melting is attributed to the
Berezinski-Kosterlitz-Thouless-Halperin-Nelson-Young
(BKTHNY) transition [57–60]. The two-step vortex lattice
melting has been experimentally observed recently in type II
low-temperature superconductors [61,62]. Recent numerical
simulations of the dynamics of single-component BECs in
the presence of random impurities have also shown two-step
vortex lattice melting [29]. For the binary BECs, such studies
of disorder-induced vortex lattice melting are important
due to their relevance in the context of the investigation of
vortex lattice melting in more complex high-temperature
superconductors having two order parameters. Besides the
possibility of melting the vortex lattice with increasing
strength of disorder and rotational frequency similar to that
of the single-component BECs, we further show that for the
binary BECs, it is also possible to melt the vortex lattices by
varying the strength of the intercomponent interaction δ.

To show this we consider random impurities effects on both
the triangular as well as the square vortex lattice regimes.
Figure 8 shows that for the disorder strength V01 = V02 = 1,
the vortex lattices of both components remain nearly hexag-
onal and square respectively for the cases δ = 0.2 and 0.8 as
seen from the density plots and the corresponding structure
factor profiles, which show six periodic peaks. But at higher
disorder strength, the vortex lattice of both the components
gets disordered as seen from the density plots and the structure
factor profiles.

Similar to the single-component BECs, the two-step vortex
lattice melting by the creation of lattice defects with increas-
ing rotational frequency [29] is also observed for the binary
BECs. The corresponding Delaunay triangulated disordered
vortex lattice structures are shown in Fig. 9. In the plots, the
lattice defects dislocations with fivefold and sevenfold nearest
coordinates are shown in black and green-filled circles, re-
spectively, and the disclinations are shown in red-filled circles.
From Fig. 9 we can see that for � = 0.45 and � = 0.6 the

FIG. 8. Condensate density with color bars |ψ1|2 and structure
factor (inset) for (a), (b) δ = 0.2 and (c), (d) δ = 0.8 for the fixed
�=0.76 with random impurity strength V0 j = 1 (a), (c), V0 j = 10 (b),
and V0 j = 15 (d) shows the order to disorder transition of a vortex
lattice. The density |ψ2|2 shows similar pattern.

lattice defects present for both the components are only the
dislocations. In this case, the translational symmetry of the
unpinned triangular lattice is lost, but the rotational symmetry
is still present. This can be seen from the structure factor
profiles in the inset of the figures of the corresponding densi-
ties for these two cases. The structure factor profiles for both
components show six nearly periodic peaks implying that the
rotational invariance of the unpinned triangular lattice is still
maintained even in the presence of the random impurities. As
the rotational frequency increases further to � = 0.9, both
types of lattice defects, dislocations, and disclinations are
present. The number of lattice defects increases leading to
the melting of vortex lattices for both components. With the
appearance of disclinations, the rotational invariance is also
lost. The structure factor profiles in the inset show that there
are more intense peaks corresponding to the disordered vortex
lattices.

Similarly, the two-step vortex lattice melting is also
observed for different random realizations, and the corre-
sponding plots are not shown here to avoid cluttering the
figures.

We have also observed the two-step vortex lattice melt-
ing for the binary BECs with increasing strength of the
intercomponent interaction δ. This is shown in Fig. 10.
From the structure factor profiles in the inset of the fig-
ure, we can see that for the intercomponent interaction
strengths δ = 0.45 and δ = 0.55 the sixfold rotational sym-
metry is still preserved. The loss of long-range order with
increase in δ can be verified from the orientational correlation
function g6(r) = (

∑
i, j �( r

2 − |r − |ri − r j ||) cos{6[θ (ri) −
θ (r j )]}) × [1/n(r,r)], where �(r) is the Heaviside step
function, θ (ri ) − θ (r j ) is the angle between the bonds located
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FIG. 9. Top, middle, and bottom panels are Delaunay triangu-
lated disordered vortex lattice of the first (left) and second (right)
BEC components for δ = 0.2, g11 = 8000, and � = (0.45, 0.6, 0.9)
respectively and random impurity strength V0 j = 1.5.

at ri and the bond located at r j , n(r,r) = ∑
i, j �( r

2 − |r −
|ri − r j ||), r defines a small window of the size of the pixel
around r and the sum is over all the bonds, shown in Fig. 11.
The range of variable r is determined by the lateral size of
each image. In Fig. 11 we restrict the r to half the lateral
size of the image, which corresponds to approximately 7.5a0

(where a0 is the average lattice constant) for δ = 0.45 and
7.6a0 for δ = 0.55. The sharp peaks in Fig. 11 correspond
to the nearest-neighbor bond distances. Though a power-law
decay of the orientational order is expected as a characteristic
of a quasi-long-range orientational order [63], the small range
of radial distance is not providing any conclusive evidence.
The small decay rate of δ = 0.45 as compared to the case
of δ = 0.55 indicates the better orientational order of δ =
0.45 case. When the intercomponent interaction strength is
increased further to δ = 0.67, both translational and rotational
symmetries are lost. The lattice structures of both components
become completely disordered, as shown in the corresponding
structure factor plots depicted in Fig. 10. We have verified
similar results for different random realizations.

FIG. 10. Top, middle, and bottom panels are Delanuay triangu-
lated disordered vortex lattices of the first (left) and second (right)
BEC components for � = 0.9, g11 = 8000, and V0 j = 0.5 with δ =
(0.45, 0.55, 0.67), respectively.

VI. SUMMARY, CONCLUSIONS,
AND FUTURE CHALLENGES

We have studied how the vortex lattice structures of binary
BECs can be controlled by the pinning of the vortices by im-
purities or disorder. We have considered the pinning effects of
three different types of impurities, all of which can be created

FIG. 11. Orientational correlation function g6(r) as a function of
r/a0 for δ = 0.45 and δ = 0.55 for a fixed rotation strength corre-
sponds to Fig. 10.
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experimentally using laser beams. By numerically solving
the time-dependent coupled Gross-Pitaevskii equations we
have observed the transition of the ordered unpinned vortex
lattice structures to various phases where vortices order in
lattice structures of different symmetries, in periodic arrays,
as well as in completely disordered or melted lattice. The
transitions are determined by the competition between the
strengths of the intercomponent interaction, impurity poten-
tial, and rotational frequency. The intercomponent interaction
plays a very important role in inducing different degrees of
disorder in the vortex lattices of the two components due to
differences in the densities of the condensate.

In the presence of a single impurity, we observe the transi-
tion of the unpinned vortex lattice structure from the triangular
to square and to a disordered lattice. For periodic impurities,
we have considered the triangular and square optical lattices
corotating with the binary BEC. We observed the transition
of the unpinned vortex lattices to the pinned lattices where
all the vortices are pinned to lattice points. The minimum
pinning strength of the optical lattice is required to pin the
vortex lattice if there is a matching between the symme-
tries of the unpinned vortex lattice and the optical lattice.
However, it requires a lesser strength of the optical lattice
potential to pin a triangular vortex lattice to a triangular op-
tical lattice as compared to the pinning of a square vortex
lattice to a square optical lattice. Also, it requires higher
strength of the optical lattice potential to pin a triangular
vortex lattice to a square optical lattice as compared to the
pinning of a square unpinned vortex lattice to a square opti-
cal lattice. In the presence of random impurities or disorder,
the unpinned vortex lattice melts. The melting and loss of
long-range order occur following a two-step melting process
by the creation of an increasing number of lattice defects
with increasing rotational frequency as well as the strength
of the random pinning potential. Interestingly, we observed
that similar vortex lattice melting can also occur in binary
BECs by increasing the strength of the intercomponent in-
teraction for a much weaker strength of the random pinning
potential.

In conclusion, rotating binary BECs in the presence of
impurities or disorder provide an interesting system for study-
ing new quantum phases of matter as well as phenomena
known from condensed matter in new perspectives. In this
context, the results of the impurity-induced vortex lattice
structures in binary BECs as reported here are relevant
for vortex dynamics in impurity-doped high-temperature su-
perconductors having two order parameters and should be
observed when the experimental results on the vortex lattice
structures in such complex superconductors are available in
the future.

An interesting direction for future work would be a de-
tailed study of the pinned phases of the binary BECs in
the presence of recently realized quasicrystalline optical lat-
tices [46]. In comparison to their periodic counterparts, the
aperiodic nature of the underlying quasiperiodic potential
and the intercomponent interaction are expected to create
various intriguing vortex lattice phases. Another possible
direction of future research would be to study the dynam-
ical phases of the vortices in periodic pinning potentials
that are distinct from the triangular and square potentials.
Experiments with periodic pinning arrays such as honey-
comb and kagome revealed interesting anomalies in critical
currents [64]. Numerical simulation of vortices in honey-
comb optical lattices has shown a remarkable variety of
dynamical phases that are distinct from triangular and square
pinning arrays and can flow in a direction of the driving
force due to the depinning of vortices leading to transport
[45]. Similar studies for binary BECs will be relevant in
the context of experimental observation of anomalous crit-
ical current behavior or the peak effect in high-temperature
superconductors.
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